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Climate change warrants rapid action

Impacts felt globally

Disproportionate impacts on most
disadvantaged populations

Need net-zero greenhouse gas
emissions by 2050 (IPCC 2018)

- Across energy, transport, buildings,
industry, agriculture, forestry, etc.

Can machine learning play a role?
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Tackling Climate Change with Machine Learning
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Power & energy problems involve
physics, hard constraints, and decision-making
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Machine learning methods struggle with
physics, hard constraints, and decision-making
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q Decision-making: Given (uncertain) demand,

how do we schedule supply?
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Need: Adaptive control of power QQ
generators, inverters, and batteries Q

- ML: Dynamic, data-driven control

- Limitation: Difficulty enforcing
constraints (physics, equipment, stability)

Need: Electricity demand prediction Q

- ML: Time series forecasting

- Limitation: Difficulty making decision-
cognizant error tradeoffs

How do we reap the benefits of ML methods
while mitigating limitations?

Figure adapted from: US Congressional Budget Office
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Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard
constraints, or downstream decision-making procedures, via optimization problems

Model Objective

Optimization

Optimization



Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard
constraints, or downstream decision-making procedures, via optimization problems

Model
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Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard
constraints, or downstream decision-making procedures, via optimization problems
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Talk outline

Optimization-in-the-loop ML

Toolkit: Differentiable Setting: Hard Setting: Downstream
optimization control constraints decision-making



Toolkit: Differentiable

optimization

Talk outline

Optimization-in-the-loop ML

Setting: Hard
control constraints

Setting: Downstream
decision-making
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Overview: Differentiable optimization

Motivation: Need for tools to implement optimization-in-the-loop methods

Model Objective

Optimization

Optimization

Approach: Differentiable optimization in deep learning
- General framework [GFCASG2016, AK2017, DAK2017]

- Additional tools
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Background: Deep learning

Model
) hg I
X / Y hg ()
Inputs Functional Model Outputs

form of model parameters

Loss, e.g.,
f(y' h@ (X))

“Score” for
quality of output
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Background: Deep learning

- Neural network hy = composition of nonlinear, parameterized functions (layers)
- Update parameters 6 to minimize loss € using gradients from backpropagation
- All components (layers and loss) must be differentiable

. Loss, e.g.,
h@ (X) f(y, h@(x))

Optimization

........................
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Differentiating through optimization problems

Insight: Apply the implicit function theorem to the KKT optimality conditions

Example optimization problem Selected KKT optimality conditions
minimize % z'Qz+q'z Qz* +q+ ATv* + GTA* =0
Z *
subjectto Az =0b | A*Z — lz =0
Gz<h diag(A*)(Gz*—h) =0

Step 1: Apply implicit function theorem to the KKT conditions

Q GT ATl [dz dQz* + dg + dGTA* + dATv*
diag(1*)G diag(Gz*—h) O dA] = — | diag(1*)dGz* — diag(A1*)dh
A 0 04 Ldv dAz* — db
\ J\ ] |\
| | |
Generalized Jacobian of KKT conditions  Desired gradients Gradients of problem parameters

Step 2: Use “Jacobian-vector trick” for efficient backpropagation

Brandon Amos and J. Zico Kolter. “OptNet: Differentiable optimization as a layer in neural networks.” ICML 2017.

: : : o : T 14
Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." NeurlPS 2017.



Follow-on work in differentiable optimization

[DAK2017, AK2017]: KKT differentiation techniques for convex optimization problems

Many additional tools since then:

- Combinatorial optimization [DK2017, TSK2018, WDT2018]
- AC optimal power flow [DAK2018]

- Disciplined convex programs [AABBDK2019]

- Maximum satisfiability problems [WDWK2019]

- Additional optimization problems [GHC2019]

Powerful toolkit for optimization-in-the-loop ML in the context of deep learning
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Toolkit: Differentiable
optimization

Talk outline

Optimization-in-the-loop ML

Setting: Hard

control constraints

Setting: Downstream
decision-making
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Overview: Enforcing hard control constraints

gf} Motivation: Need for well-performing control methods that also guarantee
enforcement of hard constraints

Approach: Optimization-in-the-loop
reinforcement learning (RL) techniques with xm M‘,’ljel m hg (%)
guaranteed enforcement of hard constraints =~ Control action

Settings:
- Asymptotic stability in power grids [DRFK2021]

- Realistic-scale building control [CDBKB2021]
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Deep reinforcement learning vs. robust control

Uncertainty
Disturbance

n )\
Ref € __Icontroller i Plant ()
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o
Deep RL Robust control
Pro: Expressive, well-performing policies Pro: Provable stability guarantees
Con: Potential (catastrophic) failures Con: Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network
policies." International Conference on Learning Representations (ICLR) 2021.



Differentiable projection onto stabilizing actions

Deep learning-based policy with provable robustness guarantees, trainable using
standard reinforcement learning approaches

System state
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Details: Finding a set of stabilizing actions

Insight: Find a set of actions that are guaranteed to satisfy relevant
Lyapunov stability criteria at a given state, even under worst-case conditions

Given the following (from robust control):
- Uncertainty model: e.g., x(f) € Ax(t) + Bu(t) + Gw(t) s.t.|[|w(t)|[z < [||Cx(t) + Du(t)]];

- Lyapunov function V obtained via robust control synthesis
- Exponential stability criterion: V(x (1)) < —aV (x(1)),Vx # 0 /\
Find: For given x, set of actions satisfying exponential stability criterion even in worst case

C(x) = {u:( sup V( )) < —aV(x)}

w  [[wlizsllCx+Dull;

= {u: |lky () + Dully < kp(x) + k3 ()" u}
Convex (non-empty) setin u(t)

..."ﬁ.e (x (t))

Note: t-dependence has been dropped for brevity Convex projection

20
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[lower is better]

Illustrative results: Synthetic NLDI system

Non-robust methods

=

LQR
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Robust
control

W Ordinary m Adversarial

3

Robust
LQR

Our methods

N
Stable

\4

Robust
MBP*

Robust
PPO*

Improved
‘“average-case”
performance over
robust baselines

Provably stable
under “worst-case”
dynamics (unlike
non-robust baselines)

Downside: Speed /
computational cost
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Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while
respecting equipment constraints and maintaining thermal comfort

M \—> Controller

X / J

U: SW Temp.
xsetnoint i P
Hot Water from Plant
g,
c
e \ Constant Flow
3
®
Q
T
] Hot Water to Plant
Intelligent Workplace \ —
Margaret Morrison Hall, 4th Floor .
& ’ HVAC Schematic

(** Zhang & Lam, 2018)

Bingging Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.
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Differentiable projection onto feasible actions

System state

______________________________________________________
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Nominal
action

Projection onto
feasible actions
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Summary: Enforcing hard control constraints

go Motivation: Need for well-performing control methods that also guarantee
enforcement of hard constraints

Settings:

. o . Model hy ()
- Asymptotic stability in power grids [DRFK2021] ho m e
- Realistic-scale building control [CDBKB2021]

Insight: Project outputs of neural network onto a set of “safe” actions
- Obtain safe actions using domain knowledge

- Differentiable projection (optimization layer) = end-to-end training
Future directions:

- Additional paradigms for bridging RL and robust control
- Improving computational costs

24



Toolkit: Differentiable
optimization

Talk outline

Optimization-in-the-loop ML

Setting: Hard
control constraints

Setting: Downstream

decision-making

25



Overview: Incorporating
downstream decision-making

Q Motivation: Predictive methods operate within some larger decision-making
process but do not often take this into account, potentially leading to critical mistakes.

Approach: Construction of decision-cognizant
« ” . . . . . Model N
(“task-based”) models via optimization-in- - h he(v)mZD (x; 0)
Historical data Prediction ec/|S|on
the-loop learning -

-~
== —

Settings:
- Decision-cognizant electricity demand forecasting [DAK2017]
- Approximating AC optimal power flow [DRK2021]
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Decision-cognizant demand forecasting

e mpngy
. "Tamaag,

0’ .Q

|

i Generation .’
1 schedule (e.g.)
= Z

Past demand, RRREEES Future demand ’
weather, time > (w/ uncertainty)

Goal: Optimize for quality of generation schedule when we observe actual demands
miniemize fe(v, z°(x; 0))

Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization."
Conference on Neural Information Processing Systems (NeurlPS) 2017.



Decision-cognizant model
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Decision-cognizant approach can dramatically
Improve generation scheduling outcomes

RMSE

[lower is better] [lower is better]

Hour of Day
- RMSE Net —}— Task Net (ours) = - RMSE Net —4— Task Net (ours)

Hour of Day

Decision-cognizant approach gives ~39% improvement in decision cost.
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Approximating AC optimal power flow

ACOPF

Goal: Provide fast, feasible approximations — minimize  costs -
to AC optimal power flow (ACOPF)

power subjectto physics power
demand generation
Approach:
o () — Loss function |

—

power
demand

ohysical infeasibilities

quantities

power
generation

[Q?QJ

|
|
|
|
:
> Costs+ |
|
|
|
|
|

e
|

Results (57-bus test case): High-quality solutions 10x faster than baseline optimizer

Priya L. Donti*, David Rolnick*, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints.”
International Conference on Learning Representations (ICLR) 2021.



Summary: Incorporating
downstream decision-making

./ Motivation: Predictive methods operate within some larger decision-making
process but do not often take this into account, potentially leading to critical mistakes.

Settings: -
- Electricity demand forecasting [DAK2017] e o :led(t)m #050)
- Approximating ACOPF [DRK2021] .

— -

Insight: Incorporate knowledge of downstream decision-making (or physics) into
the loss function, via differentiable optimization.

Future directions:
- Incorporating a wider range of decision-making paradigms
- Understanding tradeoffs between task-agnostic vs. task-based models
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Summary

- Optimization-in-the-loop ML (framework),
via differentiable optimization in deep learning

- Enforcing hard control constraints: RL with
provable robustness / constraint enforcement

- Asymptotic stability (power grids)
- Operational constraints (HVAC in buildings)

- Incorporating downstream decision-making:
Decision-cognizant predictive models

- Electricity demand forecasting
- Approximate power system optimization

Priya L. Donti: donti@mit.edu
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