ICERM Lecture 1
(Geodesic planes in $\infty-$ vol hyp molds)

Hee Oh
(Yale University)

May 15,2023

Geodesic planes in
hyperboli mflds of $\infty \mathrm{vol}$.
Ref. Geodesic planes in hyp 3 -mflds
(MaMullen-Mohannadi-O. - Inventiones 2017)

- Horocycles in hyp 3 -unflds (MMO,
- GAFA 2016
- Geodesic planes in the convexcore of an acylindrical 3 -mfld CMMO
- Dukezo22)
- Geodesic planes in geom. finite acylindrical 3-mflds (Benoist-0.
- ETDS 2022)
- Orbit closures of unip flows for hyp mflds with Fuchsian ends (Minju Lee-0. To appear G\&T)
* Dynamics for discrete subgps of $\mathrm{SL}_{2} \mathbb{C}$ in Dtnamics,Geornety, Number theory (Margulisual)
geodesic planes in $\mathbb{H}^{3}=\left\{\left(x_{1}, x_{2}, y\right) \mid y>0\right\}$

$$
\begin{aligned}
\operatorname{Isom}^{+}\left(H H^{3}\right) & =P S L \mathbb{C} \\
& \simeq \operatorname{SO}^{\circ}(3,1)
\end{aligned}
$$

$$
\mathbb{H}^{2}=\{(x, 0, y) \mid y>0\}
$$

$$
\begin{aligned}
\partial \| H^{3} & =\mathbb{R}^{2} v_{30} 0^{3} \\
& =\mathbb{S}^{2}
\end{aligned}
$$

$\tilde{p}=g\left(\mathbb{H}^{2}\right) \quad g \in$ PS L $_{2} \mathbb{C} \quad$ geodesic planes

$$
\partial \tilde{p}=g(\hat{\mathbb{R}})
$$

circles in \mathbb{S}^{2}
$M=\Gamma \backslash \mathbb{H}^{3} \quad \Gamma<P S L_{2} \mathbb{C} \quad$ t.f discrete

geodesic ${ }^{K}$ planes in $H^{n}=\left\{\left(x_{1}, \cdots, x_{n-1}, y\right) \mid y>0\right\}$

$$
\begin{gathered}
\operatorname{Isom}^{+}\left(1^{n}\right) \simeq S 0^{\circ}(n, 1) \\
G \\
{ }^{11}
\end{gathered}
$$

$$
\mathbb{H}^{k}=\left\{\left(x_{1}, \cdots, x_{k}, 0, \cdots 0, y\right) \mid y>0\right\}
$$

$$
\partial H^{n}=\mathbb{R}^{n-1} \cup\{00\}
$$

$$
=\mathbb{S}^{n-1}
$$

$\tilde{p}=g\left(\mathbb{H}^{k}\right) \quad g \in G \quad$ geodesic ${ }^{K}$ planes

$$
\partial \tilde{p}=g\left(\hat{\mathbb{R}}^{k-1}\right)
$$

$(k-1)$ spheres in \mathbb{S}^{n-1}

$$
M=\Gamma \backslash \mathbb{H}^{n} \quad \Gamma<G
$$

t.f discrete

Question P geod k-plane in $M=\frac{\mathbb{H}^{n}}{\Gamma}$

$$
2 \leq k \leq n-1
$$

Describe \bar{P} !

A The (Ratner, Shah ~90) $M=\Gamma \backslash \mathbb{H}^{n} \quad$ finite vol
$P \subset M$ geod k-plane $2 \leqslant k \leqslant n-1$
c) \bar{p} is a geod m-plane $k \leq m \leq n$
(e.g If $n=3, \bar{P}=P$ or $\bar{P}=M$)

What about $\operatorname{Vol}(M)=\infty$?
$M=\Gamma^{1 H^{n}}$ convex coast

$$
\operatorname{Int}(\text { Core } M) \neq \phi \quad\left(=\Gamma<S 0^{\circ}(n, 1)=G\right)
$$

Zariski dense
[B] Def M has Fuchsian ends $=\partial$ (Core) is totally geodesic

$$
=S^{n-1}-\Lambda=\bigcup_{i} \underset{\text { round ball }}{B_{i}} \underset{\bar{B}_{i} \cap \bar{B}_{j}}{\bar{R}^{2}}
$$

$$
\left\{\begin{array}{c}
\text { closed hyp } \\
n-m f l d
\end{array}\right\} \supset\left\{\begin{array}{c}
\text { closed hyp } n-m \text { mild } \\
\text { with properly embedded } \\
\text { codim } 1 \text { geod planes }
\end{array}\right\}
$$

Two types of planes:

$$
\begin{aligned}
& \{\cap \operatorname{Iut}(\operatorname{Core} M) \neq \phi \\
& P \cap \operatorname{Iut}(\operatorname{Cone} M)=\phi \\
& \Rightarrow \bar{P} \subset M-\operatorname{Int}(\operatorname{Core} M)
\end{aligned}
$$ Can use Ratner-shah to describe \bar{P}.

Thy (McMullen-Mohammadi - O. $\quad n=3$ Minju Lee - $0 . \quad n \geqslant 4$)
$M=\Gamma \backslash H^{n}$: hyp mfld with Fuchsian ends $P \subset M$ geod k-plane $2 \leqslant k \leqslant n-1$

$$
P \cap \operatorname{Int}(\operatorname{Core} M) \neq \phi
$$

$\Rightarrow \bar{P}=$ geod m-plane $k \leqslant m \leqslant n$
For $n=3, \bar{P}=P$ or $\bar{P}=M$.

$$
C_{\Lambda}=\left\{C \subset \mathbb{S}^{n-1} \begin{array}{c}
(k-1) \text { sphere } \\
C \cap \wedge \neq \phi
\end{array}\right\}
$$

$$
\begin{array}{ll}
C \in C_{\wedge}|C \cap \wedge| \geqslant 2 & \text { for some }(m-1) \text { sphere } \\
\Gamma C & =\left\{D \in C_{\wedge} \mid D \subset \Gamma S\right\} \\
S \subset \mathbb{S}^{n-1}
\end{array}
$$

For $n=3, \quad \overline{\Gamma C}=\Gamma C$ or $\overline{\Gamma C}=C_{\Lambda}$

C $M=\Gamma^{\backslash H^{3}}$ Convex Copt
Def M has quasi-fuchsian ends
$=M \tilde{Q} \sim I_{0}=\frac{H_{0}^{3}}{\Gamma_{0}^{3}} C C$ with Fuchsian ends
$=\Gamma$ is a Quasi-conf. def of Γ_{0}
$=S^{2}-\Lambda=U B_{i} \quad \bar{B}_{i} \cap \bar{B}_{j}=\phi$
Jordan disks

Thy (McMullen-Mohammadi-O.) $M=\Gamma \backslash H^{3} \quad q u a s i-F u c h s i a n ~ e n d s$ $P C M$ geod plane with $P \cap \operatorname{Int}(\operatorname{Core} M) \neq \phi$
$\rightarrow P$ is either closed or dense in $\operatorname{Iut}($ Core)
i.e., $\bar{P} \cap \operatorname{Iut}(\operatorname{Core} M)=\left\{\begin{array}{l}P \cap \operatorname{Iut}(\operatorname{Core} M) \\ \operatorname{Iut}(\operatorname{Core} M)\end{array}\right.$

Thu (Yongquan Bhang)
$\exists \quad P \subset M$ sit
P is closed in Int (core) but not closed in M.

Rok \bar{P} for $P \subset$ Ends of M is not completely understood.

Rok Analogous results for some geom．finite hyp 3 －mflds were obtained by Benoist－O．

Open problem
$8:$

Apollonian circle packing

$$
\begin{aligned}
& \Gamma=\{g \in \text { PS LC } \mathbb{C} \mid \\
& g 8=8\}
\end{aligned}
$$

$$
\text { |Cロヘ|ン2 } C_{\wedge}
$$

Homogeneous dynamics.

$$
\begin{aligned}
& G=I \operatorname{som}^{+}\left(\mathbb{H}^{n}\right)=S O^{\circ}(Q) \quad Q=2 x_{1} x_{n+1}+\sum_{i=2}^{n} x_{i}^{2} \\
& g_{\sqrt{v_{1}} v_{v_{2}}} \quad A=\left\{a_{t}=\left(e^{e^{t}},\right.\right. \\
& g a_{E} \sum_{2} \hat{e}_{e_{n}}=(0, \cdots, 0,1) \\
& g^{+0} \quad g^{-0} \\
& S^{\circ}(n, 1) \\
& F\left(\mid t^{n}\right)=G^{\prime \prime} \curvearrowleft a_{t} \underset{\text { frame }}{\text { Flow }} \quad g S O(k, l): \begin{array}{c}
\text { Sock () } \\
\text { orbits }
\end{array} \\
& T^{\prime}\left(H^{n}\right)=G /\left(\begin{array}{c}
\curvearrowleft a_{t} \text { geodesic } \\
S O(n-1)
\end{array}\right. \text { flow } \\
& \mathbb{H}^{n}=G / S O(n) \\
& g H^{k} \text { : geodesic } \\
& k \text {-planes }
\end{aligned}
$$

$$
\begin{aligned}
& F(M)=G^{\wedge} a_{t} \text { Frame } \begin{array}{l}
\text { flow } \\
\downarrow^{\Gamma}
\end{array} \\
& T^{\prime}(M)=\frac{G}{\Gamma} / \int_{S O(n-1)}^{\curvearrowleft a_{t} \text { geodesic }} \text { flow } \\
& \downarrow \\
& M=\frac{G}{\Gamma} / S O(n) \quad \pi\left(g \|^{k}\right): \begin{array}{c}
\text { geodesic } \\
k-p l a n e s \\
\hline
\end{array}
\end{aligned}
$$

Describe $\overline{[g] S O(k, 1)}$ in $\frac{G}{\Gamma}$
$\Omega=R F M=\left\{[g] \epsilon \Gamma^{G} \mid g^{ \pm} \in \Lambda\right\} \quad \begin{gathered}\text { copt } A \text {-int } \\ \text { subset }\end{gathered}$
union of all geodesics connecting Λ

Let $M=$ LH n have Fuchsian ends
Thu (McMullen-Mohammadi-O. Lee -0. $\underset{\substack{n \geqslant 3 \\ n \geqslant 4}}{\substack{\text {. }}}$
$W<G$ conn subgy gen. by unipotent (2 normalized by A) efts
Any W-orbit closure is relative homogeneous in Ω

$$
\forall x \in \Omega, \quad \overline{x W} \cap \Omega=x L \cap \Omega
$$

where $W<L<G \& \times L$ closed.

Moreover, $\quad 2 \leqslant k \leqslant n-1$

$$
\begin{array}{r}
\overline{\times S O(k, 1)} \cap \Omega=\times S O(m, 1) C \cap \Omega \\
\text { where } \cap \begin{array}{c}
C \begin{array}{c}
C \text { Centralizer } S O(m, 1) \\
\text { closed } \\
\text { sung }
\end{array}=S O(n-m)
\end{array} \\
\overline{\times S O(k, 1)}=x S O(m, 1) C \cap \Omega_{+} S O(k, 1) \\
\text { where } \Omega_{+}=\left\{[g] \in G \mid g^{+} \in \Lambda\right\}
\end{array}
$$

If M has empty Fuchsia ends (ie., Mcpt),

$$
\Omega=\frac{G}{\Gamma} \text { \& this is Ratner2Shah. }
$$

Thank you!

