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Climate change warrants rapid action
Impacts felt globally

Disproportionate impacts on most 
disadvantaged populations

Need net-zero greenhouse gas 
emissions by 2050 (IPCC 2018)

- Across energy, transport, buildings, 
industry, agriculture, forestry, etc.

Can machine learning play a role?
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Abstract

Climate change is one of the greatest challenges facing humanity, and we, as machine learning ex-
perts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in
reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids
to disaster management, we identify high impact problems where existing gaps can be filled by machine
learning, in collaboration with other fields. Our recommendations encompass exciting research ques-
tions as well as promising business opportunities. We call on the machine learning community to join
the global effort against climate change.

Introduction

The effects of climate change are increasingly visible.1 Storms, droughts, fires, and flooding have become
stronger and more frequent [3]. Global ecosystems are changing, including the natural resources and agri-
culture on which humanity depends. The 2018 intergovernmental report on climate change estimated that
the world will face catastrophic consequences unless global greenhouse gas emissions are eliminated within
thirty years [4]. Yet year after year, these emissions rise.

Addressing climate change involves mitigation (reducing emissions) and adaptation (preparing for un-
avoidable consequences). Both are multifaceted issues. Mitigation of greenhouse gas (GHG) emissions re-
quires changes to electricity systems, transportation, buildings, industry, and land use. Adaptation requires
climate modeling, risk prediction, and planning for resilience and disaster management. Such a diversity of
problems can be seen as an opportunity: there are many ways to have an impact.

In recent years, machine learning (ML) has been recognized as a broadly powerful tool for technological
progress. Despite the growth of movements applying ML and AI to problems of societal and global good,2

∗D.R. conceived and edited this work, with P.L.D., L.H.K., and K.K. Authors P.L.D., L.H.K., K.K., A.L., K.S., A.S.R., N.M-D.,
N.J., A.W-B., A.L., T.M., and E.D.S. researched and wrote individual sections. S.K.M., K.P.K., C.G., A.Y.N., D.H., J.C.P., F.C.,
J.C., and Y.B. contributed expert advice. Correspondence to drolnick@seas.upenn.edu.

1For a layman’s introduction to the topic of climate change, see [1, 2].
2See the AI for social good movement (e.g. [5, 6]), ML for the developing world [7], and the computational sustainability
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Power & energy problems involve 
physics, hard constraints, and decision-making

Figure adapted from: US Congressional Budget Office

Physics: Power 
flows along lines

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?
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Hard constraints: 
Stability constraints



Machine learning methods struggle with 
physics, hard constraints, and decision-making 

Figure adapted from: US Congressional Budget Office

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?

Need: Adaptive control of power 
generators, inverters, and batteries
- ML: Dynamic, data-driven control
- Limitation: Difficulty enforcing 

constraints (physics, equipment, stability)

Need: Electricity demand prediction
- ML: Time series forecasting
- Limitation: Difficulty making decision-

cognizant error tradeoffs

How do we reap the benefits of ML methods 
while mitigating limitations?

Physics: Power 
flows along lines

Hard constraints: 
Stability constraints
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Optimization-in-the-loop ML
Framework for developing ML methods that incorporate knowledge of physics, hard 
constraints, or downstream decision-making procedures, via optimization problems
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Optimization-in-the-loop ML
Framework for developing ML methods that incorporate knowledge of physics, hard 
constraints, or downstream decision-making procedures, via optimization problems

Examples:
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Optimization-in-the-loop ML
Framework for developing ML methods that incorporate knowledge of physics, hard 
constraints, or downstream decision-making procedures, via optimization problems

Example: Robust control (e.g., power system control with stability constraints)

Example: Prediction (e.g., decision-cognizant demand forecasting)
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Talk outline

Optimization-in-the-loop ML

Setting: Hard 
control constraints

Setting: Downstream 
decision-making

Toolkit: Differentiable 
optimization
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Talk outline

Setting: Hard 
control constraints

Setting: Downstream 
decision-making

Toolkit: Differentiable 
optimization

Optimization-in-the-loop ML



Overview: Differentiable optimization

Motivation: Need for tools to implement optimization-in-the-loop methods

Approach: Differentiable optimization in deep learning

- General framework [GFCASG2016, AK2017, DAK2017]

- Additional tools
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Background: Deep learning
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Background: Deep learning
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- Neural network ℎ! = composition of nonlinear, parameterized functions (layers)
- Update parameters ' to minimize loss ℓ using gradients from backpropagation
- All components (layers and loss) must be differentiable
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Differentiating through optimization problems 

14Brandon Amos and J. Zico Kolter. “OptNet: Differentiable optimization as a layer in neural networks.” ICML 2017.
Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." NeurIPS 2017.

Example optimization problem

minimize
!

½ )"*) + ,")
subject to 4) = 6

7) ≤ ℎ

Selected KKT optimality conditions 

*)⋆ + , + 4":⋆ + 7";⋆ = 0
4)⋆ − 6 = 0

diag ;⋆ 7)⋆ − ℎ = 0

Step 1: Apply implicit function theorem to the KKT conditions

" #% $%
diag )⋆ # diag(#+⋆ − ℎ) 0

$ 0 0

d+
d)
dν

= −
d"+⋆ + d2 + d#%)⋆ + d$%3⋆
diag )⋆ d#+⋆ − diag )⋆ dℎ

d$+⋆ − d4

Generalized Jacobian of KKT conditions Desired gradients Gradients of problem parameters

Step 2: Use “Jacobian-vector trick” for efficient backpropagation

Insight: Apply the implicit function theorem to the KKT optimality conditions
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[DAK2017, AK2017]: KKT differentiation techniques for convex optimization problems

Many additional tools since then:

- Combinatorial optimization [DK2017, TSK2018, WDT2018]

- AC optimal power flow [DAK2018]

- Disciplined convex programs [AABBDK2019]

- Maximum satisfiability problems [WDWK2019]

- Additional optimization problems [GHC2019]

Powerful toolkit for optimization-in-the-loop ML in the context of deep learning

Follow-on work in differentiable optimization
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Talk outline

Setting: Hard 
control constraints

Setting: Downstream 
decision-making

Toolkit: Differentiable 
optimization

Optimization-in-the-loop ML



Overview: Enforcing hard control constraints

Motivation: Need for well-performing control methods that also guarantee 
enforcement of hard constraints
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Approach: Optimization-in-the-loop 
reinforcement learning (RL) techniques with 
guaranteed enforcement of hard constraints

Settings:
- Asymptotic stability in power grids [DRFK2021]

- Realistic-scale building control [CDBKB2021]



Deep reinforcement learning vs. robust control

Deep RL Robust control
Pro: Expressive, well-performing policies

Con: Potential (catastrophic) failures

Can we improve performance while still guaranteeing stability?

Pro: Provable stability guarantees
Con: Simple policies (e.g., linear)

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network 
policies." International Conference on Learning Representations (ICLR) 2021. 18



Differentiable projection onto stabilizing actions

Reward…
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Deep learning-based policy with provable robustness guarantees, trainable using 
standard reinforcement learning approaches
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Details: Finding a set of stabilizing actions

Given the following (from robust control):
- Uncertainty model: e.g., "̇ # ∈ %" # + '( # + )* # s. t. ||* # ||5 ≤ ||0" # + 1( # ||5
- Lyapunov function 2 obtained via robust control synthesis
- Exponential stability criterion: #̇ $ % ≤ −(#($ % ), ∀$ ≠ 0

Find: For given ", set of actions satisfying exponential stability criterion even in worst case

3 " ≡ { (: sup
6 ∶ 6 $8 9:;<= $

2̇ " ≤ −:2 " }

⇒ {(: => " + 1( 5 ≤ =5 " + =? " @(}
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Convex (non-empty) set in / %

Note: A-dependence has been dropped for brevity

{u : S(u) < 0}

Kx(t)

f(x(t))

π(x(t))

A B C
D# B C

EB(C)

FD# B C
Convex projection

Insight: Find a set of actions that are guaranteed to satisfy relevant 
Lyapunov stability criteria at a given state, even under worst-case conditions



Illustrative results: Synthetic NLDI system
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Unstable

Stable

Improved 
“average-case”
performance over 
robust baselines

Provably stable
under “worst-case”
dynamics (unlike 
non-robust baselines)

Downside: Speed / 
computational cost

[lower is better]



Energy-efficient heating and cooling
Goal: Control the HVAC supply water temperature to minimize energy use, while 
respecting equipment constraints and maintaining thermal comfort
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Intelligent Workplace
Margaret Morrison Hall, 4th Floor

(✤ Zhang & Lam, 2018) HVAC Schematic

Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through 
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.



Differentiable projection onto feasible actions
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Summary: Enforcing hard control constraints
Motivation: Need for well-performing control methods that also guarantee 

enforcement of hard constraints

Settings:
- Asymptotic stability in power grids [DRFK2021]

- Realistic-scale building control [CDBKB2021]

Insight: Project outputs of neural network onto a set of “safe” actions
- Obtain safe actions using domain knowledge

- Differentiable projection (optimization layer) = end-to-end training

Future directions:
- Additional paradigms for bridging RL and robust control
- Improving computational costs

24
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Setting: Downstream 
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Toolkit: Differentiable 
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Optimization-in-the-loop ML



Motivation: Predictive methods operate within some larger decision-making 
process but do not often take this into account, potentially leading to critical mistakes.
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Approach: Construction of decision-cognizant 
(“task-based”) models via optimization-in-
the-loop learning

Settings:
- Decision-cognizant electricity demand forecasting [DAK2017]
- Approximating AC optimal power flow [DRK2021]

Overview: Incorporating 
downstream decision-making



Decision-cognizant demand forecasting

Past demand,
weather, time

≡ "

Future demand
(w/ uncertainty)

≡ #ℎ!?

Usual goal: Minimize distance between predicted and actual quantities (e.g., demand)
minimize! ℓ(#, ℎ! " )

Generation 
schedule (e.g.)

≡ .

Goal: Optimize for quality of generation schedule when we observe actual demands
minimize! /B(#, .⋆ "; 1 )

Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." 
Conference on Neural Information Processing Systems (NeurIPS) 2017. 27



Decision-cognizant model
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Decision-cognizant approach can dramatically 
improve generation scheduling outcomes

Decision-cognizant approach gives ~39% improvement in decision cost.
29
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Approximating AC optimal power flow

Goal: Provide fast, feasible approximations 
to AC optimal power flow (ACOPF)

Approach:

30

minimize

subject to

costs

physicspower 
demand

power 
generation

ACOPF

power 
demand

power 
generation

Priya L. Donti*, David Rolnick*, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints.”
International Conference on Learning Representations (ICLR) 2021.
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Results (57-bus test case): High-quality solutions 10x faster than baseline optimizer



Motivation: Predictive methods operate within some larger decision-making 
process but do not often take this into account, potentially leading to critical mistakes.
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Settings:
- Electricity demand forecasting [DAK2017]
- Approximating ACOPF [DRK2021]

Summary: Incorporating 
downstream decision-making

Insight: Incorporate knowledge of downstream decision-making (or physics) into 
the loss function, via differentiable optimization.

Future directions:
- Incorporating a wider range of decision-making paradigms
- Understanding tradeoffs between task-agnostic vs. task-based models



Summary
- Optimization-in-the-loop ML (framework),

via differentiable optimization in deep learning 

- Enforcing hard control constraints: RL with 
provable robustness / constraint enforcement

- Asymptotic stability (power grids)
- Operational constraints (HVAC in buildings)

- Incorporating downstream decision-making:
Decision-cognizant predictive models

- Electricity demand forecasting
- Approximate power system optimization

32

Model Objective 
Optim. Optim.

Priya L. Donti: donti@mit.edu


