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Solving PDEs and inverse problems

Focus of this talk: fast algorithms for the methodology
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Computations in GPs and Kernel Methods

Dense kernel matrices: for example
0 = k(X,X)

where X = {x1,...,x,} C R? and k(X, X) € R"*"
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where X = {x1,...,x,} C R? and k(X, X) € R"*"

Derivative entries, e.g., Axk arise naturally in PDE problems
where we have derivative information

€.g., [Chen, Hosseni, Owhadi, Stuart 2021]

Cubic bottleneck O(N?): © is a dense matrix
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Fast Algorithms

Many approximate methods:

® Nystrom approximation, inducing points, sparse GPs, random
features, covariance tapering, divide-and-conquer, structured
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Fast Algorithms

Many approximate methods:

® Nystrom approximation, inducing points, sparse GPs, random
features, covariance tapering, divide-and-conquer, structured
kernel interpolation, hierarchical matrices, wavelets based
methods, sparse Cholesky factorization ...

® Based on low-rank/sparse ideas and their multiscale variants

® Mostly developed when there is no derivatives of &

The goal: advance methods for kernel matrices with derivatives

A new approach [Chen, Owhadi, Schifer 2023]

A provable near-linear complexity algorithm
even when there are derivatives of &
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Warm-up: Nystrom Approximation
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* O~ ONuO; Y OmN, with complexity O(NM?)
e Applied to kernel matrices with derivatives [Eriksson, Dong, Lee,
Bindel 2018], [Yang, Li, Rana, Gupta, Venkatesh 2018], [Meng, Yang 2022]

Nevertheless, for high accuracy in scientific/PDE problems,
low rank approximation may not be enough
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Increase the Rank = Full Cholesky Factorization
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* Not computationally affordable: complexity O(N?3) again

= Approach: Sparse Cholesky factorization
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Sketch of the Result

[Chen, Owhadi, Schafer 2023]

For © with derivative entries, we present a sparse Cholesky
factorization algorithm with the state-of-the-art complexity

* O(Nlog?(N/e)) in space; and
® O(Nlog?(N/e)) in time
The algorithm outputs
® a permutation matrix Pyerm; and
* a upper triangular matrix U with O(N log?(N/€)) nonzeros

such that
||@_1 - sz;rmUUTPperm||Fro <e
where || - ||mo is the Frobenius norm

Assumptions on k to get rigorous results: see the paper
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How? Probabilistic Interpretation of Cholesky Factorization

Connection between linear algebra and probability
Let © € RV*Y and X ~ N(0,0)

e Lower-triangular Cholesky factor of © = LLT

Lij _ COV[XZ',X]'|X1;]‘_1]
Lj; Var[X;| X1:j-1]

(i >7)
e Upper-triangular Cholesky factor of 0! = UU”

Y (1
==

i Cov|[X;, X;| X1.j-1\{i}]
Var[X;| X151\ 3)]

(i <j)

Proof by mathematical induction on the value of j
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Conditioning, Screening Effects, and Sparsity

Screening effects [Stein 2002] (when no derivative entries ...)
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middle Cov [ past, future| middle ] =0
o X o 0 4
o e gl o Matérn’s kernel
o ® . e Cov [ fine x;, fine x; | coarse ] << 1
o ® xo e if x; and x; are well separated by
coarse points
[ ] o © o ®
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Conditioning, Screening Effects, and Sparsity

Screening effects [Stein 2002] (when no derivative entries ...)

—O0—0—0—0——0—0—0—0—

Y k(x,y) = exp(—|x — y[)
past future :
middle Cov [ past, future| middle ] =0
o X o 0 4
o e gl o Matérn’s kernel
o ® . e Cov [ fine x;, fine x; | coarse ] << 1
o ® xo e if x; and x; are well separated by
coarse points
[ ] o © o ®

Cholesky factors & sparse if points ordered from coarse to fine
[Schifer, Sullivan, Owhadi 2021], [Schifer, Katzfuss, Owhadi 2021]
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How to Order From Coarse to Fine?

Max-min ordering

The next ordered point is the farthest to points selected before
x), = argmax, dist(x;, {x;,1 < j <k})
with its lengthscale defined by

Upy = diSt(Xk, {Xj, 1<5< k})

10/17



How to Order From Coarse to Fine?

Max-min ordering
The next ordered point is the farthest to points selected before

X = argmax,. dist(x;, {x;,1 < j <k
X J

with its lengthscale defined by

Upy = diSt(Xk, {Xj, 1<5< k})

® Lead to developments of rigorous sparse Cholesky factorization
algorithm for kernel matrices without derivative entries!
[Schéfer, Sullivan, Owhadi 2021], [Schifer, Katzfuss, Owhadi 2021]

10/17



How to Order From Coarse to Fine?

Max-min ordering
The next ordered point is the farthest to points selected before

x), = argmax, dist(x;, {x;,1 < j <k})

with its lengthscale defined by

Upy = diSt(Xk, {Xj, 1<5< k})

4

® Lead to developments of rigorous sparse Cholesky factorization
algorithm for kernel matrices without derivative entries!
[Schéfer, Sullivan, Owhadi 2021], [Schifer, Katzfuss, Owhadi 2021]

What is missing: the case when derivative entries exist
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Existence of Sparse Factors In the Case of Derivative Entries

A new coarse-to-fine ordering [Chen, Owhadi, Schafer 2023]

Order the pointwise entries by max-min ordering of the points,
then followed with arbitrary order of derivative entries

i.e., derivative entries treated as finer scales than pointwise ones
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Existence of Sparse Factors In the Case of Derivative Entries

A new coarse-to-fine ordering [Chen, Owhadi, Schafer 2023]

Order the pointwise entries by max-min ordering of the points,
then followed with arbitrary order of derivative entries

i.e., derivative entries treated as finer scales than pointwise ones

Theorem [Chen, Owhadi, Schifer 2023]

Consider the upper triangular inverse Cholesky factors of the
reordered matrix © =U*U*T. For1<i<j <N,

reordered
dist(xp(s), Xp(j))
Cl;

U] < ClI3 exp <—

where C, a are generic constants. Here xp(;) is the physical point
corresponding to the ith ordered entry

® Proof assumes k: Green function of psd differential operators e
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Sparsity pattern: entries outside
Sip={1<i<j <N :dist(xpa). xpg)) < plj}

is exponentially small regarding p

Algorithm: Given the sparsity pattern, using optimization to
extract an optimal sparse factor U” [Schifer, Katzfuss, Owhadi 2021]

® Sparse set: S;, = {A€RVN 1 4, £ 0= (i,j) € S1,}
* Ur = argmingcs, KL (V(0, Oreordered) || N(0, (UUT)™H)

® Explicit solution formula [Vecchia 1988],[Marzouk et al. 2016],
[Schéfer, Katzfuss, Owhadi 2021]

® Can be implemented O(Np?) in space and O(Np??) time

® Parallizable: decoupled problems for each column of U

® Theory: p = O(log(N/e)) = ||©. —UP(UP) ||pro < €

reordered

12/17



Outline

Numerical Examples for Solving Nonlinear PDEs
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Nonlinear Elliptic Equations

® 2D Example: nonlinear elliptic equation with 7(u) = u?

—Au+7(u) = f w/ Dirichlet's boundary condition

* = 0,1]2. Collocation points uniformly distributed

L —@— Matern5/2, slope -1.71 —@— Matern5/2, slope 1.17
10 Matern7/2, slope -1.52 ) Matern7/2, slope 1.16
—4— Matern9/2, slope -0.78 10%¢ —4— Matern9/2, slope 1.13
1074 3
: ¢
NE 10-5 E
- g 10t
107 //////,///'
1077
10 107 10° 105
Ndomain Ndomain

Figure: Run 3 linearization steps with initialization as a zero
function. Accuracy floor due to finite p = 4.0
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Burgers' Equation

® Jyu+ udpu —0.00102u =0, V(x,t) € (—1,1) x (0,1]
e At=10.02,p=4,solvetot =1

0.75¢ — true sol —@— Matern5/2, slope 1.00
0.50} ==+ numeric sol ~- Matern7/2, slope 1.03
' —4— Matern9/2, slope 1.12
10
025t g
g
0.00+ E
2 6x10°
-0.25¢ 8}
-0.50F 4x10°
0
-0.75¢ ‘ ‘ ‘ ‘ 3x10%
-1.0 -0.5 0.0 0.5 1.0 10° 2x10° 3x10% 4x10°

Naomain

Figure: Run 2 linearization steps at each time step
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Monge-Ampere Equation

® Equation: det(D?u) = f in (0,1)?
* Truth u(x) = exp(0.5((z1 — 0.5)? + (x2 — 0,5)?))
® Matérn kernel with v = 5/2, lengthscale 0.3

—8— p=2.0, slope 1.25
—#- p=3.0, slope 1.22
102} —4— p=4.0, slope 1.27
1073 =
5 v
: :
3, S 10t
1074 S
—8— p=2.0, slope -1.06
—- p=3.0, slope -1.38 100k
—4— p=4.0, slope -1.32
1075k | | ,
103 104 103 10*

Ndomain Ndomain

Figure: Run 3 linearization steps with initial guess 1/2]|x]||?. Accuracy
floor due to finite p
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Near-linear complexity sparse Cholesky factorization
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Summary

Near-linear complexity sparse Cholesky factorization

e QOrder entries from coarse to fine, with derivative entries
treated as finer scales compared to pointwise entries

® This ordering leads to approximately sparse factors

e Compute the inverse Cholesky factors via optimization

Near-linear complexity GP /kernel solver for nonlinear PDEs
e Apply the factorization algorithm into the GP solver

® Each linearization in the solver is of near-linear complexity
= a machine learning based near-linear complexity solver for
general nonlinear PDEs (assuming the linearizations converge)

Further directions

e Fast algorithms for high dimensional problems: when d is large
[Chen, Epperly, Tropp, Webber 2022]

® Optimize the ordering and sparsity patterns?
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Thank You

[Chen, Owhadi, Schifer 2023]

Sparse Cholesky Factorization
for Solving Nonlinear PDEs via Gaussian Processes

Link: https://arxiv.org/abs/2304.01294
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