

t_}.0 FadEZd

> Y 7 ^ /]Tb c - 0 .

H % m 👳 🕇 1} Z

banD? k;nihW

A5v1%z

dvs ny

οī (=%^

ONCE W

R:g D

/ | ~ X I

c [

~ S

e e

Pacific Northwest NATIONAL LABORATORY

A-CROGS Scalable, Efficient & Accelerated Causal Reasoning Operators, Graphs & Spikes for Earth & Embedded Systems

Multifidelity Deep Operator Networks

Amanda Howard

Mauro Perego, George Karniadakis, Panos Stinis

PNNL is operated by Battelle for the U.S. Department of Energy

General framework

fadEZd

iYc7^ /]Tb c-o.

H%mg+

banD?

k;nihW

f h 0 c[∖

P PNgE w

/ | ~ X I

Modified DeepONet: https://arxiv.org/abs/2110.01654

iY < 7 ^ ~ /]Tb

c-0. H%mg+

ba D? k;nihW = G a

ASV %Z

dvs ny

οī (=≈^⊧

/ | ~ X I

:**l**} Z(

Eu!o

One-dimensional jump function

$$y_L(u)(x) = \begin{cases} 0.5(6x-2)^2 \sin(u) + 10(x-0.5) - 5 & x \le 0.5 \\ 0.5(6x-2)^2 \sin(u) + 10(x-0.5) - 2 & x > 0.5 \end{cases}$$
$$y_H(u)(x) = 2y_L(u)(x) - 20x + 20$$
$$u = ax - 4$$

 $\mathcal{F}_{l}(u)(x) = 1.9479\mathcal{F}_{LF}(u)(x) - 19.1719x + 19.3459 - 0.04870x\mathcal{F}_{LF}(u)(x)$

Ice sheets: multiresolution

Pacific Northwest

t_}.0 FadEZd

D?

dvs ny:

οī (=≍^

o c[∖ iK l

P NgEw

R:g D

/ | ~ X I

Halfar dome ice sheet

QiZhi He, Mauro Perego, AAH, George Em Karniadakis, Panos Stinis, "A Hybrid Deep Neural Operator/Finite Element Method for Ice-Sheet Modeling" (2023) https://arxiv.org/pdf/2301.11402.pdf

Mono-layer higher-order (MOLHO) FEM code

.

Pacific Northwest

Ice sheets: multiresolution

Northwest NATIONAL LABORATORY

Pacific

FadEZd

iY 7^~ /]Tb

c-0.

ba D? k;nihW P = G

A5vj%z

3:dvs ny

οī (=≈^

0

iK l

°p; ⊘NgEw

R:g D

/ | ~ X I

c[

H%mg+ :1} Z

e e

Eu!o

C

Method	Mean MSE	Mean relative L2 error
Single fidelity, $N_H = 10$	0.15814	0.66923
Single fidelity, $N_H = 50$	0.00012	0.05074
Multifidelity	8.8973×10 ⁻⁵	0.04442

SF $N_{H} = 10 \text{ or } 50$
$MFN_L = 100$
$MF N_H = 10$
$M_L = P_L = 2 \times 15^2$
$M_H = P_H = 2 \mathrm{x} 41^2$

60000

Ice sheets: multiresolution

Pacific Northwest

t_}.0 FadEZd !]A Eu!

iY 7^~ /]Tb c-o.

H%mg+ :l} ZG

banD? k;nihW

A5vj%z

οι (=%^

f c[iK l

P; CNgEw

R:g D

/|~XI

e e

Multifidelity, $N_H = 10$

Ice sheets: multiorder

Two numerical models MOLHO – low fidelity

 10^{1}

10⁰

 10^{-1}

 10^{-2}

0

Humboldt glacier, Greenland

fadEZd

/]Tb

c - o .

ba D? k;nihW

dvs ny

οī (=≈^

iK l

P; CNgEw

R:g D

/ | ~ X I

h 0 ℃[\

a

H % m 👳 🕇

1} Z

Shallow Shelf Approximation-high fidelity

$$SF N_H = 20$$
$$MF N_L = 80$$
$$MF N_H = 20$$

Number of Iterations

/]Tb c - o .

H%mg+ :1} Z

f h 0 ℃[\

/|~XI

Mean relative L2 error

1.1005 0.3676

General framework

fadEZd

iY∈7^

/]Tb c-o.

banD?

k;nihW

f h 0 c[∖

P NgEw

/ | ~ X I

H%mg+

Modified DeepONet: https://arxiv.org/abs/2110.01654

ft_}.0
FadEZd

/]Tb c-o.

dvs ny

οī (=%^R

f c[iK l

P Ngew

R:g D

/ | ~ X I

Burgers equation

- Low fidelity simulations
- Physics enforced as high fidelity model

 $\frac{ds}{dt} + s\frac{ds}{dx} - \nu \frac{d^2s}{dx^2} = 0, \ (x, t)$ s(x, 0) = u(x),s(0, t) = s(1, t), $\frac{ds}{dx}(0, t) = \frac{ds}{dx}(1, t)$

Parameters	$\nu = 10^{-2}$	$\nu = 10^{-3}$	$\nu = 10^{-4}$	
	$N_{L} = 1000$	$N_L = 1000$	$N_{L} = 1000$	
Data-only	$1.02\% \pm 0.81\%$	$2.46\% \pm 1.67\%$	$7.64\% \pm 2.66\%$	
Data-only with noise	$4.44\% \pm 3.48\%$	$6.50\% \pm 3.45\%$	$10.63\% \pm 5.54\%$	
Physics-only	$3.97\% \pm 5.71\%$	$8.66\% \pm 6.47\%$	$23.63\%{\pm}10.22\%$	
Multifidelity	$2.81\% \pm 1.81\%$	$6.25\% \pm 2.20\%$	$7.05\% \pm 3.01\%$	
Multifidelity with noise	$2.89\% \pm 1.70\%$	$6.65\% \pm 2.48\%$	$7.03\% \pm 3.10\%$	

Table 2: Physics-informed multifidelity: viscous Burgers equation mean relative L_2 errors. The physics-only and multifidelity cases all use $N_H = 1000$. Note that the physics-only case does not use any low-fidelity data.

$$t) \in (0,1) \times (0,1]$$
$$x \in (0,1),$$
$$t \in (0,1),$$
$$t), t \in (0,1)$$

 $\nu = 10^{-4}$ $N_L = 200$ $13.57\% \pm 7.40\%$ $26.11\% \pm 15.38\%$

 $9.70\% \pm 4.60\%$ $10.16\% \pm 5.55\%$ The physics-only and delity data. $\nu = 10^{-4}$, $N_L = 200$ with noise

Pacific Northwest

0

t_}.0 FadEZd]A Eu!c

iY 7^~ /]Tb c-o.`

H%mg+ :l} ZG

ee ba D?

k;nihW

A5vj%z

3:dvs ny

οī (=≈^₽

; -≝ ≀ f●

P PNSE w

R:g D

/|~XI

c[

G

/]Tb c-o.

b∂∩D? <;nihW

ASV %z

dvs ny

οī (=≈^

0

.iK ¹_f●

P NgEw

R:g D

/ | ~ X I

c[

H%m ፸ ◀

Bootstrapping DeepONets

1) Train a single fidelity physics-informed DeepONet

iY < 7 ^ /]Tb c - 0 .

H%mg+

ba D? k;nihW

A5v1%z

h 0 ℃[\

N E W

/ | ~ X I

R:g D

:1} Z

Bootstrapping DeepONets

2) Train a non-composite multifidelity physics-informed DeepONet

 $\mathcal{N}\left(\mathcal{F}_{l}(u)(x) + \mathcal{F}_{nl}(u)(x)\right)$

Ene

Enc

 $u(x_1)$

Bootstrapping DeepONets

2) Train a non-composite multifidelity physics-informed DeepONet

ft_}.0
FadEZd

c 7 ' /]Tb c-o.

banD?

A5vj%z

H%mg+

iY 07 ^-/]Tb c - o .

H%mg+

banD? k;nihW

A5v1%z

:l} Z

e e

c[

Bootstrapping DeepONets

3) Train another non-composite multifidelity physics-informed DeepONet

t_}.0 FadEZd

D?

ASV %2

c[

Bootstrapping DeepONets

Bootstrapping DeepONet

Northwest

t_}.0 FadEZd !]A Eu!c9

Q

iY 7^~ /]Tb _______

H%mg+

b@ D? k;nihW # = G

A5vj%z

dvs ny

οī (=<u></u>*

0

c[

:l} Z

e e

19

Thank You

https://arxiv.org/pdf/2204.09157.pdf Amanda.Howard@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

This work is supported by the U.S. Department of Energy, Advanced Scientific Computing Research program, under the Scalable, Efficient and Accelerated Causal Reasoning Operators, Graphs and Spikes for Earth and Embedded Systems (SEA-CROGS) project (Project No. 80278), and the Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project (Project No. 72627). Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.

R6jC

dvs ny

R:g D

/ | ~ X I