A Probabilistic Future for Neuromorphic Computing

Brad Aimone

Center for Computing Research
Sandia National Laboratories
jbaimon@sandia.gov
6/8/2023

So why the brain?

$>$ Energy efficient

> Operationally fast considering slow components
$>$ Data efficient
> Diverse applications
> Robustness

Spiking neuromorphic today: Overview

COINFLIPS

Computational Primitives:
Spiking Neurons (vertices / nodes) Synapses (connections / edges)

Programmable as arbitrary graphs

- Edges: Directed and weighted
- Nodes:Threshold gate logic + time
- Artificial neural networks are a special case
- Programmability, theoretical, analysis and software are open research questions

Neuromorphic hardware jumped ahead of the rest of the stack

Neuromorphic hardware has been built with a "if we build it, neuroscientists will come" hope

We need

* Driving Applications
* Systems Interface
* Software and Programming Paradigm
* Theoretical Framework

A quick aside: most neuromorphic hardware is not designed for artificial neural networks

Neuromorphic Hardware

Spiking neurons

Arbitrary connectivity

- Continual learning integrated into operation
- Inherently temporal
- Dynamical tasks?
- Distinct training and inference modes
- Time is largely avoided
- Computer vision and natural language processing

Neuromorphic is likely similar to GPUs in degree of specialization

Separating the "can do" from the "should do"

COINFLIPS

Can implement on NMC, but only to avoid I/O

- Arithmetic (adding, subtraction, multiplication, etc.)
- Data filtering
- Sorting
- Data conversions

Tasks

Possibly good on NMC, but there may be alternatives

- Deep learning / conventional artificial neural networks
- Parallel data processing (background and change detection, convolutions, etc)
- Linear algebra (MVM, crosscorrelations, L1-norm, etc)
- Classic machine learning (SVMs, k-nearest neighbors, clustering)

Should implement on NMC once systems reach scale

- Algorithms the brain actually uses (* we don't have these yet...)
- Random walks / Discrete Time Monte Carlo
- Some Graph Algorithms (Dynamic programming, Djikstra, triangle counting, graph cut, etc)

Neuromorphic computing can impact a broad range of applications

IOPScience

Neuromorphic Computing and Engineering

ACCEPTED MANUSCRIPT • OPEN ACCESS

A review of non-cognitive applications for neuromorphic computing
James Aimone ${ }^{1}$ (D), Prasanna Date ${ }^{2}$, Gabriel Fonseca-Guerra ${ }^{3}$, Kathleen Hamilton ${ }^{2}$, Kyle Henke ${ }^{4}$, Bill Kay ${ }^{5}$, Garrett Kenyon ${ }^{4}$, Shruti Kulkarni², Susan Mniszewski ${ }^{6}$,
Maryam Parsa ${ }^{7}$, Sumedh Risbud ${ }^{3}$ (D), Catherine Schuman ${ }^{8}$ (D), William Severa ${ }^{1}$ and J. Darby Smith ${ }^{1}$ - Hide full author list

Accepted Manuscript online 10 August 2022 • © 2022 The Author(s). Published by IOP
Publishing Ltd

64 Total downloads

Turn on MathJax
Share this article
■ f $\because \%$

Today’s spiking NMC shows energy advantage over conventional approaches on Monte Carlo simulations

LIPS

Leaky Integrate and Fire Neuron

Neuromorphic computing advantage appears to be when an algorithm can split task across computational graph with sparse communication

- Monte Carlo simulations

Discrete Time Markov Chains

- Dynamic programming
- Graph neural networks

Spiking Scientific Computing

We can identify a neuromorphic advantage for simulating random walks

We define a neuromorphic advantage as an algorithm that shows a demonstrable advantage in terms of one resource (e.g., energy) while exhibiting comparable scaling in other resources (e.g., time).

Spiking
Scientific
Computing

Math: What PDEs can these stochastic processes be useful for?

Class of Partial Integro-Differential Equations:

$$
\begin{aligned}
\frac{\partial}{\partial t} u(t, \boldsymbol{x}) & =\frac{1}{2} \sum_{i, j}\left(\boldsymbol{a a ^ { \top }}\right)_{i, j}(t, \boldsymbol{x}) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} u(t, \boldsymbol{x})+\sum_{i} b_{i}(t, \boldsymbol{x}) \frac{\partial}{\partial x_{i}} u(t, \boldsymbol{x}) \\
& +\lambda(t, \boldsymbol{x}) \int(u(t, \boldsymbol{x}+\boldsymbol{h}(t, \boldsymbol{x}, q))-u(t, \boldsymbol{x})) \phi_{Q}(q ; t, \boldsymbol{x}) \mathrm{d} q \\
& +c(t, \boldsymbol{x}) u(t, \boldsymbol{x})+f(t, \boldsymbol{x}), \quad x \in \mathbb{R}^{d}, t \in[0, \infty)
\end{aligned}
$$

Stochastic Process:
NMC Hardware Simulates This Stochastic Process

$$
\mathrm{d} \boldsymbol{X}(t)=\boldsymbol{b}(t, \boldsymbol{X}(t)) \mathrm{d} t+\boldsymbol{a}(t, \boldsymbol{X}(t)) \mathrm{d} \boldsymbol{W}(t)+\boldsymbol{h}(t, \boldsymbol{X}(t), q) \mathrm{d} P(t ; Q, \boldsymbol{X}(t)) .
$$

Spiking
Scientific
Computing

Solution to initial value problem $(u(0, x)=g(x))$:
Monte Carlo Approximates This Expectation

$$
u(t, \boldsymbol{x})=\mathbb{E}\left[g(\boldsymbol{X}(t)) \exp \left(\int_{0}^{t} c(s, \boldsymbol{X}(s)) \mathrm{d} s\right)+\int_{0}^{t} f(s, \boldsymbol{X}(s)) \exp \left(\int_{0}^{s} c(\ell, \boldsymbol{X}(\ell)) \mathrm{d} \ell\right) \mathrm{d} s \mid \boldsymbol{X}(0)=\boldsymbol{x}\right]
$$

Neural MC algorithm can run wide range of stochastic processes

Time

Drift

Spiking Scientific Computing

Jump

 processes

Some more applied examples

Some more applied examples

$>$ 1D particle transport
> Particle moves in 2D, only track 1D.
> At point x=0, particle reflects in random direction
$>$ Track velocity in x-dimension and angle
> Implemented on Loihi

Loihi, 6250 Walkers/Location

Today's large scale neuromorphic systems are on Pareto Frontier of computing

- Broad class of algorithms fit this tradeoff
- Monte Carlo / Probabilistic

If we're honest; who will pick energy efficiency over speed?

- Graph analytics
- Artificial intelligence
- Optimization
- Architectural advantage
- Event-driven processing
- Massive parallelism
- Limitations
- Still CMOS devices
- Architecture is a one time benefit not an extension to Moore's Law

Today's large scale neuromorphic systems are on Pareto Frontier of computing

- Broad class of algorithms fit this tradeoff
- Monte Carlo / Probabilistic
- Graph analytics
- Artificial intelligence
- Optimization
- Architectural advantage
- Event-driven processing
- Massive parallelism
- Limitations
- Still CMOS devices
- Architecture is a one time benefit not an extension to Moore's Law

Spiking Scientific Computing

So what about algorithms from the brain?
review articles
votiac.12s Advances in neurotechnologies are reigniting opportunities to bring neural computation insights into broader computing applications. by James b. aimone

Neural
 Algorithms and Computing Beyond Moore's Law

The 1 IPYNBNG DEMist of Moore's Law has begun to Fooredy impact the conputing rescarch community many decades, with nearly every aspect of society benefiting from the advance of improwed computing processors, sensors, and controllers. Behind these products has been a considerable research industry, with billions of dollars imvested in fields ranging from computer science to electrical engineering. Fundamentally, however, the exponential growth in computing described by Moore's Law was drisen
by advances in materials science. \quad M by advances in materials science. Mrom the start,
the power of the computer has been limited by the density of transistors. Progressive advances in how to manipulate silicon through advancing lithography methods and new design tools have kept advancing

Brain
Inspiration

Our brains are stochastic all the way down...

What are the dynamical algorithms of the brain?

- - -

> Our brains consist of billions of asynchronous sparsely connected dynamical neurons with ubiquitous stochasticity
> Neuromorphic chips consist of millions of asynchronous sparsely connected dynamical neurons with modest stochasticity available

Yet...
> We keep trying to impose algorithms designed for densely connected synchronized layers of thousands of neurons operating deterministically

What are the algorithms the brain is using?

$>$ Neuron connectivity is primarily recurrent
> Mix of inhibition and excitation
$>$ Deterministic spike generation, random synaptic transmission, unknown inputs
GNATs
> Asynchronous, chaotic like patterns of activity
> This is *very* difficult to interpret, much less leverage for computing!

Graphical Neural Activity Threads (GNATs)

Connect Causally-Related Spikes
> What is causal?
> Synapse exists between neurons
GNATs
> Causally-timed Spike occurs within time window

$$
\Omega_{\alpha \beta}\left(t_{\alpha}-t_{\beta}\right)=W_{\alpha \beta} \theta\left[t_{\alpha}-t_{\beta}-\delta_{\alpha \beta}\right] e^{-\left(t_{\alpha}-t_{\beta}-\delta_{\alpha \beta}\right) / \tau}
$$

Theilman et al., Submitted 2023

Graphical Neural Activity Threads (GNATs)

Connect Causally-Related Spikes

$$
\Omega_{\alpha \beta}\left(t_{\alpha}-t_{\beta}\right)=W_{\alpha \beta} \theta\left[t_{\alpha}-t_{\beta}-\delta_{\alpha \beta}\right] e^{-\left(t_{\alpha}-t_{\beta}-\delta_{\alpha \beta}\right) / \tau}
$$

GNATs emerge from structure of 80/20 networks

Isomorphic GNATs = computational motifs?

COINFLIPS

a
为

10,

COINFLIPS

GNATs
b

C

Time (s)

GNATs appear to provide an input-dependent sampling
 d

Towards GNAT-based computation?
 ...moving away from spikes to threads

Behaviofal Effectors

Beyond dynamics...
 The brain is learning at all time and spatial scales

A concrete future direction:
Brain-inspired systems that embrace stochasticity

We are benefitting from 70 years of microelectronics that embrace deterministic components to solve deterministic problems

COINFLIPS sees an opportunity to embrace stochastic computing to solve uncertainty problems

Today's computers emulate uncertainty by using pseudo-random number generation

"Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin."

John von Neumann, 1951

70 years later...

- Pseudo-RNGs can be quite effective, and do offer some advantages in verification, etc.
- But they are expensive, and when they go wrong the implications can be disastrous

COINFLIPS aims to integrate true random number generators using stochastic devices into neuromorphic architectures

COINFLIPS
Improved Random Number Generation (Type, Quantity, Quality)

And sample that number where it is needed within the computation

Sample a random number from the exact distribution we require

Neuromorphic architecture that integrates ubiquitous stochastic devices with computing and memory

COINFLIPS aims to improve both speed and energy of probabilistic computing applications

Evaluate opportunity of a probabilistic computing paradigm

Today

Evaluate opportunity of a probabilistic computing paradigm

Future?

Step 1: Draw suitable uniform RNs from hardware

[^0]Evaluate opportunity of a probabilistic computing paradigm

Future?

Today

Step 2: Draw suitable model-specific RNs from hardware

Evaluate opportunity of a probabilistic computing paradigm

Future?

Today

Step 3: Integrate hardware-enabled random sampling into computation

Random numbers are a limiting computational cost for some nuclear physics applications

Half of computational cost is generating a uniform random number, which then must be transformed

Sampling a uniform distribution (generate random number 0-1)

Two options for true RNG

Fair coinflip device example Magnetic Tunnel Junction (MTJ)

 composite free layer
"Spin hall effect magnetic tunnel junction coinflips"
Reim et al., Submitted arXiv 2209.01480
What makes one coinflip device better than another?

Quality of coinflip directly tied to quality of sample

COINFLIPS

Blocks of 100 random coinflips show expected distribution of random samples

Generating 8-bit (integers from o-255) from coinflips produces good random samples

Tunable Stochastic Devices

(b) 10^{0} (C) Coin flip

Al-guided design of neuromorphic circuits arbitrary distribution

Many devices

Biased coins for non-uniform distribution?

Mapping Coinflips to Arbitrary Distributions

Many devices
flipping at one time

Probabilistic Neural Theory and Algorithms

Al-guided design of neuromorphic circuits making arbitrary distributions efficient

Al-guided design of neuromorphic circuits making arbitrary distributions efficient

Probabilistic
Circuits and Architectures

Sampling arbitrary distributions needs weighted coinflip devices

Probabilistic Neuromorphic Algorithms

So what happens if we put stochastic devices with neurons?

Probabilistic Neural Theory and Algorithms

Probabilistic Neuromorphic Algorithms

So what happens if we put stochastic devices with neurons?

Probabilistic Neural Theory and Algorithms

> We are going to do this! Need to advance stochastic devices, probabilistic circuits, and Bayesian algorithms

Probabilistic Neuromorphic Algorithms

So what happens if we put stochastic devices with neurons?

WHY MAXCUT?

- NP-hard
- Central theoretical testbed in discrete optimization (Commander 2008)
- Practical applications
- VLSI design (Pinter 1984, Barahona et al. 1988)
- Stochastic approximation algorithms exist with practical performance guarantees
- Led to stochastic approximations for graph coloring, satisfiability, etc.

[^1]
Goemans-Williamson maxcut approximation algorithm

Discrete optimization problem:
$\operatorname{maximize} \quad C=\frac{1}{4} \sum_{i j} A_{i j}\left(1-y_{i} y_{j}\right)$
such that $\quad y_{i} \in\{-1,1\}$

Replace integer y_{i} with unit vectors:
$\operatorname{maximize} \quad \tilde{C}=\frac{1}{4} \sum_{i j} A_{i j}\left(1-v_{i} \cdot v_{j}\right)$
such that $\quad\left\|v_{i}\right\|=1$

Neural Theory and Algorithms

Goemans-Williamson maxcut approximation algorithm

Discrete optimization problem:
maximize $\quad C=\frac{1}{4} \sum_{i j} A_{i j}\left(1-y_{i} y_{j}\right)$
such that $y_{i} \in\{-1,1\}$

Replace integer y_{i} with unit vectors:
maximize $\quad \tilde{C}=\frac{1}{4} \sum_{i j} A_{i j}\left(1-v_{i} \cdot v_{j}\right)$
such that $\quad\left\|v_{i}\right\|=1$
Choose random unit vector r,

sample graph cut:

Probabilistic Neural Theory and Algorithms

$$
y_{i}=\operatorname{sgn}\left(r \cdot v_{i}\right)
$$

Approximation ratio:
Expected cut weight vs. absolute maximum

Towards neuromorphic Goemans-Williamson

Statistics of leaky integrate-and-fire neurons

LIF membrane potential dynamics

$$
C \frac{d V}{d t}=-\frac{V}{R}+\alpha \sum W_{j} s_{j}
$$

- Leak current stabilizes mean membrane potential
- Central Limit Theorem guarantees V fluctuations approximate a Gaussian process

> Probabilistic

Neural Theory
and Algorithms

Statistics of shared presynaptic input

Shared synaptic input induces correlations between LIF membrane potentials
$\operatorname{Cov}\left(V_{i}, V_{j}\right)=\frac{\alpha^{2} R}{2 C} W_{i a} W_{j b} \operatorname{Cov}\left(s_{a}, s_{b}\right)$
$\operatorname{Cov}\left(s_{a}, s_{b}\right)=\frac{1}{4} \delta_{a b}$
$\operatorname{Cov}\left(V_{i}, V_{j}\right)=\frac{\alpha^{2} R}{8 C} W_{i} \cdot W_{j}$

Probabilistic

 Neural Theory and Algorithms

Neuromorphic Goemans-Williamson sampling

Assign one LIF neuron to each graph vertex

Neuromorphic Goemans-Williamson sampling

Assign one LIF neuron to each graph vertex

Set COINFLIPS -> LIF weights proportional to Goemans-Williamson vectors

$$
\operatorname{Cov}\left(V_{i}, V_{j}\right)=\frac{\alpha^{2} R}{8 C} W_{i} \cdot W_{j}
$$

"Spiking" threshold turns fluctuations into graph cuts

SPECTRAL METHODS FOR MAXCUT

- Trevisan's algorithm (with Soto's improvement): randomly threshold the minimum eigenvector of the normalized graph adjacency matrix
- Approximation ratio: 0.614
- Simplified spectral algorithm (Mirka and Williamson 2022): keep the threshold fixed at 0.
- Approximation ratio unknown
- Works well in practice

Neuromorphic approach:

Spectrally decompose LIF-generated covariance matrix

Probabilistic

Neural Theory
and Algorithms

Graph	Grexdy	Trevisan	Simple 5pextral	Sweep Cuts	SDP
$\mathrm{C}(50,0.1)$	8.700×10^{1}	9.600×10^{1}	9.400×10^{1}	9.500×10^{1}	9.200×10^{1}
$\mathrm{G}(50,0.25)$	1.970×10^{2}	2.060×10^{2}	2.060×10^{2}	2.080×10^{2}	2.100×10^{2}
$\mathrm{G}(50,0.5)$	3.480×10^{2}	3.600×10^{2}	3.560×10^{2}	3.600×10^{2}	3.600×10^{2}
$G(50,0.75)$	5.140×10^{2}	5.140×10^{2}	4.990×10^{2}	5.190×10^{2}	5.240×10^{2}
$\mathrm{G}(100,0.1)$	3.210×10^{2}	3.290×10^{2}	3.420×10^{2}	3.430×10^{2}	3.290×10^{2}
$\mathrm{G}(100,0.25)$	7.640×10^{2}	7.830×10^{2}	7.850×10^{2}	7.880×10^{2}	7.860×10^{2}
$\mathrm{G}(100,0.5)$	1.351×10^{3}	1.363×10^{3}	1.346×10^{3}	1.375×10^{3}	1.361×10^{3}
$\mathrm{G}(100,0.75)$	2.019×10^{3}	2.024×10^{3}	2.020×10^{3}	2.026×10^{3}	2.016×10^{3}
$G(200,0.1)$	1.212×10^{3}	1.250×10^{3}	1.234×10^{3}	1.242×10^{3}	1.211×10^{3}
$\mathrm{G}(200,0.25)$	2.795×10^{8}	2.859×10^{3}	2.847×10^{3}	2.861×10^{3}	2.778×10^{3}
G(200,0.5)	5.388×10^{3}	5.420×10^{3}	5.412×10^{3}	5.423×10^{3}	5.326×10^{3}
$\mathrm{G}(200,0.75)$	7.784×10^{3}	7.855×10^{3}	7.831×10^{3}	7.875×10^{3}	7.815×10^{3}
G(350,0.1)	3.585×10^{3}	3.582×10^{3}	3.639×10^{3}	3.651×10^{3}	3.611×10^{3}
$\mathrm{G}(350,0.25)$	8.378×10^{3}	8.544×10^{3}	8.583×10^{3}	8.588×10^{3}	8.236×10^{3}
G(350,0.5)	1.623×10^{4}	1.627×10^{4}	1.643×10^{4}	1.649×10^{4}	1.603×10^{4}
$\mathrm{G}(350,0.75)$	2.356×10^{4}	2.378×10^{4}	2.374×10^{4}	2.374×10^{4}	2.353×10^{4}
G(500, .1)	7.155×10^{3}	7.155×10^{3}	7.303×10^{3}	7.329×10^{3}	7.097×10^{3}
$\mathrm{G}(500, .25)$	1.673×10^{4}	1.697×10^{4}	1.712×10^{4}	1.714×10^{4}	1.6852×10^{4}
G(500, .5i)	3.272×10^{4}	$3.27 .5 \times 10^{4}$	3.313×10^{4}	3.314×10^{4}	3.311×10^{4}
$\mathrm{G}(5000, .75)$	4.820×10^{4}	4.852×10^{4}	4.847×10^{4}	4.849×10^{4}	4.813×10^{4}

Synaptic plasticity and spectral analysis: Oja’s Rule

- Hebbian principle: neurons that fire together, wire together

Probabilistic Neural Theory and Algorithms

$$
\Delta w=y x
$$

- Oja's rule: stabilized Hebbian plasticity

$$
\Delta \boldsymbol{w}=y(\boldsymbol{x}-\boldsymbol{w} y)
$$

Synaptic plasticity and spectral analysis: Oja's rule

- Oja's rule approximates principal component / maximum eigenvector
- Oja's antihebbian rule approximates minimum eigenvector:
$\Delta \boldsymbol{w}=-y \boldsymbol{x}+\left(y^{2}+1-\boldsymbol{w}^{T} \boldsymbol{w}\right) \mathbf{w}$

$$
\begin{array}{r}
\text { pre } \\
\text { pre } \\
\text { post }
\end{array}
$$

LIF-Trevisan circuit

- Correlation element generates correlated activity from random devices
- "Output" neuron computes minimum eigenvector via Oja's antihebbian rule

Neuromorphic maxcut circuits

Maxcut Results

Erdos-Renyi random graphs

LIF-GW

LIF-TR
Solver
Random

Probabilistic Neural Theory and Algorithms

Number of cuts

Maxcut Results

Empirical graphs (NRVIS)

LIF-GW
LIF-TR
Solver
Random

Probabilistic Neural Theory and Algorithms

Number of Cuts

COINFLIPS

Loihi generated graph cuts

COINFLIPS

- Erdos-Renyi graph
- 128 vertices
- $\mathrm{p}_{\text {edge }}=0.5$
- GW vectors scaled to ± 255
- 2^{15} timesteps
- V_{m} time constant: 4 timesteps

Loihi generated graph cut distribution

- Erdos-Renyi graph
- 128 vertices
- $\mathrm{p}_{\text {edge }}=0.5$
- GW vectors scaled to ± 255
- 2^{15} timesteps
- V_{m} time constant: 4 timesteps

Probabilistic
Neural Theory and Algorithms

Loihi vs. Solver

Evaluate opportunity of a probabilistic computing paradigm

The COINFLIPS future may not be far away

Summary: Probabilistic computing is perhaps an ideal target for exploring potential for future neuromorphic applications
 - Brain is probabilistic exciting ways that have yet to be explored

- Stochastic devices
+ neuromorphic parallelism
= broad application impact
- Both Mod-Sim and AI stand to benefit
- Opportunity to consider important aspects of computing up front
- Address issues such as I/O, programmability, and theory from the onset, as opposed to after-the-fact

Thank You!

- Neuromorphic testbed and Fugu
- DOE Advanced Simulation and Computing (ASC)
- Craig Vineyard, Suma Cardwell, Ryan Dellana, Fred Rothganger, William Severa, Srideep Musuvathy
- Neural PDE work
- Sandia LDRD office
- Darby Smith, William Severa, Rich Lehoucq, Ojas Parekh, Aaron Hill
- COINFLIPS / MAXCUT:
- DOE Office of Science (BES, ASCR), Co-design in Microelectronics
- Shashank Misra, Conrad James, Darby Smith, Suma Cardwell, Brad Theilman, Ojas Parekh, Yipu Wang, Chris Allemang, William Severa, Prasanna Date, Andy Kent, Laura Reim, Les Bland, Bernd Surrow, Jean Anne Incorvia, Jaesuk Kwon, Sam Liu, Katie Schuman, Karan Patel

- GNATs
- DOE Office of Science (ASCR), CRCNS program
- Katie Schuman, Seung-Hwan Lim, Felix Wang, Brad Theilman, Fred Rothganger, Shruti Kulkarni, Anika Tabassum

U.S. DEPARTMENT OF

 ENERGY
[^0]: COINFLIPS

[^1]: Probabilistic Neural Theory and Algorithms

