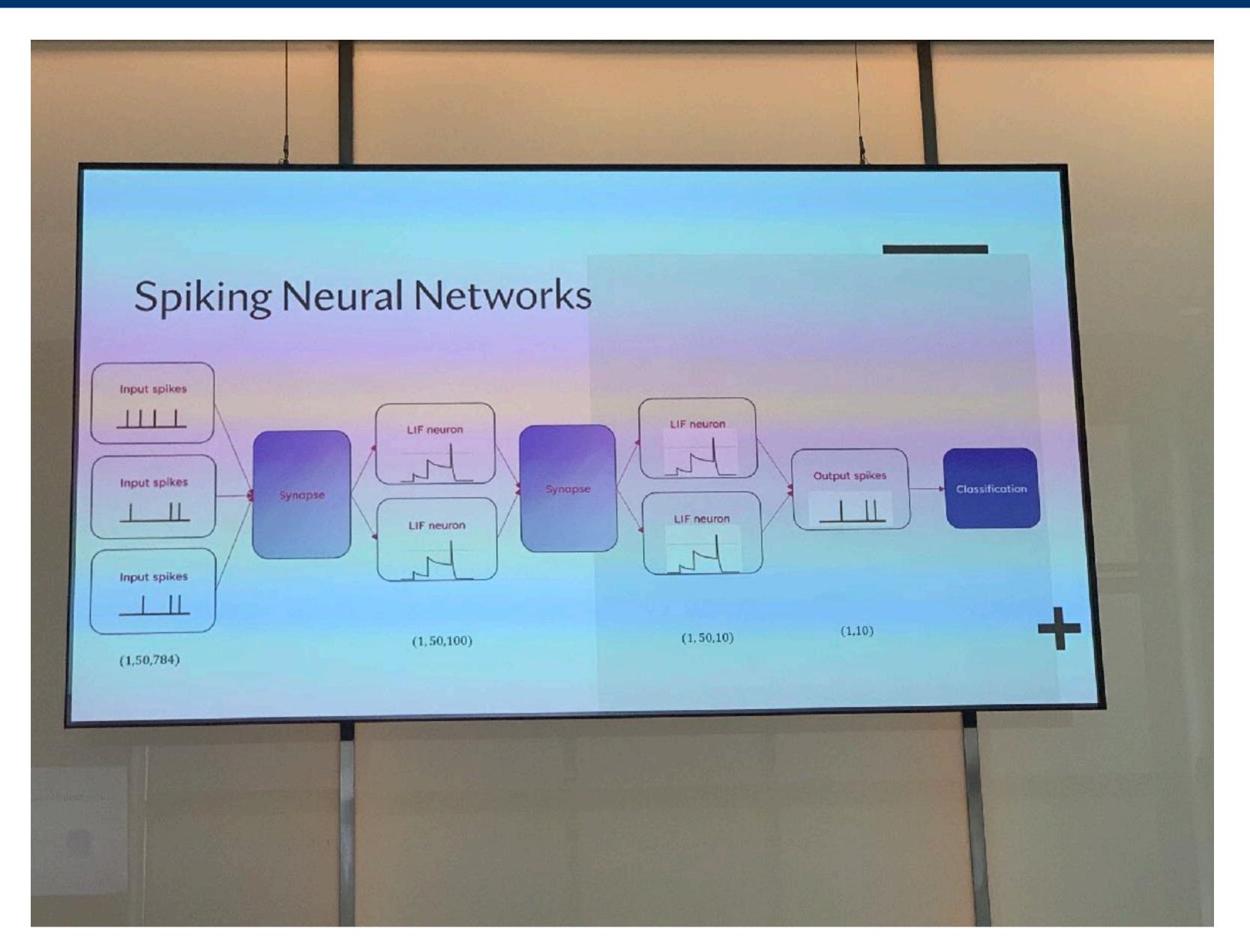


Exact Gradient Computation for Spiking Neural Networks

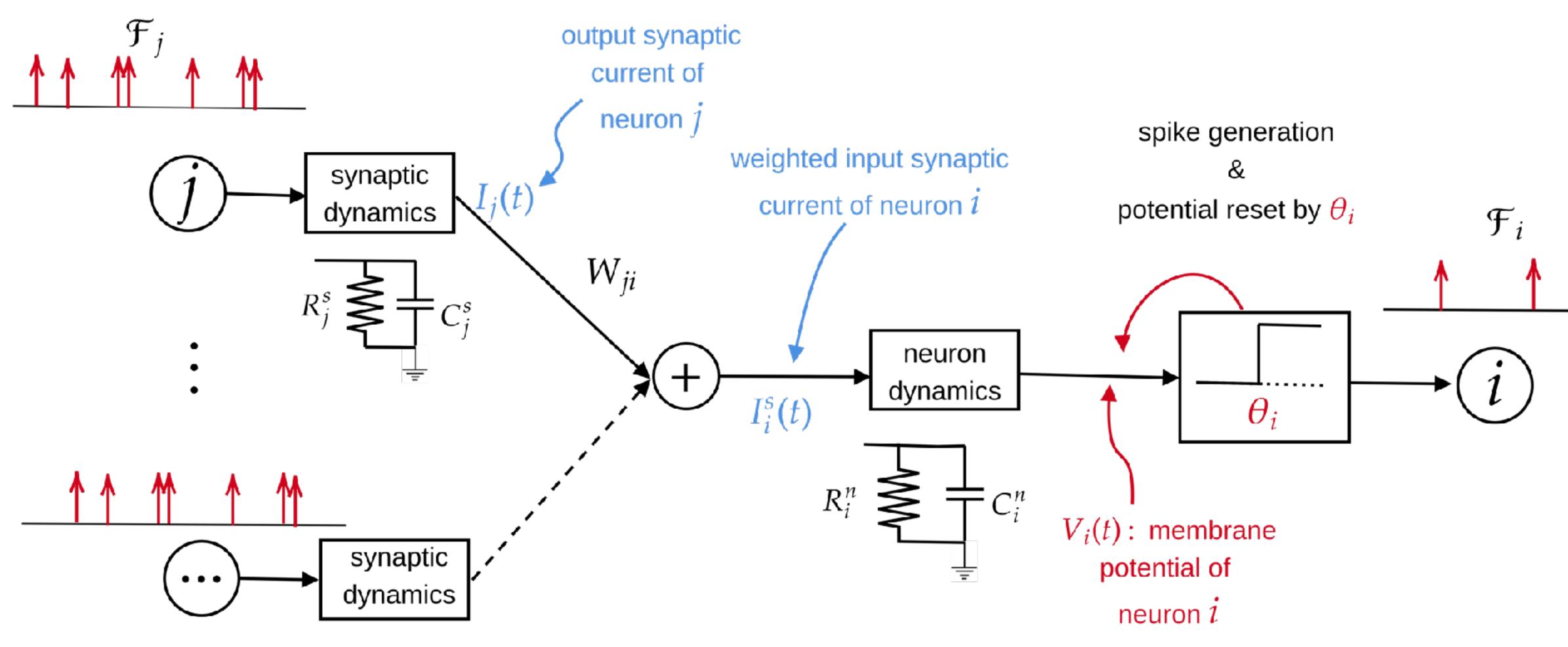
Amin Karbasi

Spiking Neural Networks



Yale

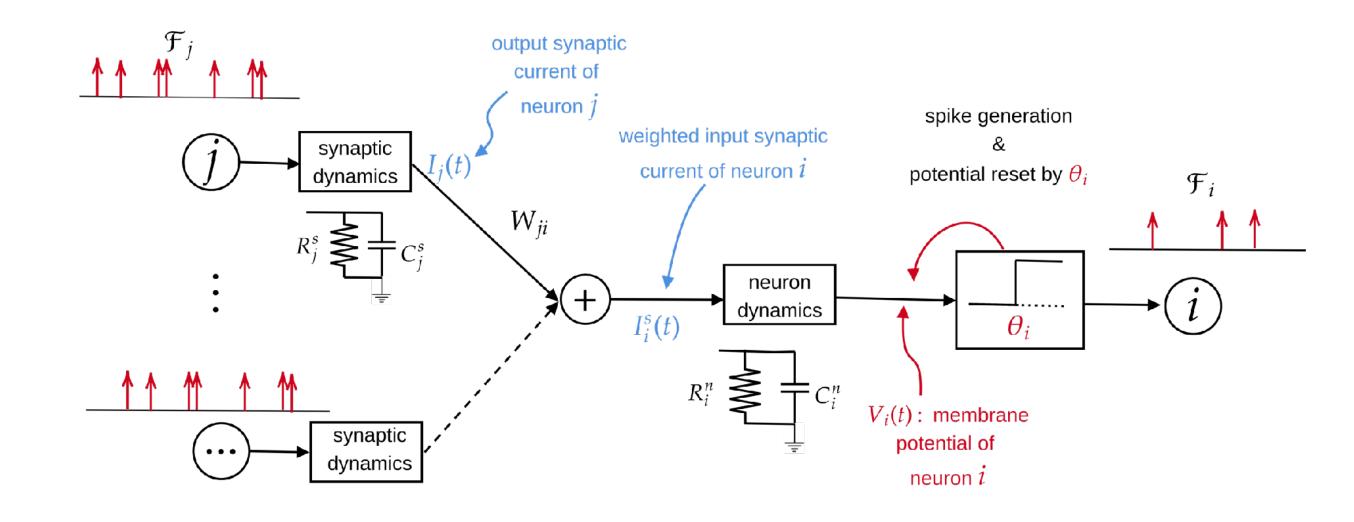
Spiking Neural Networks

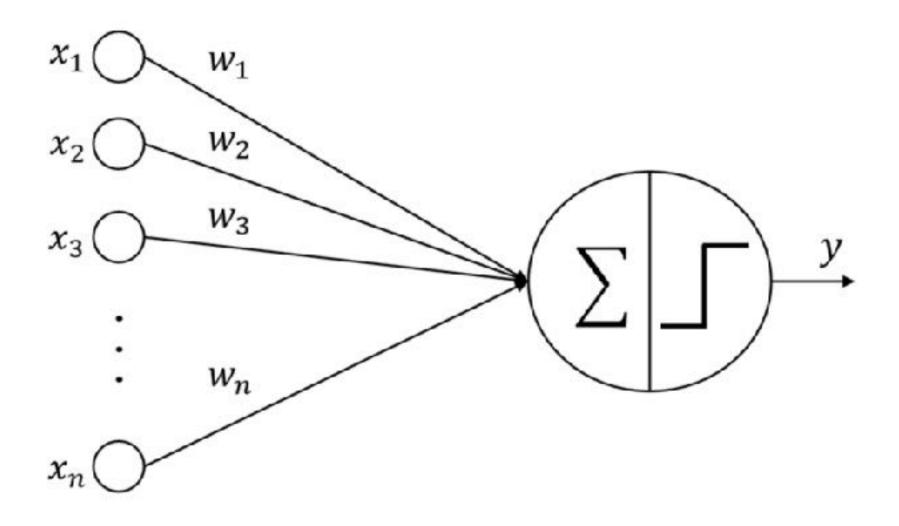


Yale

SNN versus ANN

- * Key Differences:
 - Input representation: continuous vs discrete
 - Connections between neurons have some dynamics.
 - Neurons have internal membrane potential, but outputs spike when that potential reaches a threshold, after which it resets.

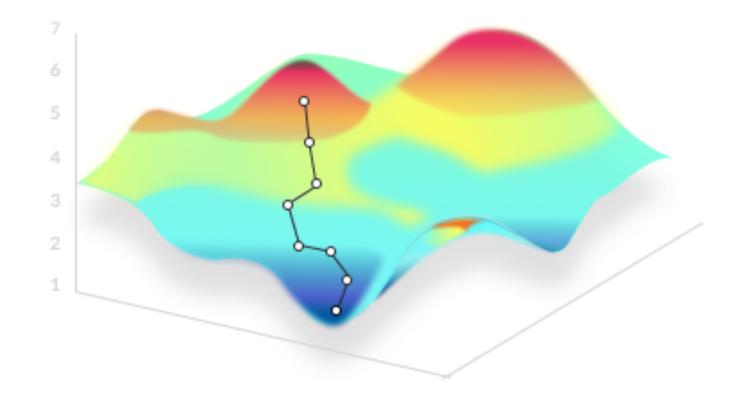


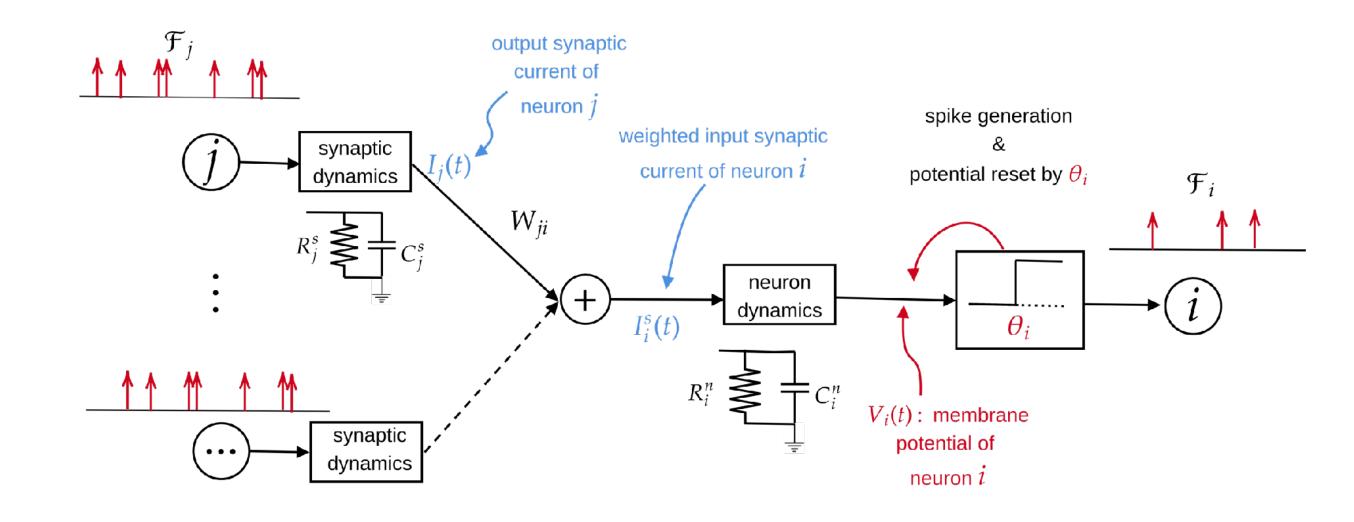


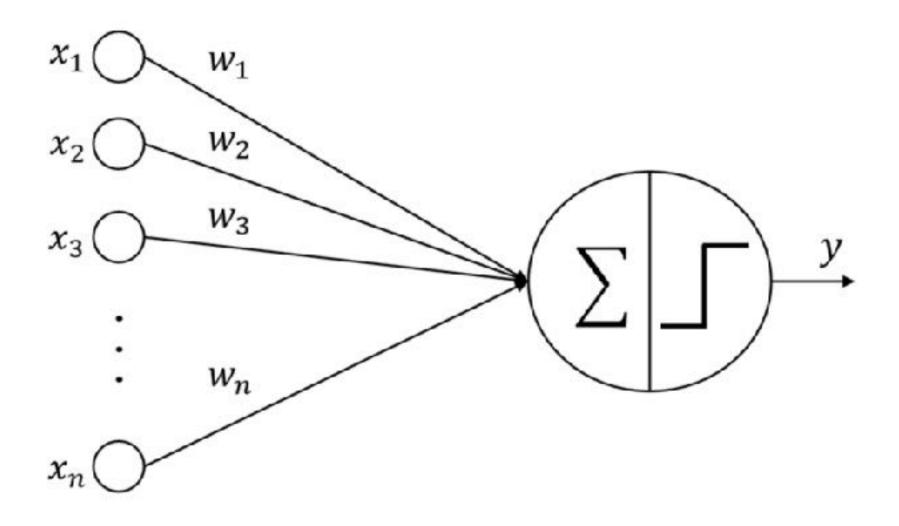
SNN versus ANN

* How do we train ANN?

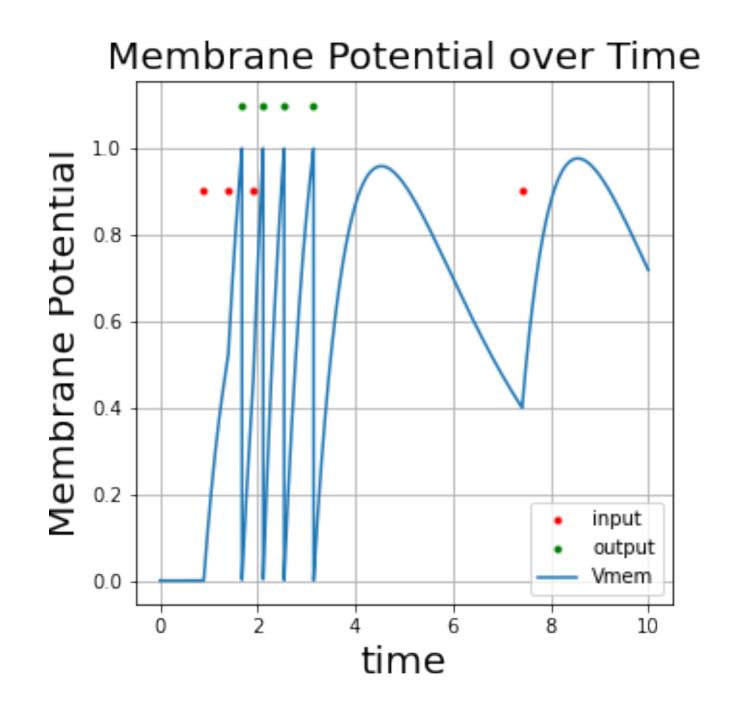
* Gradient descent via back-propagation



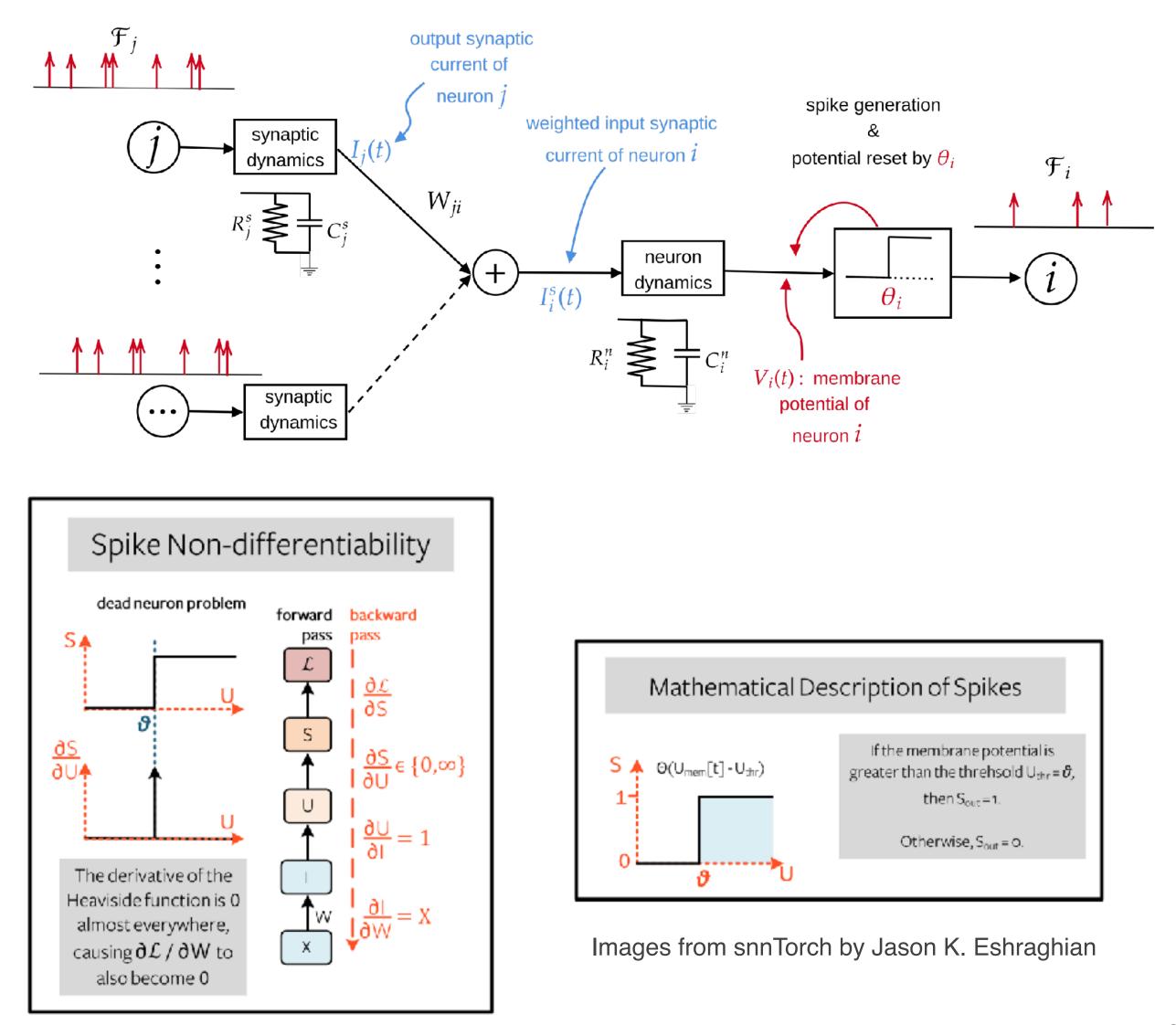




- * How do we train SNN?
 - Spikes are not differentiable functions!!!
 - Use surrogate gradients + back propagation

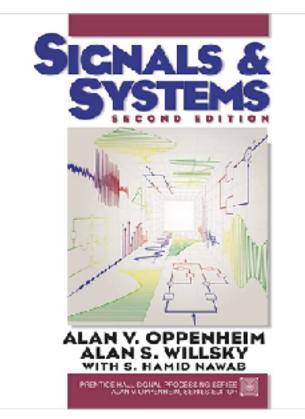


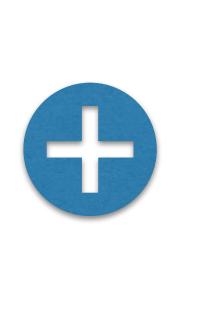
Main Question

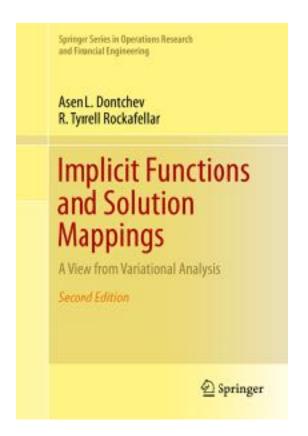


Do Gradients Exist?

There is no such thing as a new idea

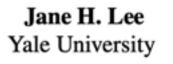






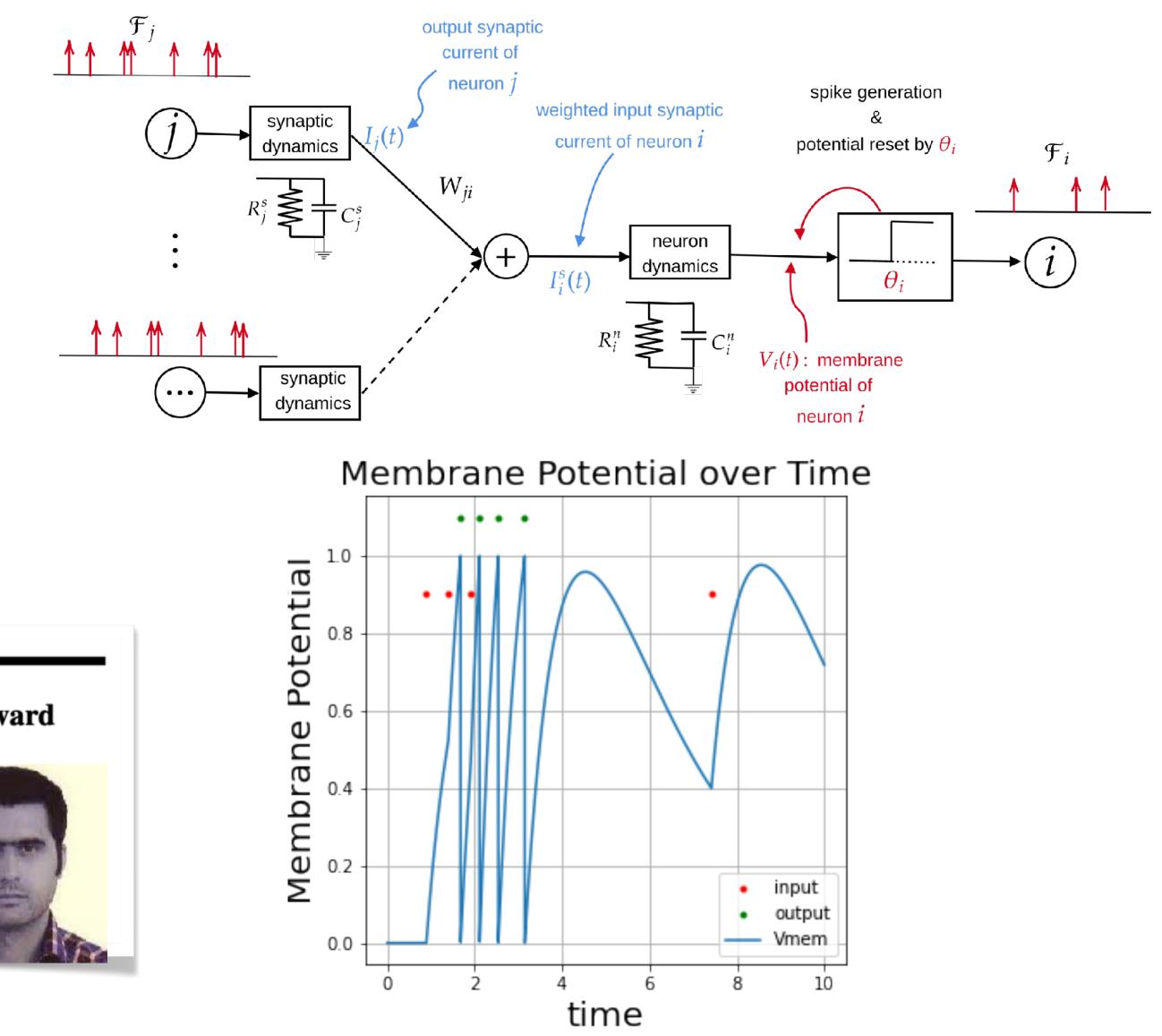
Yes, they do and we can compute them

Exact Gradient Computation for Spiking Neural Networks via Forward Propagation



Yale

Saeid Haghighatshoar SynSense



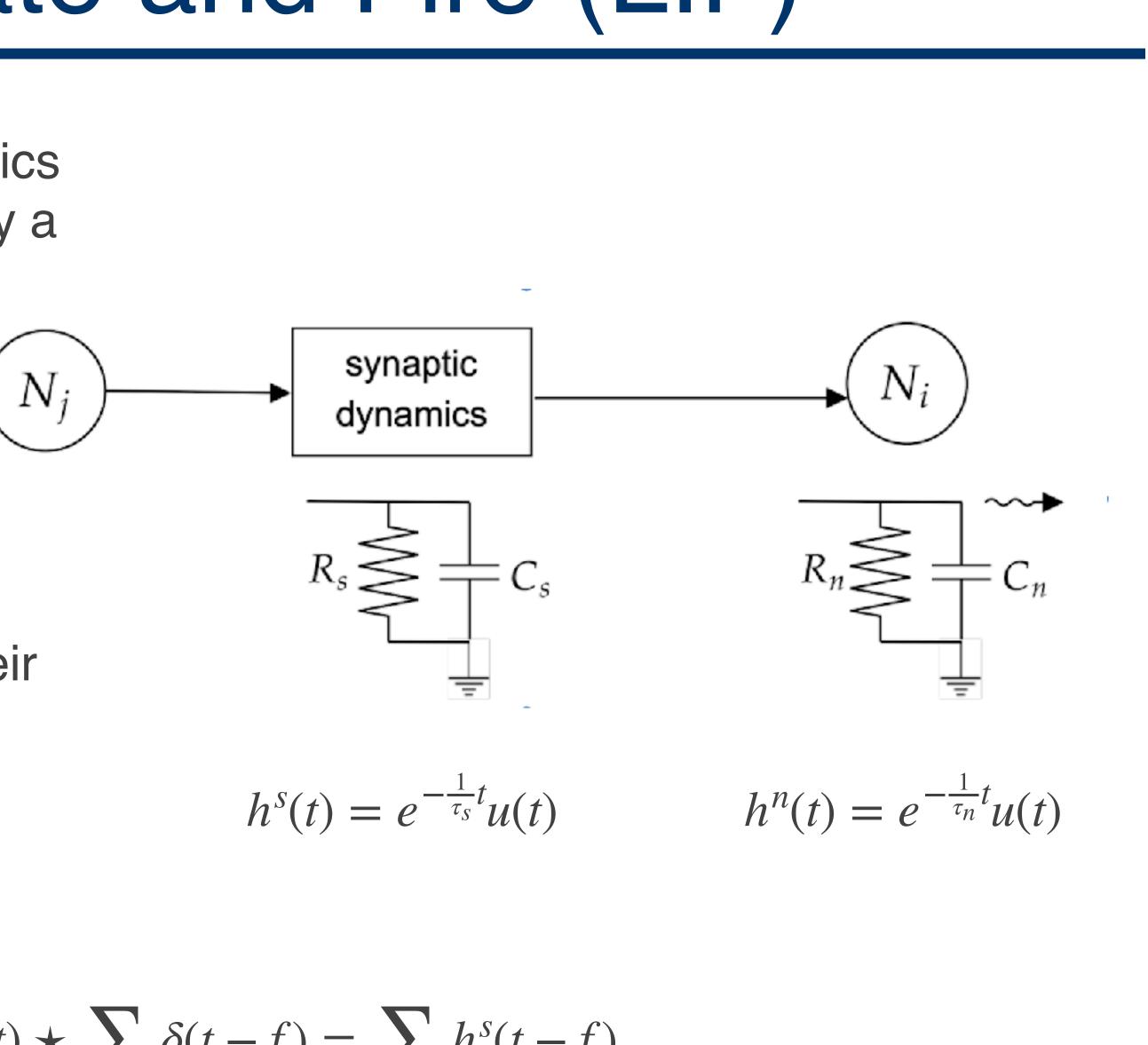
Leaky Integrate and Fire (LIF)

 Synaptic and neuron internal state dynamics are modeled as two RC circuits, govern by a differential equation

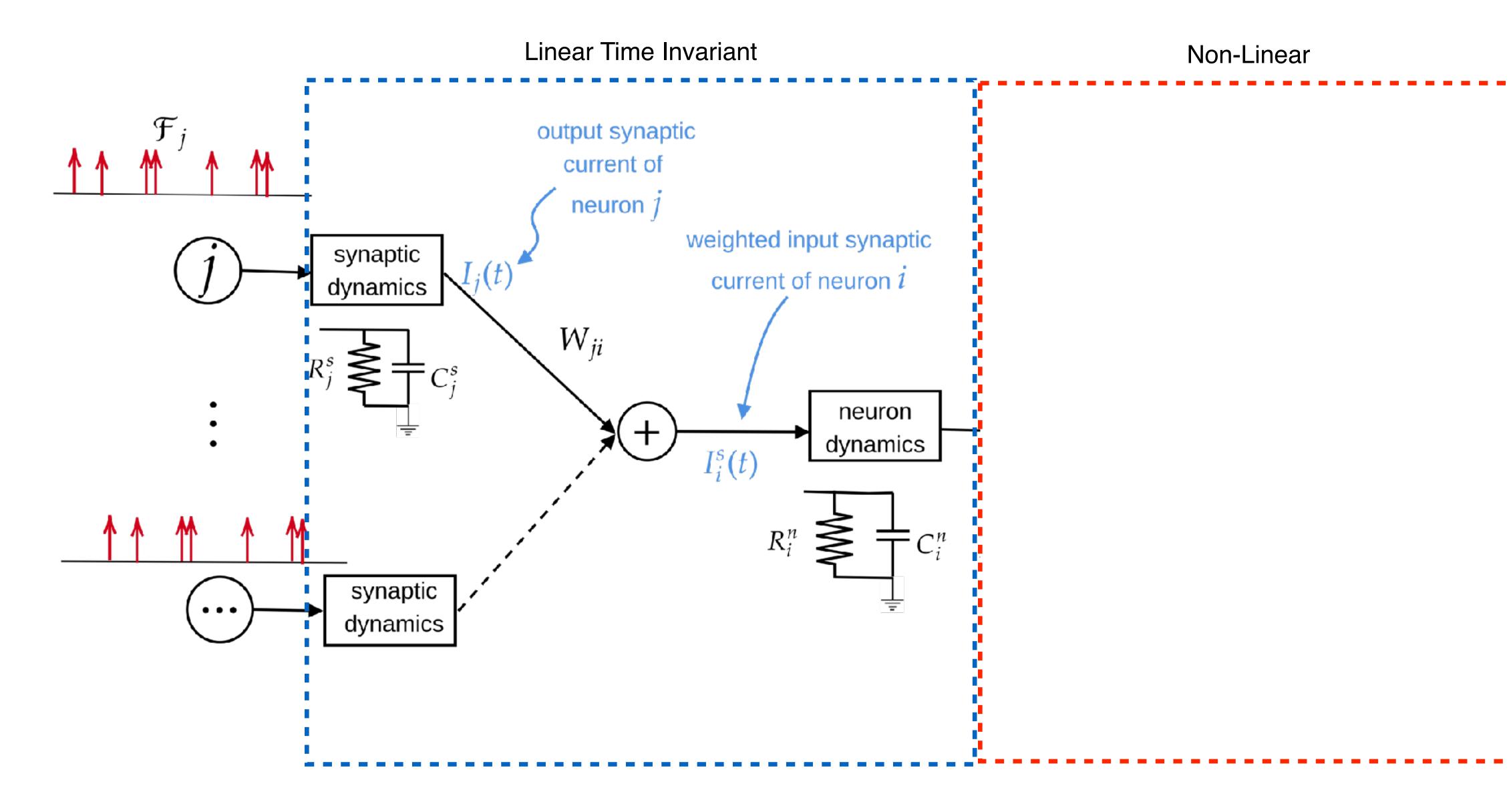
$$\tau \frac{dV}{dt} = -V + I$$

* Equivalently, they can be described by their impulse response

* The output synaptic current I_i for neuron j



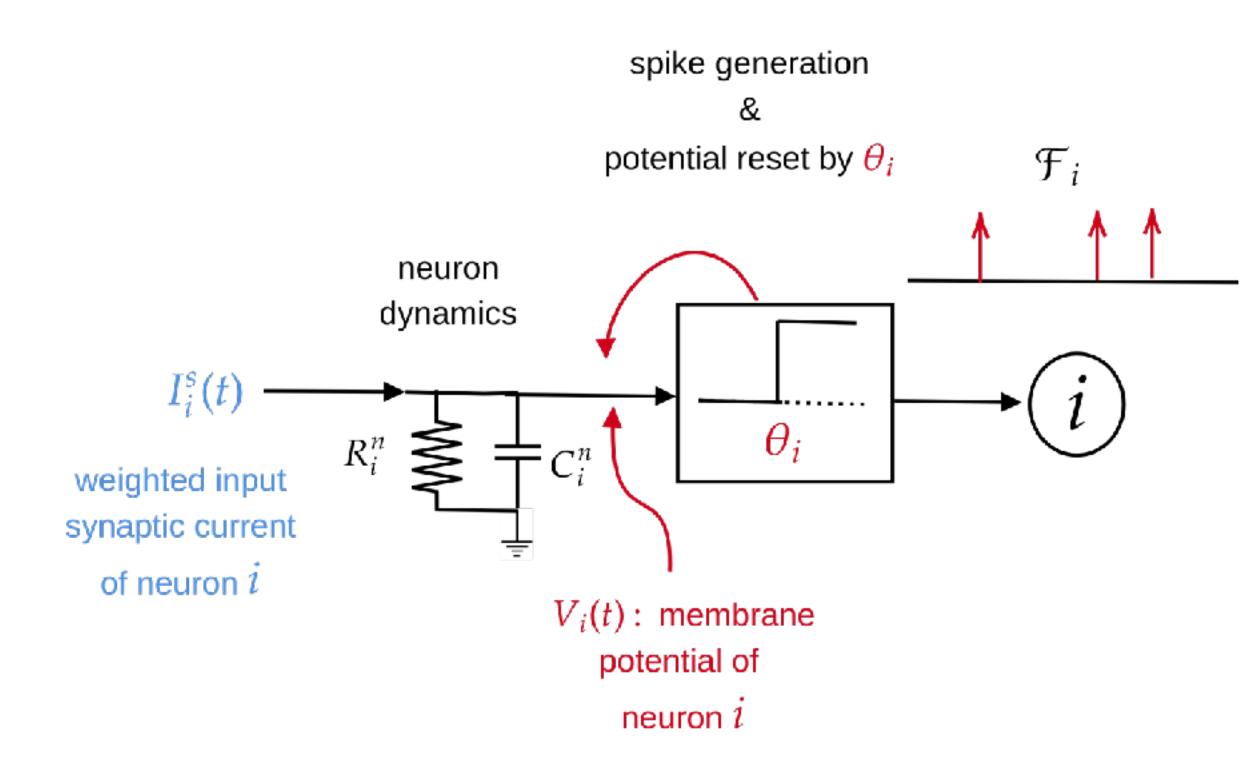
 $I_j(t) = h_j^s(t) \star \sum \delta(t - f) = \sum h_j^s(t - f)$ $f \in \mathcal{F}_i$ $f \in \mathcal{F}_i$



Yale

Pre-Synaptic Model

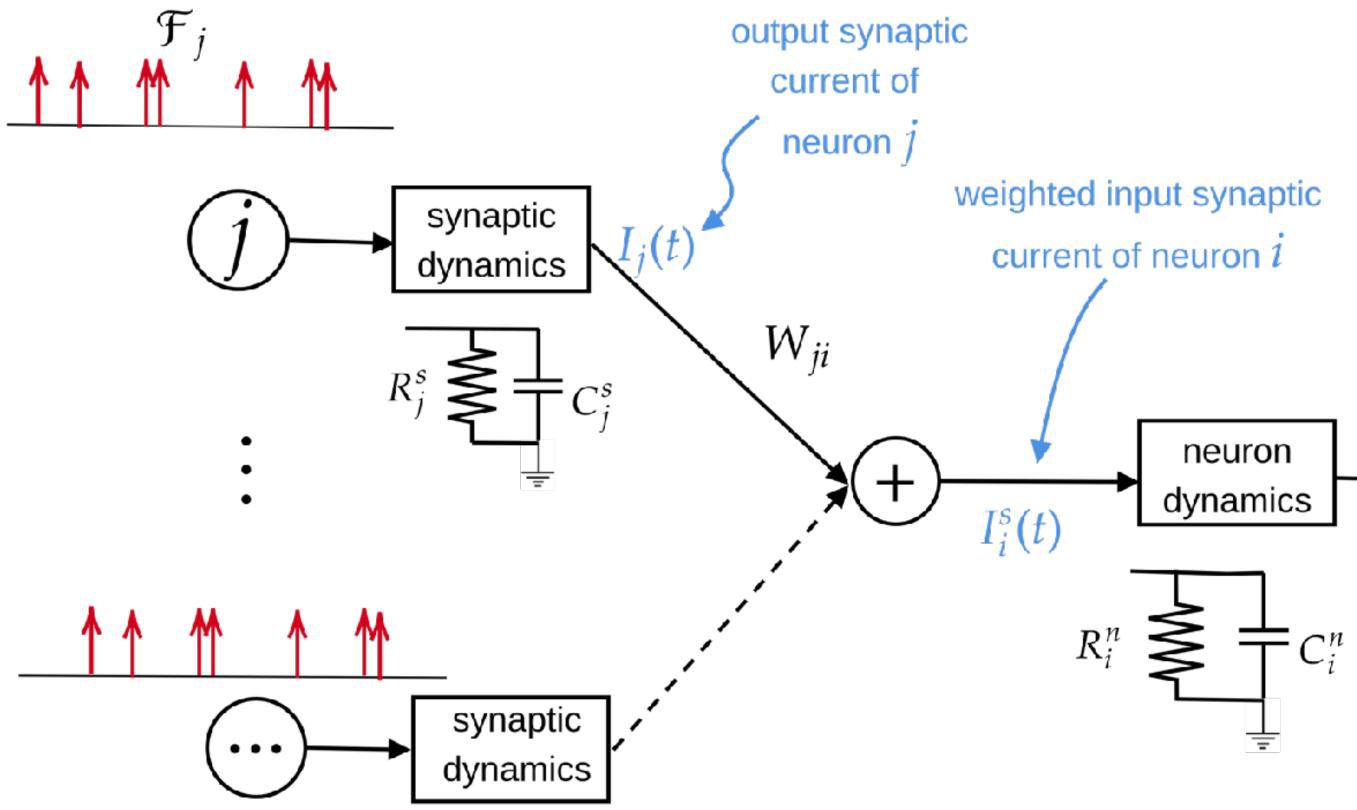
Non-Linearity



A **nonlinear** neuron with weighted synaptic currents I(t) and spike generation

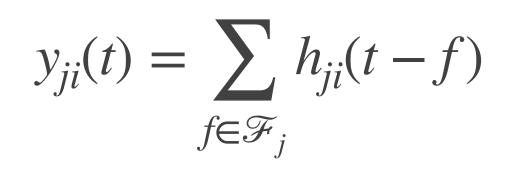
A linear neuron with input I(t) and Heaviside voltages $\{-\theta_i u(t-f) : f \in \mathcal{F}_i\}$

Post-Synaptic Model



Joint impulse response

$$h_{ji}(t) = h_j^s(t) \star h_i^n(t)$$

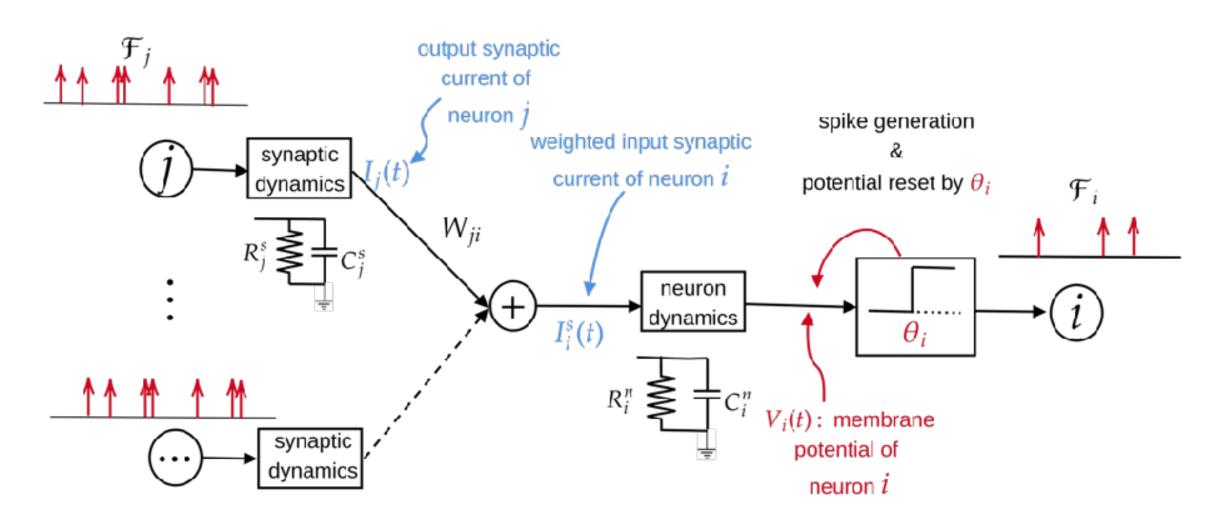


* Effects of all spikes

$$V_i^{\circ}(t) = \sum_{j \in \mathcal{N}_i} W_{ji} y_{ji}(t)$$

Post-Synaptic Model

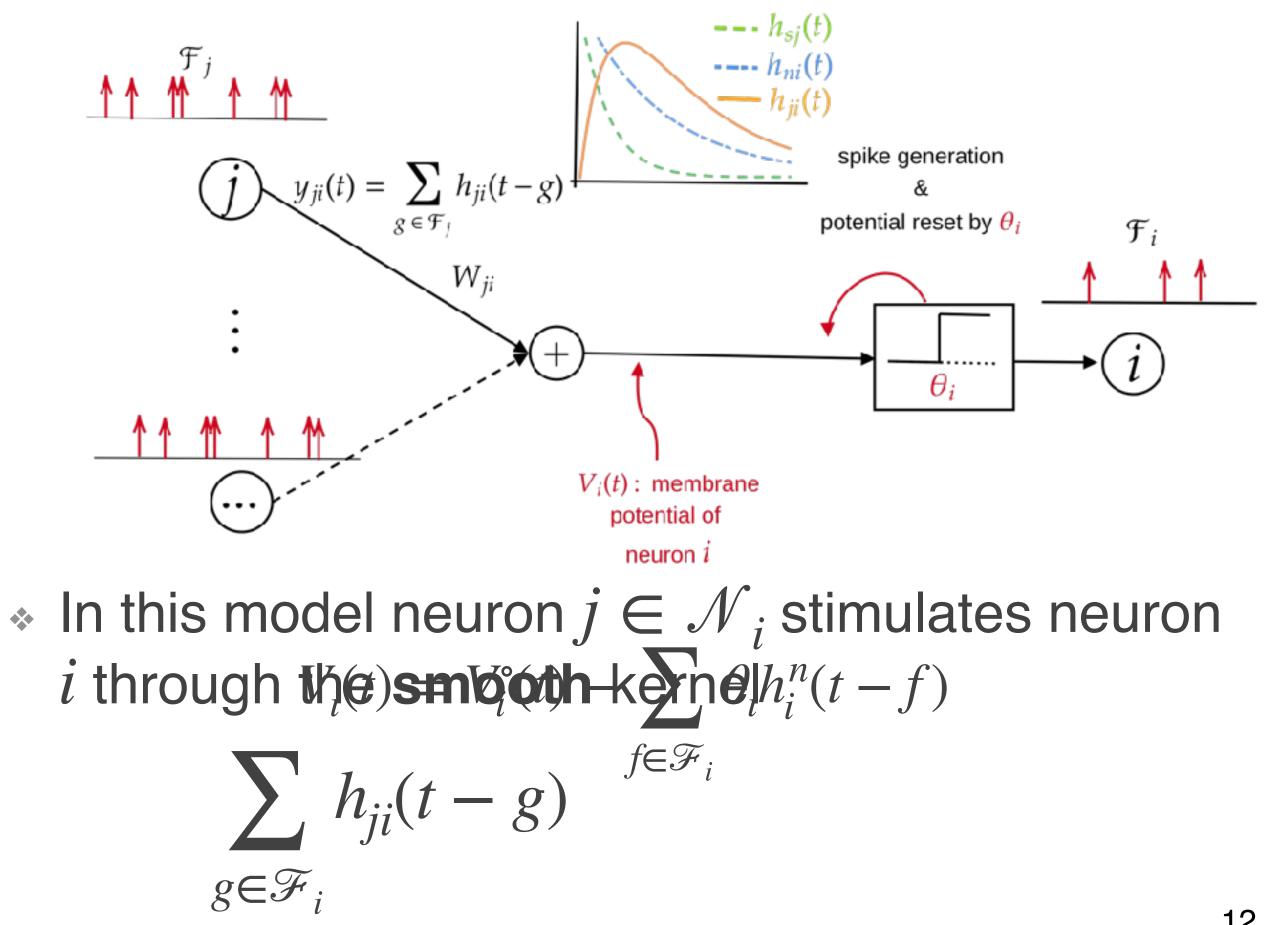
Pre-Synaptic Model



* In this model neuron $j \in \mathcal{N}_i$ stimulates neuron *i* through **abrupt** spiking signal

$$\sum_{g \in \mathscr{F}_j} \delta(t-g)$$

Yale



W consider a quite generic loss function:

 $\mathcal{L} = \ell_{\mathcal{F}}(\mathcal{F}; W)$ Classificati

[Lee, Haghighatshoar, Karbasi]

Theorem:

I. The loss \mathscr{L} depends only on the spike firing times \mathscr{F} and the weights W, i.e., $\mathscr{L} = \mathscr{L}(\mathscr{F}, W)$ II. The loss \mathscr{L} is a differentiable function of \mathscr{F} and W if $\mathscr{C}_{\mathscr{F}}(\mathscr{F};W)$ and $\mathscr{C}_V(V_o(t),\mathscr{F};W)$ are differentiable functions of all their arguments $(V_o(t), \mathcal{F}; W)$. III. The loss \mathscr{L} has well-defined gradients w.r.t. the weights W if the spike **firing times** \mathscr{F} are differentiable w.r.t. the weights W.

Yale

$$V(t) + \int_{0}^{T} \ell_{V}(V_{o}(t), \mathcal{F}; W) dt$$

ion Regression

Implicit Relationship

* The output of a neuron i, i.e., a spike generate at time t, is describe by an implicit function:

$$V_i(f) = \sum_{j \in \mathcal{N}_i} W_{ji} y_{ji}(f) - \theta_i \sum_{m < f} h_i^n (f - m) - \theta_i = 0$$

* We can write the equations for all the firing times as:

$$\mathbb{V}(:$$

[Lee, Haghighatshoar, Karbasi]

Theorem:

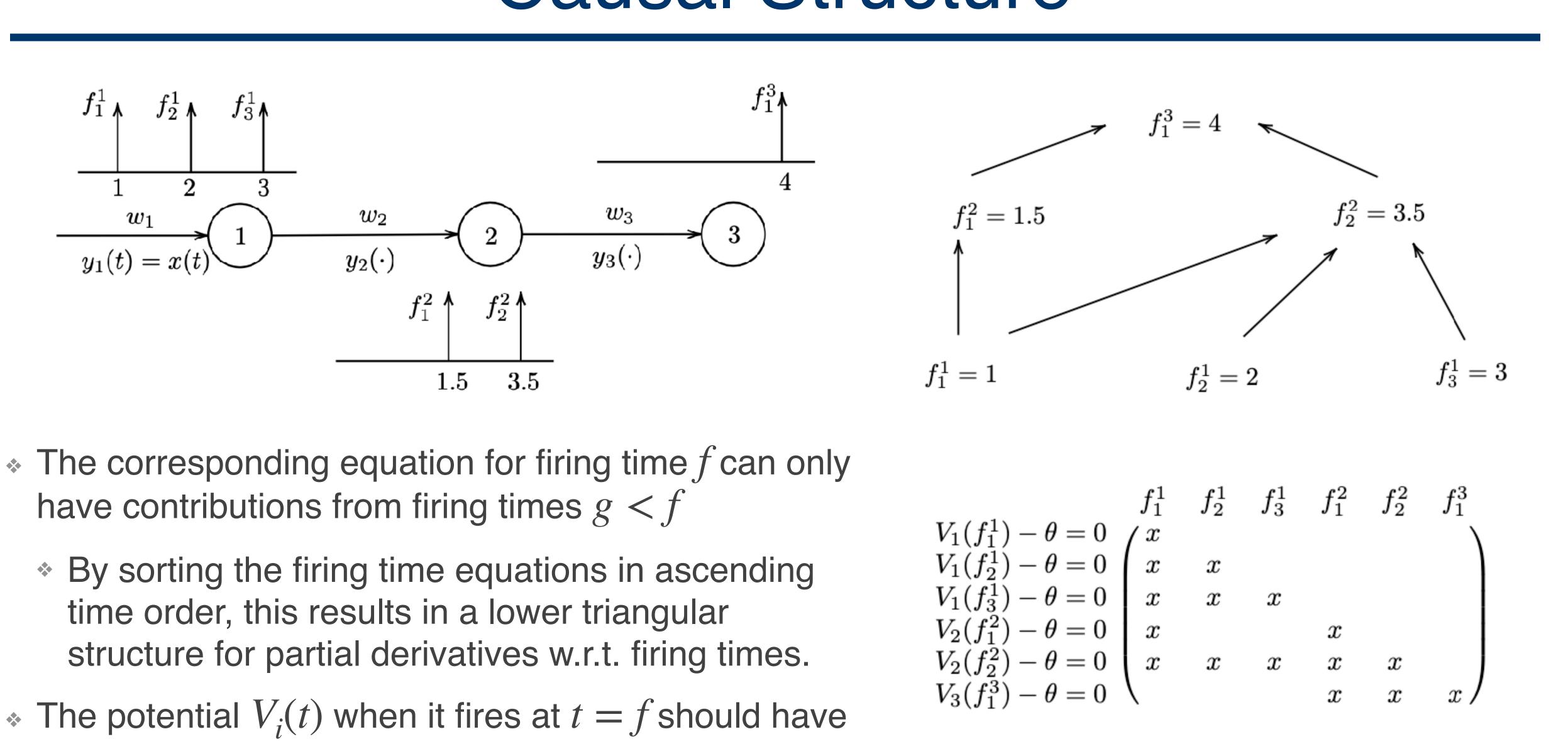
Yale

Let ${f P}$ be a permutation matrix sorting the firing times in ${\mathscr F}$ in an ascending order. Then, 1. $\frac{\partial V}{\partial \sigma} = \mathbf{P}^T \mathbf{L} \mathbf{P}$ where \mathbf{L} is a lower triangular matrix,

2. L has strictly positive diagonal elements $L_{kk} > 0$.

$$\widetilde{F}, W) = \mathbf{0}$$

Causal Structure



- have contributions from firing times g < f

Yale

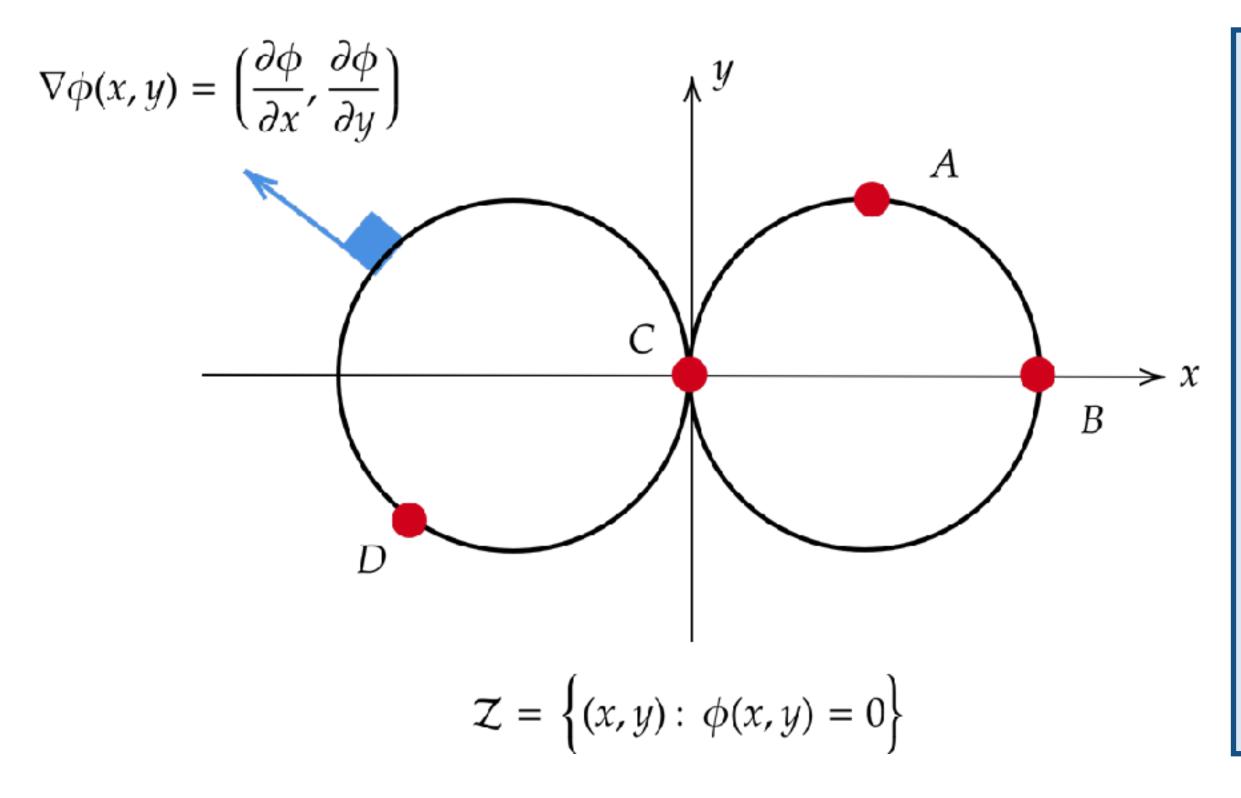
* The potential $V_i(t)$ when it fires at t = f should have a positive derivative.

Implicit Function

* Can we express \mathcal{F} in terms of W?

Not always

$\ln(|f|) + f^3w + 20w^2 - w = 0$



Theorem (IFT):

Let $\phi : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function and Let $\phi(x_0, y_0) = 0$. Assume that det $\left(\frac{\partial \phi}{\partial y}(x_0, y_0)\right) \neq 0$.

- I. There is a function ψ such that $y = \psi(x)$ in an open neighborhood around (x_0, y_0) .
- 2. ψ is a differentiable function of x:

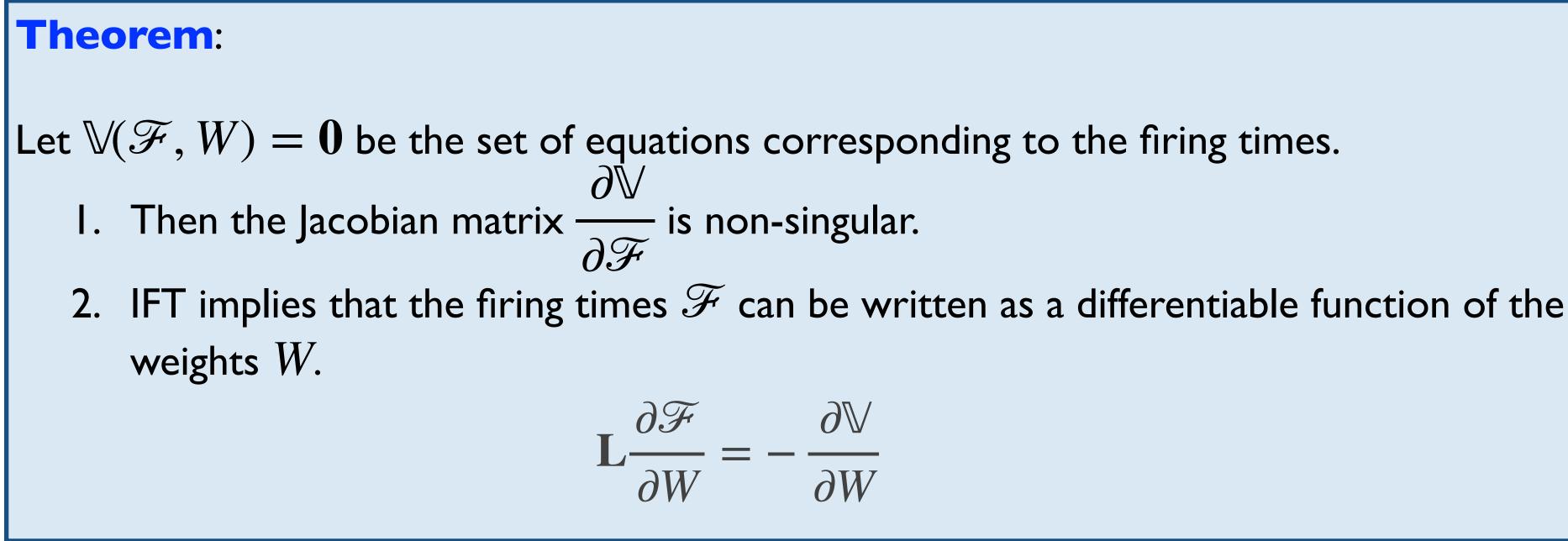
$$\frac{\partial \psi}{\partial x} = -\left(\frac{\partial \psi}{\partial y}\right)^{-1} \times \frac{\partial \psi}{\partial x}$$

Implicit Function Theorem

We can write the equations for all the firing times as:

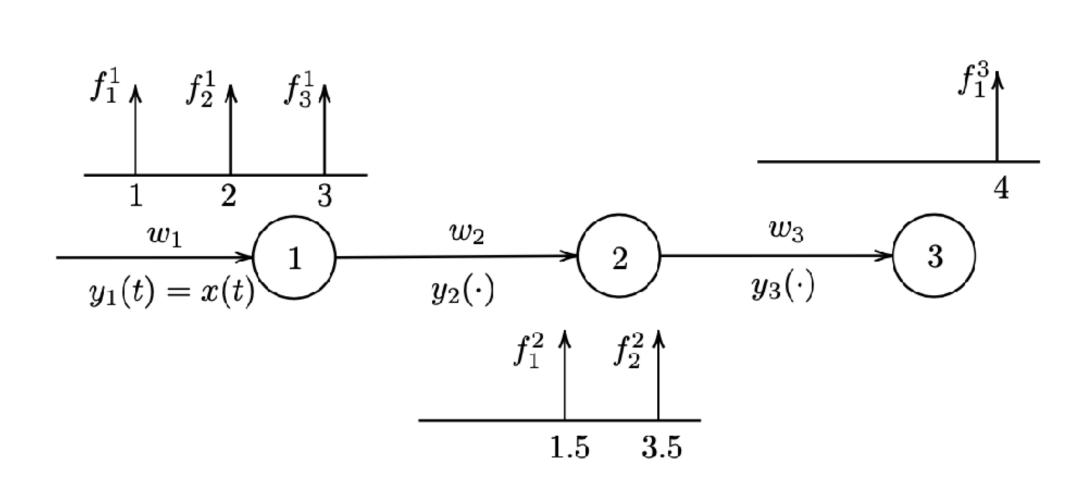
 $\mathbb{V}(\mathcal{F},W)=\mathbf{0}$

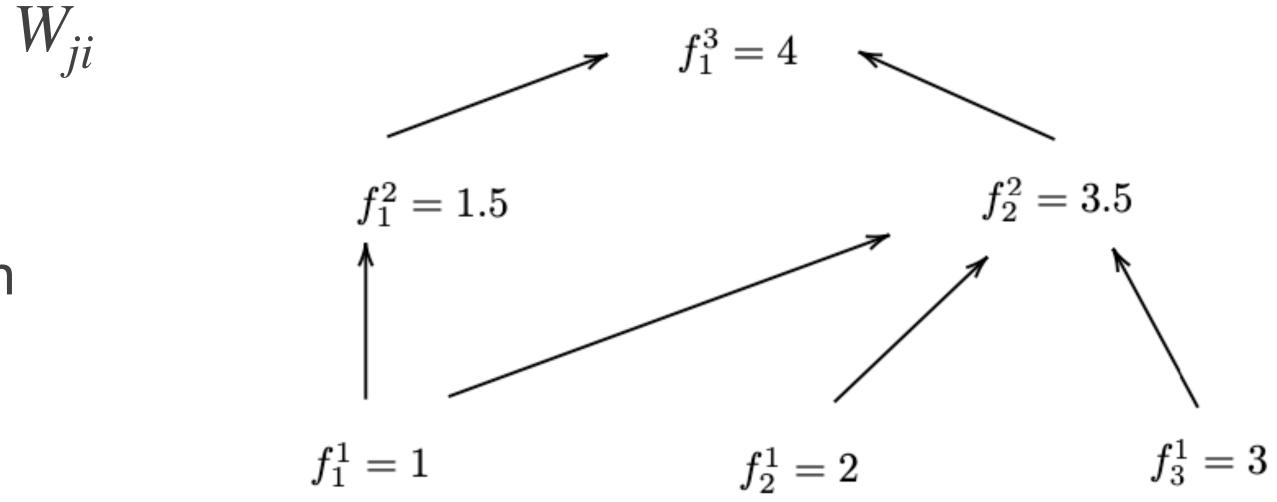
[Lee, Haghighatshoar, Karbasi]



* Use the causal graph to describe $V_i(f) - \theta_i = 0$ * Calculate $\frac{\partial}{\partial f_{i \to i}} (V_i(f) - \theta_i)$ for each $f_{j \to i}$ in the casual graph ∂ * Calculate $\frac{\partial}{\partial f}(V_i(f) - \theta_i)$ Calculate $\frac{\partial}{\partial W_{ii}}(V_i(f) - \theta_i)$ for all neurons W_{ji} attached to neuron i. * Solve $L \frac{\partial \mathcal{F}}{\partial W} = - \frac{\partial \mathbb{V}}{\partial W}$ by back substitution * Calculate $\frac{\partial \mathscr{L}}{\partial W} = \frac{\partial \mathbb{L}}{\partial \mathscr{F}} \times \frac{\partial \mathscr{F}}{\partial W} + \frac{\partial \mathscr{L}}{\partial W}$ Yale

Forward Propagation

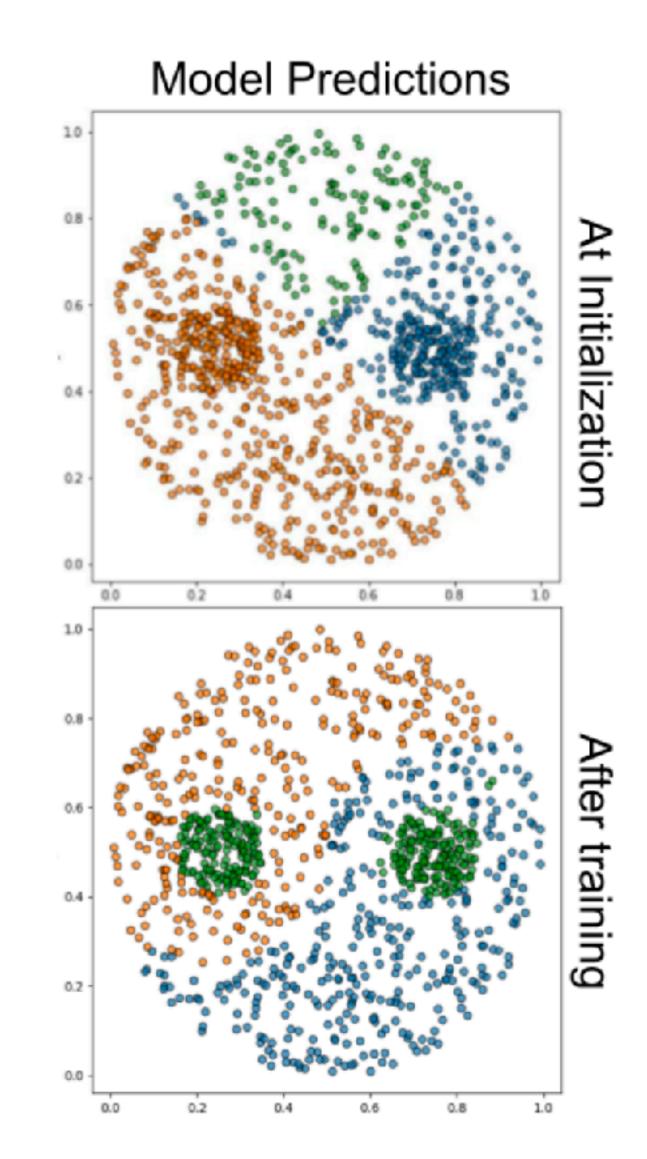




Yin-Yang



Yale



Conclusion

- * How do we train SNN?
 - Spikes are not differentiable functions!!!
 - * SNNs are differentiable in the parameter space W
 - * We can use **forward propagation** to compute the gradients

Implicit Function Theorem

Exact Gradient Computation for Spiking Neural Networks via Forward Propagation

Jane H. Lee Yale University Saeid Haghighatshoar SynSense

Amin Karbasi Yale University

Adjoint State Method

Event-based backpropagation can compute exact gradients for spiking neural networks

Timo C. Wunderlich^{1,2,3} & Christian Pehle^{1,3}

