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Setup: Inverse Problems

Given: data capturing physics laws

• high-fidelity model
• expensive
• compute-intensive
• observational

Goal: recover model that describes data while
preserving underlying physics laws
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Preserving Physics in Machine Learning Models

Black Box NN learn model through data exclusively

Physics-Informed NN learn model close to physics through penalty

Structure-Preserving NN learn model that preserves physics exactly 

min
𝜉

𝑁𝑁𝜉 − 𝑢𝑑𝑎𝑡𝑎 2

2

min
𝜉

𝑁𝑁𝜉 − 𝑢𝑑𝑎𝑡𝑎 2

2
+ 𝜆 ‖𝑳 𝑁𝑁𝜉 − 𝒇‖2

2

min
𝜉

𝑁𝑁𝜉 − 𝑢𝑑𝑎𝑡𝑎 2

2
such that 𝑳 NN𝜉 = 𝒇

“Learn from 
data”

“Solve from 
physics”
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Why Learn a Chain Complex?

Guarantee physics constraints

Divergence-free, gauge-free constraints appear naturally in homology of chain complex 

Learn new metrics

Chain complexes can be built for any manifold, with bespoke metric information

Build with mesh-free construction

Build k-forms using Whitney Forms

Construct with exact integration

Avoid variational crimes due to collocation, quadrature, etc.
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Example of a Chain Complex

The de Rham complex encodes how exterior calculus relates volumes to boundary fluxes.

Stokes’ Theorem Exact Sequence Property

න
Ω

𝛻 ⋅ 𝒖 = න
𝜕Ω

𝒖 ⋅ 𝑛 𝛻 × 𝛻𝑢 = 0
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Example of a Chain Complex

The de Rham complex encodes how exterior calculus relates volumes to boundary fluxes.

Stokes’ Theorem Exact Sequence Property

න
Ω

𝛿0
∗𝒖 = න

𝜕Ω

𝒖 ⋅ 𝑛 𝛿1 ∘ 𝛿0 = 0
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Learning a Chain Complex

Need to define and parameterize:

 (discrete) spaces of k-forms 𝐶0, 𝐶1, … , 𝐶𝑘

 differentials in chain complex 𝛿0, 𝛿1, … , 𝛿𝑘
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Defining k-forms

Build a partition of unity 𝜓𝑖 𝑖=1,…,𝑁 parameterized by trainable 

parameters 𝜃𝑗 𝑗=1,…,𝑀

A partition of unity (POU) maintains the following characteristics:

1. 0 ≤ 𝜓𝑖 𝑥 ≤ 1 for every point 𝑥 ∈ Ω

2. σ𝑖𝜓𝑖 = 1

Examples: softmax, probability distributions, B-splines
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Defining our Partition of Unity

1. Define fine-scale trainable spline knots 𝑡𝑘 𝑘=1,…,𝐾

2. Define B1-splines 𝜓𝑘 𝑥 =

𝑥 − 𝑡𝑘−1

𝑡𝑘 − 𝑡𝑘−1
if 𝑥 ∈ [𝑡𝑘−1, 𝑡𝑘]

1 −
𝑥 − 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘
if 𝑥 ∈ [𝑡𝑘 , 𝑡𝑘+1]

0 else

3. Define trainable convex combination matrix 𝑊 ∈ ℝ𝐾×𝑁, constrained so that 

0 ≤ 𝑊𝑘,𝑛 ≤ 1 ∀ 𝑘, 𝑛



𝑛

𝑊𝑘,𝑛 = 1 ∀ 𝑘

4. Define POU functions 𝜓𝑖 𝑥 = σ𝑘𝑊𝑘,𝑖
𝜓𝑘 𝑥
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An Illustration

𝑉𝐷
0

𝑉0
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Defining Whitney k-forms

Define each space of k-forms 𝐶𝑘:

 𝐶0 = span 𝜓𝑖 𝑖=1,…,𝑁 = our POUs

 𝐶1 = span 𝜓𝑖𝑗 = 𝜓𝑖𝛻𝜓𝑗 − 𝜓𝑗𝛻𝜓𝑖 𝑖,𝑗=1,…,𝑁

 𝐶𝑘 = span 𝜓𝑗0,𝑗1,…,𝑗𝑘
𝑘

𝑗0,𝑗1,…,𝑗𝑘=1,…,𝑁

By construction, ∀𝜓𝑖 ∈ 𝐶0, 𝛻𝜓𝑖 ∈ 𝐶1, i.e. our spaces are compatible.

𝜓𝑗0,𝑗1,…,𝑗𝑘
𝑘 = 𝑘!

𝑖=0

𝑘

−1 𝑖 𝜓𝑗𝑖 d𝜓𝑗0 ∧ ⋯∧ d𝜓𝑗𝑖−1 ∧ d𝜓𝑗𝑖+1 ∧ ⋯∧ d𝜓𝑗𝑘
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An Illustration

𝜓𝑖𝑗 = 𝜓𝑖𝛻𝜓𝑗 − 𝜓𝑗𝛻𝜓𝑖

Using 0-forms from 
earlier,
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Defining Metricized Exterior Derivatives

Initial 𝛿𝑘 is the corresponding discrete exterior calculus operator on a complete graph

DIV 𝜓𝑖𝑗 = 𝛿0
∗𝜓𝑖𝑗 = 𝜓𝑗 − 𝜓𝑖

New 𝛿𝑘 warps DEC operator by multiplying on left and right with positive diagonal 
trainable metric tensors 𝑩𝒌, 𝑫𝒌:
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Building Exact Physics FEEC System

Finite dimensional variational problem
Find 𝑝 = σ𝑖 𝑝𝑖𝜓𝑖 and 𝑭 = σ𝑖𝑗 𝐹𝑖𝑗𝜓𝑖𝑗 such that ∀ 𝜓𝑎 ∈ 𝐶0

0, 𝜓𝑎𝑏 ∈ 𝐶1,

(𝑭, 𝜓𝑎𝑏) − (𝛻𝑝, 𝜓𝑎𝑏)

− 𝑭, 𝛻𝜓𝑎

=

=

𝛻𝑔𝐷 , 𝜓𝑎𝑏

𝑓, 𝑞 + 𝑔𝑁, 𝑞 Γ𝑁

Strong form
Find 𝑝, 𝑭 ∈ 𝐶0 × 𝐶1 such that

𝑭 − 𝛻𝑝

𝛻 ⋅ 𝑭

=

=

𝟎 in Ω

𝑓 in Ω
𝑭 ⋅ 𝑛 = 𝑔𝑁 on Γ𝑁

𝑝 = 𝑔𝐷 on Γ𝐷
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Building Exact Physics FEEC System

Introduce metrics
Change metrics for exterior derivatives

Learnable system
Solve the new linear system

Discrete System
Solve the linear system or equivalent system 



16

Building Exact Physics FEEC System

Machine learning FEEC problem
Solve the optimization problem

min
POU parameters 𝜽,
metrics 𝐷0,𝐷1,𝐵0,𝐵1

𝑝data −

𝑖

𝑝𝑖𝜓𝑖

2

2

+ 𝐹data −

𝑖𝑗

𝐹𝑖𝑗𝜓𝑖𝑗

2

2

such that

Structure-Preserving NN learn model that preserves physics exactly 

min
𝜉

𝑁𝑁𝜉 − 𝑢𝑑𝑎𝑡𝑎 2

2
such that 𝑳 NN𝜉 = 𝒇
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Examples
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Problem 2
Battery Problem

𝑓 = 0
Γ𝐷 = 𝜕Ω
𝑔𝐷 = 1 − 𝑥

Examples 1&2: Mixed-Formulation Poisson Problems

Problem Statement
Find 𝑝, 𝑭 ∈ 𝐶0 × 𝐶1 such that

𝑭 − 𝛻𝑝

𝛻 ⋅ (𝜅 𝑭)

=

=

𝟎 in Ω

𝑓 in Ω

𝑭 ⋅ 𝑛
𝑝
=
=
𝑔𝑁 on Γ𝑁
𝑔𝐷 on Γ𝐷

Problem 1
Five Strip Problem

𝑓 = 0
Γ𝑁 = 𝜕Ω

𝑔𝑁 = ቐ
−1 𝑥 = 0
1 𝑥 = 1
0 𝑦 = 0,1

Battery data courtesy of Scott Roberts, 01513
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Example 1: Five Strip Problem

True Solution

𝑝 𝑥, 𝑦 = 𝛽𝑖 𝑥 for each strip 𝑖

𝑭 𝑥, 𝑦 =
1
0

Generate 𝑝𝑑𝑎𝑡𝑎, 𝐹𝑑𝑎𝑡𝑎 from true solution
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Example 2: Battery Problem

FEM simulation with ARIA

Mesh: 5.89 M nodes
11.8 M elements

Solve: 5.89 M DoF

ML chain complex model

POUs: 8 interior POUs
8 boundary POUs

Solve: 264 DoF
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Example 3: Drift-Diffusion Equations

Problem Statement

Find 𝜙, 𝑛, 𝑝, 𝑱𝜙 , 𝑱𝒏, 𝑱𝒑 ∈ 𝐶0
3
× 𝐶1 3

such that

𝑱𝜙 −𝛻𝜙 = 𝟎 in Ω

𝑱𝒏 + 𝛻𝑛 − 𝑛 𝑱𝜙 = 𝟎 in Ω

𝑱𝒑 + 𝛻𝑝 + 𝑝 𝑱𝜙 = 𝟎 in Ω

− 𝛻 ⋅ 𝑱𝜙 + 𝑛 − 𝑝 = 𝑓𝜙 in Ω

− 𝛻 ⋅ 𝑱𝒏 + 𝑅(𝑛, 𝑝) = 𝟎 in Ω
− 𝛻 ⋅ 𝑱𝒑 − 𝑅(𝑛, 𝑝) = 𝟎 in Ω

where   𝑅 𝑛, 𝑝 =
𝑛𝑝 − 𝛼0

𝛽0 𝑛+𝑝 +𝛽1
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ML Formulation

Machine learning FEEC problem
Solve the nonlinear-constrained optimization problem

min
POU parameters 𝜽,
metrics 𝑫s, 𝑩s

𝜙data − σ𝑖𝜙𝑖𝜓𝑖 2

2
+ 𝑛data − σ𝑖 𝑛𝑖𝜓𝑖 2

2
+ 𝑝data − σ𝑖 𝑝𝑖𝜓𝑖 2

2
+

𝑱𝜙data
− σ𝑖𝑗 𝑱𝜙𝑖𝑗

𝜓𝑖𝑗
2

2
+ 𝑱𝑛data − σ𝑖𝑗 𝑱𝑛𝑖𝑗𝜓𝑖𝑗

2

2
+ 𝑱𝑝data −

σ𝑖𝑗 𝑱𝑝𝑖𝑗𝜓𝑖𝑗
2

2

such that 𝑭 𝜙, 𝑛, 𝑝, 𝑱𝜙, 𝑱𝑛, 𝑱𝑝 = 𝟎
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Example 3: Drift-Diffusion Equations

• Solution changes 
nonlinearly as we vary 
𝒇𝝓 voltage across the 

transistor

• Measure current
(𝑱𝑛 − 𝑱𝑝) ⋅ 𝑛 at boundary

Because model captures 
the nonlinearity exactly, 
we can extrapolate across 
a range of voltages!

𝑓𝜙

cu
rr

e
n

t

Trained to fit 
𝑓𝜙 = 0.9

Extrapolates for
𝟎. 𝟐 < 𝒇𝝓 < 𝟏. 𝟎
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Conclusion: Structure Preservation By Construction

Structure-preserving ML by learning a chain complex preserves physics 
invariants while learning parameters, coefficients, metric information.

Learning a chain complex guarantees:
 Generalized Stokes’s Theorem

 Compatibility: 𝛿𝑘+1𝜓𝑖 ∈ 𝐶𝑘+1

 Exactness of the chain complex: 𝛿𝑘+1 ∘ 𝛿𝑘 = 0

Our POU construction guarantees:
 Exact integration: no quadrature necessary, avoid variational crimes

 Adaptive parameterization: training focuses on areas that need refinement within data
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