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SNN versus ANN
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❖ Key Differences:
❖ Input representation: continuous vs 

discrete
❖ Connections between neurons have 

some dynamics.
❖ Neurons have internal membrane 

potential, but outputs spike when that 
potential reaches a threshold, after 
which it resets.



SNN versus ANN
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❖ How do we train ANN?
❖ Gradient descent via back-propagation



Main Question
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❖ How do we train SNN?
❖ Spikes are not differentiable functions!!!
❖ Use surrogate gradients + back 

propagation

Images from snnTorch by Jason K. Eshraghian



Do Gradients Exist?
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Yes, they do and we can compute them

There is no such thing as a new idea



Leaky Integrate and Fire (LIF)
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❖ Synaptic and neuron internal state dynamics 
are modeled as two RC circuits, govern by a 
differential equation

τ
dV
dt

= − V + I

❖ Equivalently, they can be described by their 
impulse response

hs(t) = e− 1
τs tu(t) hn(t) = e− 1

τn tu(t)

❖ The output synaptic current  for neuron Ij j

Ij(t) = hs
j (t) ⋆ ∑

f∈ℱj

δ(t − f ) = ∑
f∈ℱj

hs
j (t − f )



Pre-Synaptic Model
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Linear Time Invariant Non-Linear



Non-Linearity
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A nonlinear neuron with weighted synaptic 
currents  and spike generationI(t) A linear neuron with input  and Heaviside 

voltages 
I(t)

{−θiu(t − f ) : f ∈ ℱi}



Post-Synaptic Model
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hji(t) = hs
j (t) ⋆ hn

i (t)

❖ Joint impulse response

❖ Effects of spikes ℱj

yji(t) = ∑
f∈ℱj

hji(t − f )

❖ Effects of all spikes

V∘
i (t) = ∑

j∈𝒩i

Wjiyji(t)



Post-Synaptic Model
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Vi(t) = V∘
i (t) − ∑

f∈ℱi

θihn
i (t − f )

❖ In this model neuron  stimulates neuron 
 through the smooth kernel 

j ∈ 𝒩i
i

∑
g∈ℱi

hji(t − g)

❖ In this model neuron  stimulates 
neuron  through abrupt spiking signal 

j ∈ 𝒩i
i

∑
g∈ℱj

δ(t − g)



Loss Function
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❖ W consider a quite generic loss function:

ℒ = ℓℱ(ℱ; W) + ∫
T

0
ℓV(Vo(t), ℱ; W)dt

Classification Regression

Theorem:

I. The loss  depends only on the spike firing times  and the weights , i.e., 
II. The loss  is a differentiable function of   and   if  and  are differentiable 
functions of all their arguments .

III. The loss  has well-defined gradients w.r.t. the weights  if the spike firing times are differentiable w.r.t. 
the weights .

ℒ ℱ W ℒ = ℒ(ℱ, W)
ℒ ℱ W ℓℱ(ℱ; W) ℓV(Vo(t), ℱ; W)

(Vo(t), ℱ; W)
ℒ W ℱ
W

[Lee, Haghighatshoar, Karbasi]



Implicit Relationship
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❖ The output of a neuron , i.e., a spike generate at time is describe by an implicit function:i t,

Vi( f ) = ∑
j∈𝒩i

Wjiyji( f ) − θi ∑
m<f

hn
i ( f − m) − θi = 0

❖ We can write the equations for all the firing times as: 

𝕍(ℱ, W) = 0

Theorem:

Let  be a permutation matrix sorting the firing times in in an ascending order.  Then, 

1.  where  is a lower triangular matrix,

2.  has strictly positive diagonal elements . 

P ℱ
∂𝕍
∂ℱ

= PTLP L
L Lkk > 0

[Lee, Haghighatshoar, Karbasi]



Causal Structure
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❖ The corresponding equation for firing time  can only 
have contributions from firing times 
❖ By sorting the firing time equations in ascending 

time order, this results in a lower triangular 
structure for partial derivatives w.r.t. firing times.

❖ The potential  when it fires at  should have 
a positive derivative.

f
g < f

Vi(t) t = f



Implicit Function
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𝕍(ℱ, W) = 0

❖ Can we express  in terms of ?ℱ W

❖ Not always

ln( | f | ) + f3w + 20w2 − w = 0



Implicit Function Theorem
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Theorem (IFT):

Let  be a differentiable function and 

let .  Assume that . 

1. There is a function  such that  in an 
open neighborhood around .

2.  is a differentiable function of :

ϕ : ℝn × ℝm → ℝm

ϕ(x0, y0) = 0 det (∂ϕ
∂y

(x0, y0)) ≠ 0

ψ y = ψ(x)
(x0, y0)

ψ x
∂ψ
∂x

= − (∂ϕ
∂y )

−1
×

∂ϕ
∂x

.



Implicit Function Theorem
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❖ We can write the equations for all the firing times as: 

𝕍(ℱ, W) = 0

Theorem:

Let  be the set of equations corresponding to the firing times.  

1. Then the Jacobian matrix  is non-singular. 

2. IFT implies that the firing times  can be written as a differentiable function of the 
weights .

𝕍(ℱ, W) = 0
∂𝕍
∂ℱ

ℱ
W

[Lee, Haghighatshoar, Karbasi]

L
∂ℱ
∂W

= −
∂𝕍
∂W



Forward Propagation
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❖ Use the causal graph to describe Vi( f ) − θi = 0

❖
Calculate  for each  in the 

casual graph

∂
∂fj→i

(Vi( f ) − θi) fj→i

❖
Calculate 

∂
∂f

(Vi( f ) − θi)

❖
Calculate  for all neurons  

attached to neuron . 

∂
∂Wji

(Vi( f ) − θi) Wji

i

❖
Solve  by back substitutionL

∂ℱ
∂W

= −
∂𝕍
∂W

❖
Calculate 

∂ℒ
∂W

=
∂𝕃
∂ℱ

×
∂ℱ
∂W

+
∂ℒ
∂W



Yin-Yang
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Conclusion
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❖ How do we train SNN?
❖ Spikes are not differentiable functions!!!
❖ SNNs are differentiable in the parameter space 
❖ We can use forward propagation to compute the gradients

W

Adjoint State MethodImplicit Function Theorem



Thank
You !


