Local approximation of operators

H. N. Mhaskar

Claremont Graduate University, Claremont, CA hrushikesh.mhaskar@cgu.edu

ICERM Workshop:Mathematical and Scientific Machine Learning June 7, 2023

Problem statement

$\mathfrak{X}, \mathfrak{Y}:$ Metric spaces
$K_{\mathfrak{X}}$: Compact subset of \mathfrak{X}
$\mathcal{F}: K_{\mathfrak{X}} \rightarrow \mathfrak{Y}$: continuous function, with some smoothness to be explored.

Goal:

Given a finite amount of information about \mathcal{F},

- find efficient methods to approximate \mathcal{F}
- estimate the degree of approximation.

An existence theorem ${ }^{1}$

Let σ be an activation function admitting universal approximation, X Banach space, $K_{1} \subset X, K_{2} \subset \mathbb{R}^{q}$ compact, $\mathfrak{F}: C\left(K_{1}\right) \rightarrow C\left(K_{2}\right)$. Then, for $\epsilon>0, f \in C\left(K_{1}\right)$, there exists a network of the form

$$
\mathfrak{G}(f)(y)=\sum_{k=1}^{N} \underbrace{\sum_{j=1}^{\mathcal{M}} c_{j, k} \sigma\left(\sum_{\ell=1}^{M} \xi_{j, k, \ell} f\left(x_{\ell}\right)+\theta_{j, k}\right)}_{\text {branch }} \underbrace{\sigma\left(\omega_{k} \cdot y+\zeta_{k}\right)}_{\text {trunk }}
$$

such that

$$
|\mathfrak{F}(f)(y)-\mathfrak{G}(f)(y)| \leq \epsilon, \quad y \in K_{2}
$$

Observations

- This is an existence theorem only.
- Requires values f as input
- Does the whole approximation in one stroke
- Might not be always a good idea.
- Degree of approximation with constructions were also known ${ }^{2}$

Problem reduction

They don't see me either!

[^0]
Problem reduction

Prima facie complexity: $d N m$.

Problem reduction

$\mathcal{F}: \mathfrak{X} \rightarrow \mathfrak{Y}, \mathcal{F}\left(K_{\mathfrak{X}}\right) \subset K_{\mathfrak{Y}}$.

$$
\mathcal{I}_{d, \mathfrak{X}}: \mathfrak{X} \rightarrow \mathbb{R}^{d}, \quad \mathcal{A}_{d, \mathfrak{X}}: \mathbb{R}^{d} \rightarrow \mathfrak{X},
$$

$\max _{F \in K_{\mathfrak{X}}} \rho_{\mathfrak{X}}\left(F, \mathcal{A}_{d, \mathfrak{X}}\left(\mathcal{I}_{d, \mathfrak{X}}(F)\right)\right) \lesssim \operatorname{width}_{d}\left(K_{\mathfrak{X}}, \mathfrak{X}\right)$. Hope!

$$
\mathcal{I}_{m, \mathfrak{Y})}: \mathfrak{Y} \rightarrow \mathbb{R}^{m}, \quad \mathcal{A}_{m, \mathfrak{Y}}: \mathbb{R}^{m} \rightarrow \mathfrak{Y},
$$

$\max _{F \in K_{\mathfrak{Y}}} \rho_{\mathfrak{Y}}\left(\mathcal{F}(F), \mathcal{A}_{m, \mathfrak{Y}}\left(\mathcal{I}_{m, \mathfrak{Y}}(\mathcal{F}(F))\right)\right) \lesssim \operatorname{width}_{m}\left(K_{\mathfrak{Y}}, \mathfrak{Y}\right) \quad$ Hope again!
Approximate the function $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, \mathbf{f}\left(\mathcal{I}_{d, \mathfrak{x}}(F)\right)=\mathcal{I}_{m, \mathfrak{Y}}(\mathcal{F}(F))$.

1. Example ${ }^{3}$

[^1]
Frame operator

Let $h: \mathbb{R} \rightarrow[0,1]$ be infinitely often differentiable even function, nonincreasing on $[0, \infty), h(t)=1$ if $|t| \leq 1 / 2, h(t)=0$ if $|t| \geq 1$. Let

$$
\begin{gathered}
g(t)=\sqrt{h(t)-h(2 t)}, \\
\Psi_{j}^{*}(x)=\sum_{k} g\left(\frac{|k|}{2^{j}}\right) \exp (i k x) \in \mathbb{H}_{2^{j}-1}, j \geq 1, \\
\Psi_{0}^{*}(x)=1 . \\
\tau_{j}^{*}(f, x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \Psi_{j}^{*}(x-t) d t \\
x_{j, k}=\frac{2 \pi k}{2^{j+1}}, \quad c_{j, k}(f)=\tau_{j}^{*}\left(f, x_{j, k}\right)=\sum_{\ell} g\left(\frac{|\ell|}{2^{j}}\right) \hat{f}(\ell) \exp \left(i \ell x_{j, k}\right) .
\end{gathered}
$$

Wavelet-like expansion

Let $f \in C^{*}$. Then for $x \in[-\pi, \pi]$,

$$
f(x)=\sum_{j=0}^{\infty} 2^{-j-1} \sum_{k=0}^{2^{j+1}-1} c_{j, k}(f) \Psi_{j}^{*}\left(x-x_{j, k}\right)
$$

where the series converges uniformly. We have

$$
\sum_{j=0}^{\infty} 2^{-j-1} \sum_{k=0}^{2^{j+1}-1}\left|c_{j, k}(f)\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{2} d t
$$

Characterization of smoothness

$\gamma=r+\alpha, r \geq 0$ integer, $0<\alpha \leq 1$.
$f \in W_{\gamma}$ if f has r continuous derivatives and

$$
\sup _{x \in[-\pi, \pi]}|f(x+h)+f(x-h)-2 f(x)|=\mathcal{O}\left(|h|^{\alpha}\right)
$$

$f \in W_{\gamma}\left(x_{0}\right)$ if there is $I \ni x_{0}$ such that for every $\phi \in C^{\infty}(\mathbb{T})$, supported on I, $\phi f \in W_{\gamma}$.

Characterization of smoothness

$f \in W_{\gamma}$ if and only if

$$
\max _{0 \leq k \leq 2^{j+1}}\left|c_{j, k}(f)\right|=\mathcal{O}\left(2^{-j \gamma}\right)
$$

Let $x_{0} \in[-\pi, \pi], \gamma>0, f \in C^{*}$. We have $f \in W_{\gamma}\left(x_{0}\right)$ if and only if there is a nondegenerate interval $I \ni x_{0}$ such that

$$
\max _{x_{j, k} \in I}\left|c_{j, k}(f)\right|=\mathcal{O}\left(2^{-j \gamma}\right)
$$

Remark: Similar theorems are known for general manifolds ${ }^{4}$.

Encoder/decoder

$$
\mathfrak{F}: C(\mathbb{T}) \rightarrow C(\mathbb{T}), d=2^{n}, m=2^{L}
$$

- Information on $F \in C(\mathbb{T}):\{\hat{F}(\ell)\}_{|\ell|<2^{n}}$

$$
\mathcal{I}_{d, C(\mathbb{T})}=\left\{c_{j, k}(F)\right\}_{k=0, \cdots, 2^{j+1}-1, j=0, \cdots, 2^{n}}
$$

- Approximate

$$
\left\{c_{j, k}(\mathfrak{F}(F))\right\}_{k=0, \cdots, 2^{j+1}-1, j=0, \cdots, 2^{L}}
$$

- Reconstruct

$$
\sum_{j=0}^{L} 2^{-j-1} \sum_{k=0}^{2^{j+1}-1} c_{j, k}(\mathfrak{F}(F)) \Psi_{j}^{*}\left(x-x_{j, k}\right), \quad x_{j, k}=\frac{2 \pi k}{2^{j+1}}
$$

Problems in general theory

d, m, and the complexity of approximation need all to be large.
Solutions

- Assume extra smoothness on f. (Caution: the dependence on d).
- Local approximation
- Use only values in a small neighborhood of F to approximate $\mathcal{F}(F)$ (Distributed learning)
- The approximation should adjust automatically to the local smoothness of \mathbf{f}.

Conversion to the sphere

$$
\mathbb{S}^{d}=\left\{\mathbf{x} \in \mathbb{R}^{d+1}:|\mathbf{x}|_{d+1}=1\right\}, \quad \mathbb{S}_{+}^{d}=\left\{\mathbf{x} \in \mathbb{S}^{d}: x_{d+1}>0\right\}
$$

Coordinate chart for \mathbb{S}_{+}^{d} :

$$
\begin{aligned}
& \pi^{*}\left(x_{1}, \cdots, x_{d}\right) \\
& \quad=\left(x_{1}, \cdots, x_{d}, 1\right)\left(1+|\mathbf{x}|^{2}\right)^{-1 / 2}
\end{aligned}
$$

Focus on approximation of $f: \mathbb{S}^{d} \rightarrow \mathbb{R}$.

Ingredients

- Jacobi and spherical polynomials
- Definition of smoothness
- Quadrature formula
- Kernels

Notation

$\mu_{d}^{*}=$ volume measure on $\mathbb{S}^{d}, \mu_{d}^{*}\left(\mathbb{S}^{d}\right)=1, \omega_{d}=$ volume of \mathbb{S}^{d}.
$\Pi_{n}^{d}=$ set of spherical polynomials of degree $<n$ (restrictions to \mathbb{S}^{d} of $(d+1)$-variate polynomials of total degree $<n)$. Jacobi polynomials $p_{\ell}^{(\alpha, \beta)}$ univariate polynomial of degree $=\ell$,

$$
\begin{gathered}
\int_{-1}^{1} p_{\ell}^{(\alpha, \beta)}(x) p_{j}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x=\delta_{\ell, j} \\
K_{d ; n}(x)=\frac{2 \sqrt{\pi} \Gamma((d+2) / 2)}{\Gamma((d+1) / 2)(2 n+d-2)} p_{n-1}^{(d / 2, d / 2-1)}(1) p_{n-1}^{(d / 2, d / 2-1)}(x) \\
P(\mathbf{x})=\int_{\mathbb{S}^{d}} P(\mathbf{y}) K_{d ; n}(\mathbf{x} \cdot \mathbf{y}) d \mu_{d}^{*}(\mathbf{y}), \quad P \in \Pi_{n}^{d}
\end{gathered}
$$

Smoothness classes

Lipschitz condition:

$$
|f(\mathbf{y})-f(\mathbf{x})| \leq c|\mathbf{y}-\mathbf{x}|_{d+1}
$$

i.e.,

$$
\max _{\mathbf{y} \in \mathbb{S}^{d}} \frac{|f(\mathbf{y})-f(\mathbf{x})|}{|\mathbf{y}-\mathbf{x}|_{d+1}}<\infty
$$

Treating $f(\mathbf{x}) \in \Pi_{1}^{d}$ (constant functions),

$$
\min _{P \in \Pi_{1}^{d}} \max _{\mathbf{y} \in \mathbb{S}^{d}} \frac{|f(\mathbf{y})-P(\mathbf{y})|}{|\mathbf{y}-\mathbf{x}|_{d+1}}<\infty .
$$

Smoothness classes

Let $f \in C\left(\mathbb{S}^{d}\right), r>0$ and $\mathbf{x} \in \mathbb{S}^{d}$. The function f is said to be r-smooth at \mathbf{x} if there exists $\delta=\delta(d ; f, \mathbf{x})>0$ such that

$$
\begin{gathered}
\|f\|_{d ; r, \mathbf{x}}:=\|f\|_{\infty}+\min _{P \in \Pi_{r}^{d}} \max _{\mathbf{y} \in \mathbb{B}(\mathbf{x}, \delta)} \frac{|f(\mathbf{y})-P(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|_{d+1}^{r}}<\infty . \\
\|f\|_{d ; r}=\sup _{\mathbf{x} \in \mathbb{S}^{d}}\|f\|_{d ; r, \mathbf{x}}<\infty . \\
W_{d ; r, \mathbf{x}}=\left\{f \in C\left(\mathbb{S}^{d}\right):\|f\|_{d ; r, \mathbf{x}}<\infty\right\}, \quad W_{d ; r}=\left\{f \in C\left(\mathbb{S}^{d}\right):\|f\|_{d ; r}<\infty\right\} .
\end{gathered}
$$

Smoothness classes

Let $f:[-1,1] \rightarrow \mathbb{C}$. Then f has an analytic extension to $\left\{z \in \mathbb{C}:\left|z+\sqrt{z^{2}-1}\right|<e^{\rho}\right\}$ if and only if

$$
\limsup _{n \rightarrow \infty}\left\{\min _{P \in \Pi_{n}}\|f-P\|_{\infty,[-1,1]}\right\}^{1 / n}=e^{-\rho}<1
$$

Smoothness classes

Let $f \in C\left(\mathbb{S}^{d}\right), \mathbf{x} \in \mathbb{S}^{d}, \rho>0$. The function f is said to be ρ-analytic at x if there is exists $\delta=\delta(d ; f, \mathbf{x})>0$ such that

$$
\begin{gathered}
\|f\|_{A_{d ; \rho, \mathbf{x}}}=\|f\|_{\infty}+\sup _{n \geq 0}\left\{\exp (\rho n) \min _{P \in \Pi_{n}^{d}}\|f-P\|_{\infty, \mathbb{B}(\mathbf{x}, \delta)}\right\}<\infty . \\
A_{d ; \rho, \mathbf{x}}=\left\{f \in C\left(\mathbb{S}^{d}\right):\|f\|_{A_{d ; \rho, \mathbf{x}}}<\infty .\right\} \\
\|f\|_{A_{d ; \rho}}=\|f\|_{\infty}+\sup _{n>0}\left\{\exp (\rho n) E_{d ; n}(f)\right\} \\
A_{d ; \rho}=\left\{f \in C\left(\mathbb{S}^{d}\right):\|f\|_{A_{d ; \rho}}<\infty\right\} .
\end{gathered}
$$

MZ quadrature formula

Let $n \geq 1$. A measure ν on \mathbb{S}^{d} is called Marcinkiewicz-Zygmund quadrature measure of order $n(\nu \in \operatorname{MZQ}(d ; n))$ if

$$
\int_{\mathbb{S}^{d}} P d \nu=\int_{\mathbb{S}^{d}} P d \mu_{d}^{*}, \quad P \in \Pi_{n}^{d}
$$

and

$$
\int_{\mathbb{S}^{d}}|P|^{2} d|\nu| \leq\|\nu\|_{d ; n} \int_{\mathbb{S}^{d}}|P|^{2} d \mu_{d}^{*}, \quad P \in \Pi_{n / 2}^{d}
$$

MZ quadrature formula

Let $\mathcal{C} \subset \mathbb{S}^{d}$. There exists $C=C(d)$ such that if

$$
\delta(\mathcal{C})=\max _{\mathbf{x} \in \mathbb{S}^{d}} \min _{\mathbf{y} \in \mathcal{C}} \rho(\mathbf{x}, \mathbf{y}) \leq C / n
$$

then there exists ${ }^{5} \mathrm{a} \nu \in \operatorname{MZQ}(d ; n)$ supported on \mathcal{C}.

[^2]
Tchakaloff's theorem

Let $n \geq 1$. There exist positive numbers w_{k}, and points \mathbf{y}_{k}, $k=1, \cdots, \operatorname{dim}\left(\Pi_{n}^{d}\right)$, such that

$$
\sum_{k=1}^{\operatorname{dim}\left(\Pi_{n}^{d}\right)} w_{k} P\left(\mathbf{y}_{k}\right)=\int_{\mathbb{S}^{d}} P(\mathbf{y}) d \mu_{d}^{*}(\mathbf{y}), \quad P \in \Pi_{n}^{d}
$$

Remark. If ν_{n}^{*} is the measure associating the mass w_{k} with \mathbf{y}_{k}, then $\nu_{n}^{*} \in \operatorname{MZQ}(d ; n)$.

Kernel

$$
\begin{gathered}
\Phi_{d ; n, r}(x)=K_{d ;(d+2) n}(x) \frac{p_{d n}^{(d / 2+r, d / 2-2)}(x)}{p_{d n}^{(d / 2+r, d / 2-2)}(1)}\left(\frac{1+x}{2}\right)^{n} . \\
\sigma_{d ; n, r}(\nu, f)(\mathbf{x})=\int_{\mathbb{S}^{d}} f(\mathbf{y}) \Phi_{d ; n, r}(\mathbf{x} \cdot \mathbf{y}) d \nu(\mathbf{y})
\end{gathered}
$$

Remark:

- The measure ν depends only on the locations at which f is sampled, not f itself. It is a pre-computation.
- The construction is universal approximation; defined for all f, without requiring prior assumptions on smoothness of f.

Kernel

$$
\begin{gathered}
\Phi_{d ; n, r}(x)=K_{d ;(d+2) n}(x) \frac{p_{d n}^{(d / 2+r, d / 2-2)}(x)}{p_{d n}^{(d / 2+r, d / 2-2)}(1)}\left(\frac{1+x}{2}\right)^{n} . \\
\sigma_{d ; n, r}(\nu, f)(\mathbf{x})=\int_{\mathbb{S}^{d}} f(\mathbf{y}) \Phi_{d ; n, r}(\mathbf{x} \cdot \mathbf{y}) d \nu(\mathbf{y}) \\
E_{d ; n}(f)=\min _{P \in \Pi_{n}^{d}}\|f-P\|_{\infty}
\end{gathered}
$$

Theorem

If $\nu \in \operatorname{MZQ}(d ; 2(d+2) n)$, then for $f \in C\left(\mathbb{S}^{d}\right)$,

$$
E_{d ; 2(d+2) n}(f) \leq\left\|f-\sigma_{d ; n, r}(\nu ; f)\right\|_{\infty} \lesssim d^{1 / 6}\|\nu\|_{d ; 2(d+2) n} E_{d ; n}(f)
$$

Local approximation

Let $d \geq 4, \mathbf{x} \in \mathbb{S}^{d}, r=r(\mathbf{x})>0$, and $f \in W_{d ; r, \mathbf{x}}$. Let $n d \geq(d+r+1)^{2}$, $\nu \in \operatorname{MZQ}(d ; 2(d+2) n)$. If n is large enough so that

$$
\delta_{n}=\sqrt{\frac{16 r \log n}{n}} \leq \delta(d ; f, \mathbf{x})
$$

then

Moreover,

$$
\left|f(\mathbf{x})-\int_{\mathbb{B}\left(x, \delta_{n}\right)} \Phi_{d ; n, r}(\mathbf{x} \cdot \mathbf{y}) f(\mathbf{y}) d \nu(\mathbf{y})\right| \lesssim \frac{d^{1 / 6}\|f\|_{W_{d ; r, \mathbf{x}}\|\nu\|_{d ; 2(d+2) n}}^{\operatorname{dim}\left(\Pi_{2(d+2) n}^{d}\right)^{r / d}} .}{\text {. }}
$$

Local approximation

Let $d \geq 4, r \geq 0, n d \geq(d+r+1)^{2}, \nu \in \operatorname{MZQ}(d ; 2(d+2) n)$. If $\mathbf{x} \in \mathbb{S}^{d}$, $f \in A_{d ; \rho, \mathbf{x}}$, and $\delta=\delta(d ; f, \mathbf{x})$ (as in definition of $\left.A_{d ; \rho, \mathbf{x}}\right)$. Then with

$$
\Delta=\min \left(\rho, \delta^{2} / 4-2 \log (4 / \delta)\right)
$$

$$
\left|f(\mathbf{x})-\sigma_{d ; n, r}(\nu ; f)(\mathbf{x})\right| \lesssim d^{1 / 6} \exp (-n \Delta)\|f\|_{A_{d ; p, \mathbf{x}}}\|\nu\|_{2(d+2) n},
$$

and

$$
\begin{aligned}
\mid f(\mathbf{x})-\int_{\mathbb{B}(\mathbf{x}, \delta(d ; f, \mathbf{x}))} & \Phi_{d ; n, r}(\mathbf{x} \cdot \mathbf{y}) f(\mathbf{y}) d \nu(\mathbf{y}) \mid \\
& \lesssim d^{1 / 6} \exp (-n \Delta)\|f\|_{A_{d ; \rho, \mathbf{x}}}\|\nu\|_{2(d+2) n}
\end{aligned}
$$

From polynomials to networks

$\phi:[-1,1] \rightarrow \mathbb{R}, \phi(t) \sim \sum_{\ell=0}^{\infty} \hat{\phi}(\ell) p_{\ell}^{(d / 2-1, d / 2-1)}(1) p_{\ell}^{(d / 2-1, d / 2-1)}(t)$.
Any $P \in \Pi_{n}^{d}$ (with degree n) can be exptessed in the form
$P(\mathbf{x})=\sum_{\ell=0}^{n} P_{\ell}(\mathbf{x})$, where P_{ℓ} is homogeneous, harmonic polynomial of total degree ℓ.
Let

$$
\mathcal{D}_{\phi}(P)(\mathbf{x})=\sum_{\ell=0}^{n} \hat{\phi}(\ell)^{-1} P_{\ell}(\mathbf{x})
$$

Then

$$
P(\mathbf{x})=\int_{\mathbb{S}^{d}} \phi(\mathbf{x} \cdot \mathbf{z}) \mathcal{D}_{\phi}(P)(\mathbf{z}) d \mu_{d}^{*}(\mathbf{z})
$$

From polynomials to networks

$$
\Phi_{d ; n, r}(\mathbf{x} \cdot \mathbf{y})=\int_{\mathbb{S}^{d}} \phi(\mathbf{x} \cdot \mathbf{z}) \mathcal{D}_{\phi}\left(\Phi_{d ; n, r}(\circ, \mathbf{y})\right)(\mathbf{z}) d \mu_{d}^{*}(\mathbf{z})
$$

Discretization leads to a (pre-fabricated) zonal function network of the form $\sum_{k} a_{k}(\mathbf{y}) \phi\left(\mathbf{x} \cdot \mathbf{z}_{k}\right)$, where ${ }^{6}$

- \mathbf{z}_{k} are fixed independent of \mathbf{x},
- a_{k} are pre-computed functions of y
- The size of the network $\sim \operatorname{dim}\left(\Pi_{n}^{d}\right)$.
- No training is required.

TINN for PINN?

[^3]Thank you.

[^0]: ${ }^{3}$ https://imgs.xkcd.com/comics/purity.png

[^1]: ${ }^{3}$ Mhaskar, Prestin 2000, 2005, Mhaskar, Nevai, Shvarts, 2013,Mhaskar, 2020

[^2]: ${ }^{5}$ Mhaskar, Narcowich, Ward, 2001, Filbir, Mhaskar, 2011

[^3]: ${ }^{6}$ Mhaskar, Narcowich, Ward, 1999, Mhaskar, 2006, 2010, 2019, 2020, 2020

