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So why the brain?

➢ Energy efficient

➢Operationally fast considering 
slow components

➢Data efficient

➢Diverse applications

➢ Robustness



Aimone JB, Advanced Intelligent Systems, 2023



Spiking neuromorphic today: Overview
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Computational Primitives: 
Spiking Neurons (vertices / nodes)
Synapses (connections / edges)

Programmable as arbitrary graphs
• Edges: Directed and weighted
• Nodes: Threshold gate logic + time 
• Artificial neural networks are a special 

case
• Programmability, theoretical, analysis 

and software are open research 
questions

Neural Logic Core
~103 – 104 neurons 

105 -106 edges

Neural Chip
~101 - 102 cores

104 -106 neurons

Neural System
~102 - 104 chips

106 -109 neurons



Neuromorphic hardware jumped ahead of the rest 
of the stack
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Neuromorphic hardware has been built 
with a “if we build it, neuroscientists will 
come” hope

We need

❖ Driving Applications

❖ Systems Interface

❖ Software and Programming Paradigm

❖ Theoretical Framework



Neuromorphic Hardware

Artificial Neural Networks

A quick aside: most neuromorphic hardware is not 
designed for artificial neural networks
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Spiking neurons

Continuous neurons Linear algebra-like networks

Arbitrary connectivity

• Continual learning 
integrated into 
operation

• Inherently temporal 
• Dynamical tasks?

• Distinct training and 
inference modes

• Time is largely 
avoided

• Computer vision and 
natural language 
processing



Specialized General PurposeTruly General Purpose Application Specific

Neuromorphic is likely similar to GPUs in degree of 
specialization
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Separating the “can do” from the “should do”

8

Possibly good on NMC, but 
there may be alternatives

• Deep learning / conventional 
artificial neural networks

• Parallel data processing 
(background and change 
detection, convolutions, etc)

• Linear algebra (MVM, cross-
correlations, L1-norm, etc)

• Classic machine learning (SVMs, 
k-nearest neighbors, clustering)

Can implement on NMC, but 
only to avoid I/O

• Arithmetic (adding, subtraction, 
multiplication, etc.)

• Data filtering
• Sorting
• Data conversions
• …

Should implement on NMC 
once systems reach scale

• Algorithms the brain actually 
uses (* we don’t have these 
yet…)

• Random walks / Discrete Time 
Monte Carlo

• Some Graph Algorithms 
(Dynamic programming, 
Djikstra, triangle counting,  
graph cut, etc)

• Some neural networks



Neuromorphic computing can impact a broad range 
of applications

9

Spiking 
Scientific 

Computing



Today’s spiking NMC shows energy advantage over 
conventional approaches on Monte Carlo simulations
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Leaky Integrate and Fire Neuron

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Neuromorphic computing advantage appears to be 
when an algorithm can split task across 
computational graph with sparse communication

• Monte Carlo simulations
Discrete Time Markov Chains

• Dynamic programming

• Graph neural networks

• …

11

Spiking 
Scientific 

Computing



We can identify a neuromorphic advantage for 
simulating random walks 
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We define a neuromorphic advantage as an algorithm 
that shows a demonstrable advantage in terms of 

one resource (e.g., energy) while exhibiting 
comparable scaling in other resources (e.g., time). 

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Math: What PDEs can these stochastic processes be 
useful for?
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𝑢 𝑡, 𝒙 = 𝔼  𝑔 𝑿 𝑡  exp   𝑐 𝑠, 𝑿 𝑠  d𝑠
𝑡

0

 +  𝑓 𝑠, 𝑿 𝑠  exp   𝑐 ℓ, 𝑿 ℓ  dℓ
𝑠

0

 d𝑠
𝑡

0

 𝑿 0 = 𝒙 . 

d𝑿 𝑡 = 𝒃 𝑡, 𝑿 𝑡  d𝑡 + 𝒂 𝑡, 𝑿 𝑡  d𝑾 𝑡 + 𝒉 𝑡, 𝑿 𝑡 , 𝑞 d𝑃 𝑡; 𝑄, 𝑿 𝑡  . 

𝜕

𝜕𝑡
𝑢 𝑡, 𝒙 =

1

2
  𝒂𝒂⊤ 𝑖,𝑗  𝑡, 𝒙 

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑢 𝑡, 𝒙 +  𝑏𝑖 𝑡, 𝒙 

𝜕

𝜕𝑥𝑖
𝑢 𝑡, 𝒙 

𝑖𝑖 ,𝑗

 

+𝜆 𝑡, 𝒙   𝑢 𝑡, 𝒙 + 𝒉 𝑡, 𝒙, 𝑞  − 𝑢 𝑡, 𝒙  𝜙𝑄 𝑞; 𝑡, 𝒙 d𝑞 

+𝑐 𝑡, 𝒙 𝑢 𝑡, 𝒙 + 𝑓 𝑡, 𝒙 , 𝑥 ∈ ℝ𝑑 , 𝑡 ∈  0, ∞ . 

Class of Partial Integro-Differential Equations:

Stochastic Process:

Solution to initial value problem (u(0,x)=g(x)): Monte Carlo Approximates This Expectation

NMC Hardware Simulates This Stochastic Process

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Neural MC algorithm can run wide range of 
stochastic processes

14Smith et al., Nature Electronics 2022

Diffusion

Drift Absorption
/ Decay

Jump 
processes

Spiking 
Scientific 

Computing



Some more applied examples
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➢ Boltzmann state transition
➢ Particle can exist in 2 states (+1 or 

-1) or be absorbed.  

➢ Implement as simple stochastic 
process on TrueNorth 

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Some more applied examples
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➢ 1D particle transport
➢ Particle moves in 2D, only track 1D.  

➢ At point x=0, particle reflects in 
random direction

➢ Track velocity in x-dimension and 
angle

➢ Implemented on Loihi 

Smith et al., Nature Electronics 2022

Spiking 
Scientific 

Computing



Today’s large scale neuromorphic systems are on 
Pareto Frontier of computing

• Broad class of algorithms fit this tradeoff
• Monte Carlo / Probabilistic
• Graph analytics
• Artificial intelligence
• Optimization

• Architectural advantage
• Event-driven processing
• Massive parallelism

• Limitations
• Still CMOS devices
• Architecture is a one time benefit

not an extension to Moore’s Law

Operations per second

Operations 
per Joule

CPUs

GPUs

Loihi

SpiNNaker

TrueNorth

If we’re honest; who will pick energy 
efficiency over speed?

Spiking 
Scientific 

Computing



Today’s large scale neuromorphic systems are on 
Pareto Frontier of computing

• Broad class of algorithms fit this tradeoff
• Monte Carlo / Probabilistic
• Graph analytics
• Artificial intelligence
• Optimization

• Architectural advantage
• Event-driven processing
• Massive parallelism

• Limitations
• Still CMOS devices
• Architecture is a one time benefit

not an extension to Moore’s Law

Operations per second

Operations 
per Joule

CPUs

GPUs

Loihi

SpiNNaker

TrueNorth

Spiking 
Scientific 

Computing

Opportunity for Brain-Inspired Materials, Devices & Algorithms
Increasing processing (density, speed, capabilities, etc) while preserving 

energy advantage and jump neuromorphic over Pareto Frontier



So what about algorithms from the brain?
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20

Brain 
Inspiration



Aimone, CACM 2019
21

Brain 
Inspiration



Our brains are stochastic all the way down…

22



What are the dynamical algorithms of the brain?
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➢ Our brains consist of billions of 
asynchronous sparsely connected 
dynamical neurons with ubiquitous 
stochasticity

➢ Neuromorphic chips consist of millions 
of asynchronous sparsely connected 
dynamical neurons with modest 
stochasticity available

Yet…
➢ We keep trying to impose algorithms 

designed for densely connected 
synchronized layers of thousands of 
neurons operating deterministically



What are the algorithms the brain is using?

➢ Neuron connectivity is primarily recurrent
➢ Mix of inhibition and excitation 
➢ Deterministic spike generation, random synaptic transmission, unknown inputs
➢ Asynchronous, chaotic like patterns of activity

➢ This is *very* difficult to interpret, much less leverage for computing!

GNATs



Graphical Neural Activity Threads (GNATs)

Ω𝛼𝛽 𝑡𝛼 − 𝑡𝛽 = 𝑊𝛼𝛽𝜃 𝑡𝛼 − 𝑡𝛽 − 𝛿𝛼𝛽 𝑒− 𝑡𝛼−𝑡𝛽−𝛿𝛼𝛽 /𝜏

Connect Causally-Related Spikes
➢ What is causal?

➢ Synapse exists between neurons
➢ Causally-timed Spike occurs within time window

GNATs

Theilman et al., 
Submitted 2023



Graphical Neural Activity Threads (GNATs)

Ω𝛼𝛽 𝑡𝛼 − 𝑡𝛽 = 𝑊𝛼𝛽𝜃 𝑡𝛼 − 𝑡𝛽 − 𝛿𝛼𝛽 𝑒− 𝑡𝛼−𝑡𝛽−𝛿𝛼𝛽 /𝜏

Connect Causally-Related Spikes

Color Disjoint Connected Components
GNATs



GNATs emerge from structure of 80/20 networks

GNATs



• Similar causal sequences reappear 
embedded in larger spiking contexts

• Precise timing is not preserved, but 
causal influence is preserved

Modular graph product

Isomorphic GNATs = computational motifs?

GNATs



GNATs



GNATs appear to provide an input-dependent 
sampling 

GNATs



Arbitrary boundary 
(graph cut)

Towards GNAT-based computation?
…moving away from spikes to threads

GNATs



Aimone, CACM 2019

Beyond dynamics… 
The brain is learning at all time and spatial scales 

33

Brain 
Inspiration



A concrete future direction: 

Brain-inspired systems that embrace stochasticity
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We are benefitting from 70 years of 
microelectronics that embrace deterministic 
components to solve deterministic problems

COINFLIPS sees an opportunity to embrace 
stochastic computing to solve uncertainty problems



Today’s computers emulate uncertainty by using 
pseudo-random number generation

“Any one who considers arithmetical 
methods of producing random digits is, of 
course, in a state of sin.”

John von Neumann, 1951

70 years later… 
• Pseudo-RNGs can be quite effective, and do 

offer some advantages in verification, etc.
• But they are expensive, and when they go 

wrong the implications can be disastrous 



COINFLIPS aims to integrate true random number generators  
using stochastic devices into neuromorphic architectures

Improved Random Number Generation 
(Type, Quantity, Quality)

Neuromorphic architecture that integrates ubiquitous 
stochastic devices with computing and memory

Sample a random number from the 
exact distribution we require

And sample that number where it is 
needed within the computation

COINFLIPS aims to improve both speed and energy 
of probabilistic computing applications

37



Evaluate opportunity of a probabilistic computing paradigm
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Today

Accept / RejectModel

PRNG MCMC
MH, Gibbs

...

Draw Uniform

Desire Non-Uniform

Sample Non-Uniform

COINFLIPS



Evaluate opportunity of a probabilistic computing paradigm
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Today

Future?

Accept / RejectModel

PRNG MCMC
MH, Gibbs

...

Draw Uniform

Desire Non-Uniform

Sample Non-Uniform

Accept / RejectModel

COINFLIPS MCMC
MH, Gibbs

...

Desire Non-Uniform

Sample Non-Uniform

Step 1: Draw suitable uniform RNs from hardware

COINFLIPS



Evaluate opportunity of a probabilistic computing paradigm
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Today

Future?

Accept / RejectModel

PRNG MCMC
MH, Gibbs

...

Draw Uniform

Desire Non-Uniform

Sample Non-Uniform

Accept / RejectModel

COINFLIPS MCMC
MH, Gibbs

...

Desire Non-Uniform

Sample Non-Uniform

Model
Flip Biased Coins

Desire Non-Uniform

Sample Non-Uniform

Step 2: Draw suitable model-specific RNs from hardware

COINFLIPS



Evaluate opportunity of a probabilistic computing paradigm
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Today

Future?

Accept / RejectModel

PRNG MCMC
MH, Gibbs

...

Draw Uniform

Desire Non-Uniform

Sample Non-Uniform

Accept / RejectModel

COINFLIPS MCMC
MH, Gibbs

...

Desire Non-Uniform

Sample Non-Uniform

Model
Flip Biased Coins

Desire Non-Uniform

Sample Non-Uniform

Model

s
f(A,B)

A

B

x

0  1  2  3  4  5  6  7

Step 3: Integrate hardware-enabled random sampling into computationCOINFLIPS



Random numbers are a limiting computational cost 
for some nuclear physics applications
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Particle Physics 
Demonstration

56
Fe+

14
N, √s

NN
=200 GeV

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of CPU time in RNG

P
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b
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“Probabilistic neural computing with stochastic devices”  
Misra et al., Advanced Materials. 2023

Half of computational cost is generating a uniform random 
number, which then must be transformed



Sampling a uniform distribution (generate random 
number 0-1)
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…

…

One device 
flipping over time

Many devices 
flipping one time

time

Two options for true RNG

…

1

0

1

1

1    0    1    1

Tunable 
Stochastic 

Devices



Fair coinflip device example –
Magnetic Tunnel Junction (MTJ)
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“Spin hall effect magnetic tunnel junction coinflips”  
Reim et al., Submitted arXiv 2209.01480

What makes one coinflip device better than another?

MTJ Coinflip device Reset – set metastable state – read

40 nm circular pMTJ with CoFeB/W/CoFeB

composite free layer

P

AP

Tunable 
Stochastic 

Devices



Quality of coinflip directly tied to quality of sample

Blocks of 100 random coinflips show expected distribution of random samples 

Generating 8-bit (integers from 0 – 255) from coinflips produces good random samples 

Tunable 
Stochastic 

Devices



AI-guided design of neuromorphic circuits –
arbitrary distribution
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Probabilistic 
Circuits and 

Architectures

Many devices 
flipping at one time

Biased coins for non-uniform distribution?

Fair coins for uniform distribution

… …

1

0

1

1



Mapping Coinflips to Arbitrary Distributions
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Probabilistic 
Neural Theory 

and Algorithms

…

Many devices 
flipping at one time

Naively, we can expand a binary tree with probabilities to 
describe any distribution

Simulation…



AI-guided design of neuromorphic circuits –
making arbitrary distributions efficient
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Probabilistic 
Circuits and 

Architectures

“AI-enhanced Codesign 
for Probabilistic Neural 
Circuits”  
Cardwell SG et al.  2022
International
Conference on 
Rebooting Computing

Sampling arbitrary distributions needs weighted coinflip 
devices

Target Distribution



AI-guided design of neuromorphic circuits –
making arbitrary distributions efficient
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Probabilistic 
Circuits and 

Architectures

“AI-enhanced Codesign 
for Probabilistic Neural 
Circuits”  
Cardwell SG et al.  2022 
International 
Conference on 
Rebooting Computing 

Sampling arbitrary distributions needs weighted coinflip 
devices

Target Distribution



Probabilistic Neuromorphic Algorithms
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Probabilistic 
Neural Theory 

and Algorithms

So what happens if we put stochastic devices with neurons?



Probabilistic Neuromorphic Algorithms
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Probabilistic 
Neural Theory 

and Algorithms

So what happens if we put stochastic devices with neurons?

Vase! Vase!

Faces!

Prob We are going to do this!
Need to advance 

stochastic devices, 
probabilistic circuits, 

and Bayesian 
algorithms 



Probabilistic Neuromorphic Algorithms
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Probabilistic 
Neural Theory 

and Algorithms

So what happens if we put stochastic devices with neurons?

Approximate Algorithms for “Maximum Cut” of Graphs

Partition G into two sets, S, and T, s.t. # edges 
between S & T is as large as possible “Stochastic Neuromorphic Circuits for Solving MAXCUT”

Theilman et al., IPDPS 2023; Arxiv 2210.02588



WHY MAXCUT?

•

53

• NP-hard

• Central theoretical testbed in discrete optimization (Commander 2008)

• Practical applications

• VLSI design (Pinter 1984, Barahona et al. 1988)

• Stochastic approximation algorithms exist with practical performance guarantees

• Led to stochastic approximations for graph coloring, satisfiability, etc.

Probabilistic 
Neural Theory 

and Algorithms



Goemans-Williamson maxcut approximation 
algorithm
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𝐶 =
1

4
 

𝑖𝑗

𝐴𝑖𝑗 1 − 𝑦𝑖𝑦𝑗 

𝑦𝑖 ∈ −1, 1

Discrete optimization problem:

maximize

such that

Replace integer 𝑦𝑖 with unit vectors:

ሚ𝐶 =
1

4
 

𝑖𝑗

𝐴𝑖𝑗 1 − 𝑣𝑖 ⋅ 𝑣𝑗 

𝑣𝑖 = 1

maximize

such that

Goemans and Williamson 1995

Probabilistic 
Neural Theory 

and Algorithms



Goemans-Williamson maxcut approximation 
algorithm
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Approximation ratio:
𝔼 𝐶]

𝐶𝑚𝑎𝑥
= 0.878

Expected cut weight vs. absolute maximum

Goemans and Williamson 1995

𝐶 =
1

4
 

𝑖𝑗

𝐴𝑖𝑗 1 − 𝑦𝑖𝑦𝑗 

𝑦𝑖 ∈ −1, 1

Discrete optimization problem:

maximize

such that

Replace integer 𝑦𝑖 with unit vectors:

ሚ𝐶 =
1

4
 

𝑖𝑗

𝐴𝑖𝑗 1 − 𝑣𝑖 ⋅ 𝑣𝑗 

𝑣𝑖 = 1

maximize

such that

Choose random unit vector 𝑟, 
sample graph cut:

𝑦𝑖 = sgn 𝑟 ⋅ 𝑣𝑖 Probabilistic 
Neural Theory 

and Algorithms



Towards neuromorphic Goemans-Williamson

56

Probabilistic 
Neural Theory 

and Algorithms



Statistics of leaky integrate-and-fire neurons
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𝐶
𝑑𝑉

𝑑𝑡
= −

𝑉

𝑅
+ 𝛼  𝑊𝑗𝑠𝑗

LIF membrane potential dynamics

• Leak current stabilizes mean membrane 
potential

• Central Limit Theorem guarantees V 
fluctuations approximate a Gaussian process

𝜇 𝑉 =
𝛼𝑅

2
 

𝑖

𝑊𝑖 𝜎2 𝑉 =
𝛼2𝑅

8𝐶
 

𝑖

𝑊𝑖
2

Probabilistic 
Neural Theory 

and Algorithms



Statistics of shared presynaptic input
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Vm1

V
m

2

Correlated Membrane Potentials

𝐶𝑜𝑣 𝑉𝑖 , 𝑉𝑗 =
𝛼2𝑅

2𝐶
𝑊𝑖𝑎𝑊𝑗𝑏𝐶𝑜𝑣 𝑠𝑎 , 𝑠𝑏 

Shared synaptic input induces correlations 
between LIF membrane potentials

𝐶𝑜𝑣 𝑠𝑎 , 𝑠𝑏 =
1

4
𝛿𝑎𝑏

𝐶𝑜𝑣 𝑉𝑖 , 𝑉𝑗 =
𝛼2𝑅

8𝐶
𝑊𝑖 ⋅ 𝑊𝑗

Probabilistic 
Neural Theory 

and Algorithms



Neuromorphic Goemans-Williamson sampling
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Assign one LIF neuron to each 
graph vertex

Probabilistic 
Neural Theory 

and Algorithms



Neuromorphic Goemans-Williamson sampling
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Set COINFLIPS -> LIF weights proportional 
to Goemans-Williamson vectors

Assign one LIF neuron to each 
graph vertex

“Spiking” threshold turns fluctuations into graph cuts

𝐶𝑜𝑣 𝑉𝑖 , 𝑉𝑗 =
𝛼2𝑅

8𝐶
𝑊𝑖 ⋅ 𝑊𝑗

Probabilistic 
Neural Theory 

and Algorithms



SPECTRAL METHODS FOR MAXCUT

• Trevisan’s algorithm (with Soto’s improvement): randomly threshold the minimum eigenvector of the 
normalized graph adjacency matrix

• Approximation ratio: 0.614

• Simplified spectral algorithm (Mirka and Williamson 2022): keep the threshold fixed at 0.

• Approximation ratio unknown

• Works well in practice

61

Trevisan 2012, Soto 2015

Neuromorphic approach: 
Spectrally decompose LIF-generated covariance matrix

Probabilistic 
Neural Theory 

and Algorithms



Synaptic plasticity and spectral analysis: Oja’s Rule

• Hebbian principle: neurons that fire 
together, wire together
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∆𝒘 = 𝑦𝒙 ∆𝒘 = 𝑦 𝒙 − 𝒘𝑦 

• Oja’s rule: stabilized Hebbian plasticity

Oja’s Rule

Probabilistic 
Neural Theory 

and Algorithms



Synaptic plasticity and spectral analysis: Oja’s rule

• Oja’s rule approximates principal 
component / maximum eigenvector

• Oja’s antihebbian rule approximates 
minimum eigenvector:

63

∆𝒘 = −𝑦𝒙 + 𝑦2 + 1 − 𝒘𝑇𝒘 𝐰

Probabilistic 
Neural Theory 

and Algorithms



LIF-Trevisan circuit
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• Correlation element generates 
correlated activity from random 
devices

• “Output” neuron computes 
minimum eigenvector via Oja’s
antihebbian rule

Probabilistic 
Neural Theory 

and Algorithms



Neuromorphic maxcut circuits
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LIF-GW LIF-TR

Probabilistic 
Neural Theory 

and Algorithms



Maxcut Results
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Erdos-Renyi random graphs

LIF-GW

LIF-TR

Solver

Random

Probabilistic 
Neural Theory 

and Algorithms



Maxcut Results

67

Empirical graphs (NRVIS)

LIF-GW

LIF-TR

Solver

Random

Probabilistic 
Neural Theory 

and Algorithms



Loihi generated graph cuts
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• Erdos-Renyi graph

• 128 vertices

• pedge = 0.5

• GW vectors scaled to ± 255

• 215 timesteps

• Vm time constant: 4 timesteps

Probabilistic 
Neural Theory 

and Algorithms



Loihi generated graph cut distribution
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• Erdos-Renyi graph

• 128 vertices

• pedge = 0.5

• GW vectors scaled to ± 255

• 215 timesteps

• Vm time constant: 4 timesteps

Probabilistic 
Neural Theory 

and Algorithms



Evaluate opportunity of a probabilistic computing paradigm

70

The COINFLIPS future may not be far away

Accept / RejectModel

COINFLIPS MCMC
MH, Gibbs

...

Desire Non-Uniform

Sample Non-Uniform

Model
Flip Biased Coins

Desire Non-Uniform

Sample Non-Uniform

Model

s
f(A,B)

A

B

x

0  1  2  3  4  5  6  7



Summary: Probabilistic computing is perhaps an 
ideal target for exploring potential for future 
neuromorphic applications

• Brain is probabilistic exciting ways that 
have yet to be explored

• Stochastic devices 
+ neuromorphic parallelism 

= broad application impact 
• Both Mod-Sim and AI stand to benefit

• Opportunity to consider important 
aspects of computing up front
• Address issues such as I/O, programmability, 

and theory from the onset, as opposed to 
after-the-fact

71



Thank You!

• Neuromorphic testbed and Fugu
• DOE Advanced Simulation and Computing (ASC)

• Craig Vineyard, Suma Cardwell, Ryan Dellana, Fred Rothganger, William 
Severa, Srideep Musuvathy

• Neural PDE work
• Sandia LDRD office

• Darby Smith, William Severa, Rich Lehoucq, Ojas Parekh, Aaron Hill

• COINFLIPS / MAXCUT: 
• DOE Office of Science (BES, ASCR), Co-design in Microelectronics

• Shashank Misra, Conrad James, Darby Smith, Suma Cardwell, Brad 
Theilman, Ojas Parekh, Yipu Wang, Chris Allemang, William Severa, 
Prasanna Date, Andy Kent, Laura Reim, Les Bland, Bernd Surrow, Jean 
Anne Incorvia, Jaesuk Kwon, Sam Liu, Katie Schuman, Karan Patel

• GNATs 
• DOE Office of Science (ASCR), CRCNS program

• Katie Schuman, Seung-Hwan Lim, Felix Wang, Brad Theilman, Fred 
Rothganger, Shruti Kulkarni, Anika Tabassum

72jbaimon@sandia.gov


