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Brain-Inspired Heterogeneous SNNs

Homogeneous 
Neurons and 

Learning Rules
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Brain-Inspired



1. Increased Computational Power

2. Learning and Adaptation

3. Robustness to Perturbations

4. Emergent Phenomena

Role of Heterogeneity

5
Ref: https://www.the-scientist.com/infographics/infographic-understanding-our-diverse-brain-30678
Figure credit: Shen, G., Zhao, D., Dong, Y., Li, Y. and Zeng, Y., 2023. Dive into the Power of Neuronal Heterogeneity. arXiv preprint arXiv:2305.11484.



Heterogeneous Spiking Neural Network
Heterogeneous Recurrent SNNsHeterogeneous Feedforward SNN

Heterogeneous excitatory LIF neurons
Heterogeneous inhibitory LIF neurons
Heterogeneous STDP synapses

…

Skip-layer 
Connection

Li
ne

ar

Heterogeneous LIF neuron
Memory Module

Heterogeneous LIF neuron
Learner Module

x
y

t

Event stream

Past events

Attention

Memory

Rec.

Frame Graph Point cloud Set

CNN GNN PointNet EventFormer

(a) (b) (c)

Past events Event-based
Perception

Past perceptions

New event 
at t

New perception 
at (t+k∆) 



Model
Leaky Integrate and Fire (LIF) 

Neurons
Spike Timing Dependent Plasticity 

(STDP)
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Heterogeneous SNN 
for Prediction



Flowchart – HRSNN for Prediction
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Heterogeneity
Heterogeneity in LIF 
dynamics:

What is it?
Diversity of neuronal 
dynamics

Heterogeneity in STDP 
dynamics:

What is it?
Diversity of synaptic 
dynamics

Key Analytical Results:
• Heterogeneity in 

neuronal dynamics 
improves memory 
capacity, leading to 
better performance

Key Analytical Results:
• Heterogeneity in 

synaptic dynamics 
reduce spiking 
activity but preserve 
memory capacity
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Heterogeneity in LIF dynamics
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Heterogeneity in LIF parameters

Heterogeneity in LIF dynamics:

What is it?
        Diversity of neuronal dynamics

Pros: 
        Improves Memory capacity  
        (learn more distinct input patterns)

        Improved classification and 
prediction performance

Cons: 
        Overfitting11



Heterogeneity in STDP Dynamics
Heterogeneity in STDP dynamics:

What is it?
        Diversity of synaptic dynamics

Pros: 
        Helps to regularize the model
    Reduce spike count

Cons: 
        Does not improve Memory 
Capacity
 - Performance remains constant
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Method Heterogeneous

LIF

Heterogeneous

 STDP

Lorenz System
(Prediction)

NRMSE Norm. 
Avg. 

Firing 
Rate

Efficiency
(1/NRMSE*Av
g. Firing Rate)

(×10%()

RSNN with BP MRSNN-BP ❌ - 0.182 0.857 1.16

HRSNN-BP ✅ - 0.178 1.233 1.09

Unsupervised 
RSNN

MRSNN ❌ ❌ 0.395 -0.768 0.787

HRSNN-
HLIF

✅ ❌ 0.203 -0.143 1.302

HRSNN-
HSTDP

❌ ✅ 0.372 -1.102 0.932

HRSNN ✅ ✅ 0.195 -1.018 1.725

Prediction Results

Summary: HRSNN with heterogeneity in both STDP and LIF parameters shows the best performance
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Heterogeneous SNN 
for Classification
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Action Recognition
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Model DVS128 Accuracy
DNN RG-CNN  [5] 97.2

Homogeneous 
Supervised SNN

 

Liu et al. [4] 92.7
DECOLLE 97.5

She et al [3] 95.0 (feedforward)
Chakraborty et al. [2] 97.1 (recurrent)

Heterogeneous 
Supervised SNN

Perez et al. [6] 82.9
She et al [1] 98.0 (feedforward)

Chakraborty et al. [2] 98.1 (recurrent)
Homogeneous 

Unsupervised SNN
CMA-ES [7] 89.3
She et al [3] 91.3 (feedforward)

Chakraborty et al. [2] 90.3 (recurrent)
Heterogeneous 

Unsupervised SNN
She et al [1] 96.6 (feedforward)

Chakraborty et al. [2] 96.5 (recurrent)

Spatio-Temporal Classification Results

Dataset:  DVS-Gesture 128
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• Brain-Inspired Learning using 
Spiking Neural Networks

• Impact of Heterogeneity in
• Recurrent Neural Networks
• Feedforward Neural Networks

• Continuous Unsupervised 
Learning

Overview
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Overview
• Real-world systems are not 

static and keep evolving with 
time 

• Need for an evolving learning 
system. 

• Online learning methods 
• Predictions made by extracting the 

underlying dynamics from the 
observed time series

• Critical for real-time learning and 
prediction of time-varying 
environments for ML models running 
at the edge
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Motivation
• Static Supervised Learning • Continuous Unsupervised Learning

Training with 
lots of Data

Retraining with 
lots of data

Training

Retraining with 

minimal data
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Problem Statement

Supervised Training
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Continuous Learning and Online Adaptation
• Completely unsupervised prediction of 

the time series
• quick and robust in adapting to new unseen 

dynamics. 

• Recurrent spiking neural networks
• continually learn from streaming incoming 

data using brain-inspired plasticity rules. 

• The model continually learns 
representations of the underlying 
dynamical systems from which the data 
is generated.

Excitatory LIF Neurons
Inhibitory LIF Neurons

Synapses Trained using STDP
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Flowchart for Unsupervised Prediction
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Wass-CLURSNN

Block Diagram showing the error computation between the persistence 
homologies of the observed and the predicted time series23

Compute 
Error



Prediction Results

(a)

(b)

(c)
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Summary
•Heterogeneity in Neuronal and Synaptic Dynamics help 
us engineer more efficient neural network models 
which better resemble the workings of the brain

•Heterogeneity in parameters helps to learn richer 
representation space

• Bio-inspired learning methods like STDP continually 
synchronizes with the underlying dynamical system it 
is trained on
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