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Brain-Inspired Heterogeneous SNNs

Brain-Inspired
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Neurons and
Learning Rules
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Role of Heterogeneity e

1. Increased Computational Power

2. Learning and Adaptation

3. Robustness to Perturbations

A A s B

4. Emergent Phenomena

Spiking Patterns

5 Gr Georgia
Ref: https://www.the-scientist.com/infographics/infographic-understanding-our-diverse-brain-30678 Tech.
Figure credit: Shen, G., Zhao, D., Dong, Y., Li, Y. and Zeng, Y., 2023. Dive into the Power of Neuronal Heterogeneity. arXiv preprint arXiv:2305.11484.
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Heterogeneous Spiking Neural Network e |
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Heterogeneous STDP synapses



Model

Leaky Integrate and Fire (LIF)

Neurons
dvi(t)
Tm T —(Wi(t) — Vyest) + I;(t)
Membrane t o \ : Threshold
Potential .
Output I
>
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Spike Timing Dependent Plasticity
(STDP)

( _lAg]
A (w)e ™+ if At >0

_lAt]
—A-(w)e - if At <0

Aw(At) = <

s.t. AL (W) =Ny (Winax —w),
A-(W) =n-(W — Wmn))

Hebbian Anti-hebbian
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o 3 dynamics
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§ 5 Key Analytical Results:
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Heterogeneity in LIF dynamics

Heterogeneity in LIF dynamics: _ dv;(t)
LIF Neuron: % ~ (W) ~(Vres) + 1;(1)
What is it?

Diversity of neuronal dynamics Heterogeneity in LIF parameters

LIF Neurons
Pros:
Improves Memory capacity
(learn more distinct input patterns)

Homogeneous

=> Improved classification and
prediction performance

Cons:
Overfitting

Heterogeneous

|
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Heterogeneity in STDP Dynamics

.
Aw(At) =

s.t. Ay (w) @(Wmax —w),

12

AL (w)e

_|At]

(T3 if At =0
At

STDP Dynamics

—A_(w)e (™ if A< 0
A_(w) @(W — Wmin))
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Heterogeneity in STDP dynamics:

What is it?
Diversity of synaptic dynamics

Pros:
Helps to regularize the model

Reduce spike count

Cons:
Does not improve Memory

Capacity
- Performance remains constant
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Prediction Results e D
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Heterogeneous | Heterogeneous Lorenz System
(Prediction)

NRMSE Norm. Efficiency
Avg. (1/NRMSE*Av
Firing g. Firing Rate)
Rate (x1073)
SRR B MRSNN-BP X - 0.182 0.857 1.16
HRSNN-BP - 0.178 1.233 1.09
Vel  MRSNN X X 0.395 -0.768 0.787
RSNN HRSNN - X 0.203 -0.143 1.302
HLIF
HRSNN- X 0.372 -1.102 0.932
HSTDP
HRSNN 0.195 -1.018 1.725

Georgia
" Gl" Tech.

Summary: HRSNN with heterogeneity in both STDP and LIF parameters shows the best performance
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Spatio-Temporal Classification Results
*-IM_

DNN RG-CNN [5] 97 .2
Homogeneous Liu et al. [4] 92.7
Supervised SNN DECOLLE 97 5
She et al [3] 95.0 (feedforward)
Chakraborty et al. [2] 97.1 (recurrent)
Heterogeneous Perez et al. [0] 82.9
Supervised SNN She et al [1] 98.0 (feedforward)
Chakraborty et al. [2] 98.1 (recurrent)
Homogeneous CMA-ES [7] 89.3
Unsupervised SNN She et al [3] 91.3 (feedforward)
Chakraborty et al. [2] 90.3 (recurrent)
Heterogeneous She et al [1] 96.6 (feedforward)
i Unsupervised SNN Chakraborty et al. [2] 96.5 (recurrent) G Georgia
Tech.

Dataset: DVS-Gesture 128
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* Brain-Inspired Learning using
Spiking Neural Networks

* Impact of Heterogeneity in
e Recurrent Neural Networks
e Feedforward Neural Networks

« Continuous Unsupervised
Learning
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Overview

* Real-world systems are not
static and keep evolving with
time

* Need for an evolving learning
system.

* Online learning methods

* Predictions made by extracting the
underlying dynamics from the
observed time series

 Critical for real-time learning and
prediction of time-varying
environments for ML models running
at the edge

18
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Problem Statement
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Predicted Time
Series

Supervised Training
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Continuous Learning and Online Adaptation

 Completely unsupervised prediction of
the time series <l ~—o
e quick and robust in adapting to new unseen (’\

dynamics.

* Recurrent spiking neural networks

e continually learn from streaming incoming fl \
data using brain-inspired plasticity rules.
- O
 The model continually learns

representations of the underlying

dynamical systems from which the data @ Excitatory LIF Neurons
IS generated. @ Inhibitory LIF Neurons

> Synapses Trained using STDP

Georgia
21 Gl" Tech.
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Flowchart for Unsupervised Prediction
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Wass-CLURSNN

-2

Block Diagram showing the error computation between the persistence
homologies of the observed and the predicted time series
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Prediction Results

(b)

(c)
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Observed Lorenz
Time Series

Predicted Time
Series

RMSE
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Summary

* Heterogeneity in Neuronal and Synaptic Dynamics help
us engineer more efficient neural network models
which better resemble the workings of the brain

* Heterogeneity in parameters helps to learn richer
representation space

* Bio-inspired learning methods like STDP continually
synchronizes with the underlying dynamical system it
Is trained on

5 Georgia
” " Tech
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