Dynamics and symmetries in neural network learning

Stefanie Jegelka
MIT

based on joint work with
Nisha Chandramoorthy, Khashayar Gatmiry, Andreas Loukas,
Derek Lim, Joshua Robinson, Lingxiao Zhao, Haggai Maron, Tess Smidt, Suvrit Sra
Neural network learning

1. Neural network generalization without convergence of weights
 (what do the neural network training dynamics tell us about generalization?)
 (Chandramoorthy, Gatmiry, Loukas, Jegelka NeurIPS 2022)

2. Modeling symmetries in learned functions
 (Lim, Robinson, Zhao, Maron, Smidt, Sra, Jegelka ICLR 2023)
Convergence in NN training

• frequent assumption: **NN parameters converge to a stationary point**

• But, this may not necessarily be the case!

• Training is linearly unstable: small perturbations change learned weights
Non-convergence in NN training

- Batch normalization + weight decay can lead to periodic behavior
 (Lobacheva, Kodryan, Chirkova, Malinin, Vetrov, 2021)

"minima achieved at two neighboring training periods are substantially different, but their similarity is usually higher than that of two independently trained networks."
Non-convergence in NN training

- Batch normalization + weight decay can lead to periodic behavior
 (Lobacheva, Kodryan, Chirkova, Malinin, Vetrov, 2021)
Non-convergence in NN training

• “we observe that even though the weights do not converge to stationary points, the progress in minimizing the loss function halts and training loss stabilizes” (Zhang, Li, Sra, Jadbabaie 2022)

![Graphs showing train loss and grad norm over epochs.](ImageNet experiments (similar for TransformerXL))
Synthetic example

(Figure: Zhang et al 2022)
Non-ergodicity

2nd layer weight trajectories for different SGD runs (VGG16, CIFAR10)
(S)GD as a nonlinear dynamical system

- Training data $S = \{z_1, \ldots, z_n\}$; $z_i = (x_i, y_i)$
- learn hypothesis $h : \mathbb{R}^d \times \mathcal{W} \rightarrow \mathcal{Y}$; $h(\cdot, w)$
- (S)GD updates:

$$w_{t+1} = \phi_S(w_t) := w_t - \eta_t \hat{\nabla}L_S(w_t)$$
(S)GD as a nonlinear dynamical system

- Training data $S = \{z_1, \ldots, z_n\}; z_i = (x_i, y_i)$
- Learn hypothesis $h : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{Y}; h(\cdot, w)$

(S)GD updates: $w_{t+1} = \phi_S(w_t) := w_t - \eta_t \nabla L_S(w_t)$

Toy example: dynamics as function of (constant) step size
Generalization?
Generalization: algorithmic stability?

- Samples S, S' differ in exactly 1 datapoint. Result in weights w^*_S, w^*_S.

- Learning algorithm is **algorithmically stable** with stability coefficient β if

$$\beta = \sup \left\{ |\ell(z, w^*_S) - \ell(z, w^*_S')| : z \in \mathbb{R}^d \times \mathbb{R} \right\}$$

Generalization: algorithmic stability?

- Samples S, S' differ in exactly 1 datapoint. Result in weights $w^*_S, w^*_{S'}$.

- Learning algorithm is **algorithmically stable** with stability coefficient β if

 \[
 \beta = \sup \{|\ell(z, w^*_S) - \ell(z, w^*_{S'})| : z \in \mathbb{R}^d \times \mathbb{R}\}
 \]

- **Stability implies generalization** (Bousquet & Elisseeff 2002, Rakhlin, 2006, Kuzborskij and Lampert, 2018, Feldman & Vondrák 2018, Bousquet et al., 2020, Zhang et al., 2021, …)

- *not applicable here…*
Questions

• Generalization analysis without convergence to stationary point (limit cycles, quasi periodic orbits, chaotic orbits)?

• Can dynamical information help determine if local descent algorithms generalize?

 Look at average statistics over time evolution of probability measures
Invariant measure and ergodicity

\[w_{t+1} = \phi_S(w_t) := w_t - \eta_t \nabla L_S(w_t) \]

- Long-term behavior instead of pointwise/local dynamics
- **Invariant measure**: for any set \(A \),

\[\mu(A) = \mu(\phi^{-1}(A)) \]
Invariant measure and ergodicity

\[w_{t+1} = \phi_S(w_t) := w_t - \eta_t \nabla L_S(w_t) \]

- Long-term behavior instead of pointwise/local dynamics
- **Invariant measure**: for any set \(A \),
 \[\mu(A) = \mu(\phi^{-1}(A)) \]

- Classical result: for continuous dynamics on compact set, there exists at least one ergodic, invariant measure

Ergodicity: for \(\mu_S \)-almost every initial state \(w_0 \), continuous \(f \), as \(T \to \infty \)

\[\frac{1}{T} \sum_{t=0}^{T} f(w_t) \to \mathbb{E}_{w \sim \mu}[f(w)] \]
Invariant measure and ergodicity

- **Invariant measure**: for any set A,
 \[\mu(A) = \mu(\phi^{-1}(A)) \]

- Classical result: for continuous dynamics on compact set, there exists at least one ergodic, invariant measure

Ergodicity: for μ_S-almost every initial state w_0, continuous f, as $T \to \infty$

\[\frac{1}{T} \sum_{t=0}^{T} f(w_t) \to \mathbb{E}_{w \sim \mu}[f(w)] \]

- There may be infinitely many invariant measures in weight space!
But…
Instead: loss averages over time

• Instead of weight space, look at loss values

• **Assumption:** For any $S \sim D^n$ there exists a map $z \to \langle \ell_z \rangle_S$ s.t. for all z

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \ell(z, w_t) = \langle \ell_z \rangle_S \in \mathbb{R}$$

• weaker than unique ergodic measure on weight space or of hypotheses
Statistical algorithmic stability

- Samples S, S’ differ in exactly 1 datapoint. Result in weights $w^*_S, w^*_{S'}$

- Learning algorithm is statistically algorithmically stable with stability coefficient β if

$$\beta = \sup \{ |\ell(z, w^*_S) - \ell(z, w^*_{S'})| : z \in \mathbb{R}^d \times \mathbb{R} \}$$

$$\beta = \sup \{ |\langle \ell_z \rangle_S - \langle \ell_z \rangle_{S'}| : z \in \mathbb{R}^d \times \mathbb{R} \}$$
Statistical algorithmic stability

- Samples S, S' differ in exactly 1 datapoint. Result in weights $w^*_S, w^*_{S'}$.

- Learning algorithm is statistically algorithmically stable with stability coefficient β if

\[
\beta = \sup \{|\ell(z, w^*_S) - \ell(z, w^*_{S'})| : z \in \mathbb{R}^d \times \mathbb{R}\}
\]

\[
\beta = \sup \{|\langle \ell_z \rangle_S - \langle \ell_z \rangle_{S'}| : z \in \mathbb{R}^d \times \mathbb{R}\}
\]

- Does not need convergence of weights to fixed point
- Reduces to standard algorithmic stability if weights converge
Generalization

• Does statistical algorithmic stability (SAS) imply generalization?

• Ergodic averages for risks:
 \[\hat{R}_S = \frac{1}{n} \sum_{z \in S} \langle \ell_z \rangle_S \quad R_S = \mathbb{E}_{z \sim D} \langle \ell_z \rangle_S \]
Generalization

• Does statistical algorithmic stability (SAS) imply generalization?

• Ergodic averages for risks:

\[
\hat{R}_S = \frac{1}{n} \sum_{z \in S} \langle \ell_z \rangle_S \\
R_S = \mathbb{E}_{z \sim D} \langle \ell_z \rangle_S
\]

Theorem: Generalization bound

With probability \(1 - \delta\)

\[
R_S \leq \hat{R}_S + \beta + 2(n\beta + L)\sqrt{\frac{\log(2/\delta)}{2n}}
\]

upper bound on loss
Empirical example

- **Test loss**
 - VGG16, CIFAR10

- **Gap in cumulative loss after data perturbation**

- **Lower bound on SAS coefficient**
 - VGG16, CIFAR10
What makes an algorithm more stable?

• classical notion of stability and (S)GD (Hardt, Recht, Singer 2016):

\[|\ell(z, w^s_t) - \ell(z, w'^s_t)| \leq C \|w^s_t - w'^s_t\| \]

=> bound deviation of weights:
 e.g., few steps

• vacuous bounds for loss deviation at large times
• not applicable to non-converging weight trajectories
• not informative for time-independent SAS
• what if we look at stability of long-term behavior instead of single trajectories?
Statistical Algorithmic Stability and training behavior

- Look at image of weight distribution under loss, with mixing rate λ

Theorem: faster convergence of loss implies better stability:

$$\beta = O\left(\frac{1}{n} \frac{L_D}{(1 - \lambda)}\right)$$
Empirical example

Theorem: faster convergence of loss distribution implies better stability

proxy: autocorrelation
Neural network learning...

1. Neural network generalization without convergence of weights
 (Chandramoorthy, Gatmiry, Loukas, Jegelka NeurIPS 2022)

2. Modeling symmetries in learned functions
 (Lim, Robinson, Zhao, Maron, Smidt, Sra, Jegelka ICLR 2023)
Learning with invariances

- **Standard learning setup:**
 given data \((x_1, y_1), \ldots, (x_n, y_n)\) estimate \(\hat{f} \in \mathcal{F}\) such that \(\mathbb{E}[\ell(\hat{f}(X), Y)]\) is small

- **Learning with invariances:** all of the above, plus:
 select function \(\hat{f} \in \mathcal{F}\) such that it is \(G\)-invariant for a given group \(G\):

 \[
 \hat{f}(g.x) = \hat{f}(x) \quad \forall g \in G, x \in \mathcal{X}
 \]

 usually: \(\mathcal{F}\) is a set of invariant functions
Machine Learning with Graph Data: Applications

- **ETA in Google Maps**
 - (Derrow-Pinion et al, 2021)

- **Drug interactions**
 - (Zitnik et al, 2018)

- **Learning simulations**
 - (Sanchez-Gonzalez et al, 2020)

- **Molecule property prediction**
 - (Duvenaud et al, 2015, Stokes et al, 2020)

- **Guiding human intuition in mathematics**
 - (Davies et al, 2021)

- **Recommender systems**
 - (Ying et al, 2018)
Machine Learning with Graph Data

• **Data:**

\[G = (V, E, X, W) \in \mathcal{G} \]

\[\{x_v\}_{v \in V} \quad \{w(u, v)\}_{(u, v) \in E} \]

\[x_v \in \mathbb{R}^d \]

• **Want:** graph/node invariants

\[F_\theta(P AP^\top, PX) = F_\theta(A, X) \quad \text{Permutation invariance} \]

\[F_\theta(P AP^\top, PX, v) = F_\theta(A, X, v) \quad \text{Permutation equivariance} \]
Neural Networks for Graphs

• For good performance, (often) need more information: positional encodings
 (Feldman et al 2022, Dwivedi et al 2022, Kreuzer et al 2021, Dwivedi & Bresson 2021, Mialon et al 2021)
Laplacian eigenvectors

- Graph Laplacian:
 \[L = I - D^{-1/2} A D^{-1/2} \]

- Eigenvalues: \(\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \)

- Eigenvectors: \(v_1, \ldots, v_n \)

- Captures distances, local structures, etc.

(de Lange, de Reus, van den Heuvel 2014)

(Kreuzer, Beaini, Hamilton, Létourneau, Tossou 2021)
Can we learn an arbitrary function on a set of eigenvectors (and eigenvalues)?

What invariances must \(f \) have?

How parametrize architecture to approximate any such \(f \)?
Necessary invariances

- **Sign invariance**: with all distinct eigenvalues, $\lambda_i \neq \lambda_j, \forall i, j$

 Solver may return v_i or $-v_i$.

- **Eigenspaces**: eigenvalue multiplicities $\lambda_{i_1} = \ldots = \lambda_{i_d}$

 Any basis for d-dimensional eigenspace is valid.

 Multiplicities are frequent in real data!

Invariances needed for generalization
Necessary invariances

- **Sign invariance**: with all distinct eigenvalues, $\lambda_i \neq \lambda_j, \forall i, j$

 Solver may return v_i or $-v_i$.

 \[f(v) = f(-v) \]

- **Eigenspaces**: eigenvalue multiplicities $\lambda_{i_1} = \ldots = \lambda_{i_d}$

 Solver may return any basis for d-dimensional eigenspace.

 \[f(V) = f(VQ) \quad \text{for all} \ Q \in \text{orthogonal group } O(d) \]

 \[V = [v_{i_1}, \ldots, v_{i_d}] \]
One subspace: sign invariance

Proposition

$f : \mathbb{R}^n \to \mathbb{R}$ is continuous and sign invariant if and only if $f(v) = \phi(v) + \phi(-v)$ for some continuous ϕ.

If f is also permutation equivariant, then so is ϕ.

Universal Architecture:

General f: $\phi = \text{MLP}$

Permutation equivariant f: $\phi = \text{DeepSets}$
(Zaheer et al 2017, Lee et al 2019)
One subspace: basis invariance

Proposition

If \(f : \mathbb{R}^{n \times d} \rightarrow \mathbb{R} \) is continuous and \(f(VQ) = f(V), \forall Q \in O(d) \), then

\[
f(V) = \phi(VV^\top)
\]

for some continuous \(\phi \).

\[(VQ)(VQ)^\top = V(QQ^\top)V^\top = VV^\top\]
One subspace: basis invariance

Proposition

If \(f : \mathbb{R}^{n \times d} \rightarrow \mathbb{R} \) is continuous and \(f(VQ) = f(V), \forall Q \in O(d) \), then
\[
f(V) = \phi(VV^\top)
\]
for some continuous \(\phi \).

If \(f \) is also permutation equivariant, then \(\phi : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^n \) is permutation equivariant from matrices to vectors.

Universal approximation of basis-invariant functions

General \(f \):

\[
\phi = \text{MLP}
\]

Permutation equivariant \(f \):

\[
\phi = \text{IGN}
\]

Invariant Graph Network (Maron et al 2018)
Multiple subspaces: group invariance

• V_1, \ldots, V_ℓ bases of eigenspaces, $\dim V_i = d_i$

• Invariance to change of basis in each eigenspace:

\[f(V_1Q_1, \ldots, V_\ell Q_\ell) = f(V_1, \ldots, V_\ell), \quad Q_i \in O(d_i) \]

invariant to $G = O(d_1) \times \ldots \times O(d_\ell)$

• Sign invariance: $f(\pm v_1, \ldots, \pm v_\ell) = f(v_1, \ldots, v_\ell)$
Multiple subspaces: representation

\[f(V_1Q_1, \ldots V_\ell Q_\ell) = f(V_1, \ldots, V_\ell), \quad Q_i \in O(d_i) \]

Decomposition Theorem
Under mild assumptions, every continuous \(f \) that is invariant to \(G_1 \times \ldots \times G_\ell \) can be written as:

\[f(x_1, \ldots, x_\ell) = \rho \left(\phi_1(x_1), \ldots, \phi_\ell(x_\ell) \right) \]

1. \(\phi_i \) is \(G_i \)-invariant
2. If \(d_i = d_j \) then can take \(\phi_i = \phi_j \)

- Only need to do \(G_i \) invariance for \(G_1 \times \ldots \times G_\ell \) invariance!!
- \(\Rightarrow \) Universal Approximation of invariant continuous functions.
Practical instantiations

\[f(x_1, \ldots, x_\ell) = \rho(\phi_1(x_1), \ldots, \phi_\ell(x_\ell)) \]

- **SignNet:** \(f(v_1, \ldots, v_\ell) = \rho(\phi(v_1) + \phi(-v_1), \ldots, \phi(v_\ell) + \phi(-v_\ell)) \)
 \(\phi, \rho: \) DeepSets, Transformer, or GNN

- **BasisNet:** \(f(V_1, \ldots, V_\ell) = \rho\left(\left[\phi_d(V_i V_i^\top)\right]_{i=1}^{\ell}\right) \)
 \(\phi_d = \text{IGN}_d \) order 2 (efficiency) or higher-order (universality)
 \(\rho = \text{MLP}, \text{DeepSets}, \text{Transformer} \)
Theoretical and empirical benefits

Lemma: There exist infinitely many pairs of graphs that BasisNet can distinguish, but spectral GNNs cannot.

Lemma: can approximate spectral graph invariants, e.g. graph angles
➔ can express **number of 3-, 4-, 5-cycles, connectivity, length-k closed walks.** Message passing GNNs cannot!

\[\phi = \text{GIN (Xu et al 2019)} \]
\[\rho = \text{Transformer (Vaswani et al)} \]
Texture reconstruction

- Neural fields on manifolds: eigenfunctions of Laplace-Beltrami operator as positional encodings

\[f(p) = \text{NN}(v_1(p), \ldots, v_k(p)) \]

Table 3: Test results for texture reconstruction experiment on cat and human models, following the experimental setting of (Koestler et al., 2022). We use 1023 eigenvectors of the cotangent Laplacian.

<table>
<thead>
<tr>
<th>Method</th>
<th>Params</th>
<th>Cat</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR ↑</td>
<td>DSSIM ↓</td>
<td>LPIPS ↓</td>
</tr>
<tr>
<td>Intrinsic NF</td>
<td>329k</td>
<td>34.25 .099</td>
<td>.189</td>
</tr>
<tr>
<td>Absolute value</td>
<td>329k</td>
<td>34.67 .106</td>
<td>.252</td>
</tr>
<tr>
<td>Sign flip</td>
<td>329k</td>
<td>23.15 1.28</td>
<td>2.35</td>
</tr>
<tr>
<td>SignNet</td>
<td>324k</td>
<td>34.91 .090</td>
<td>.147</td>
</tr>
</tbody>
</table>
Summary

• In many training settings, NN weights do not converge to a fixed point
• Statistical algorithmic stability implies generalization robustness of statistics on loss space
• Convergence of loss distribution predictive of generalization gap: dynamics information tells about generalization — in line with other works (e.g., Loukas et al 2021,..), but more generally applicable

• Learning with symmetries: many applications
• SignNet/BasisNet: generic neural network models on eigenvectors
• Improve expressive power of Graph Representation Learning (theory & practice)
Relevant papers
