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Gaussian processes (GPs) and kernel methods

GPs and kernel methods are widely used
in scientific computing and scientific machine learning

• Spatial statistics

• Surrogate modeling

• Experimental design and Bayes optimization

• Solving PDEs and inverse problems

• ...

Focus of this talk: fast algorithms for the methodology
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Computations in GPs and Kernel Methods

Dense kernel matrices: for example

Θ = k(X,X)

where X = {x1, ...,xn} ⊂ Rd and k(X,X) ∈ Rn×n

Derivative entries, e.g., ∆xk arise naturally in PDE problems
where we have derivative information

e.g., [Chen, Hosseni, Owhadi, Stuart 2021]

Cubic bottleneck O(N3): Θ is a dense matrix
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Fast Algorithms

Many approximate methods:
• Nyström approximation, inducing points, sparse GPs, random

features, covariance tapering, divide-and-conquer, structured
kernel interpolation, hierarchical matrices, wavelets based
methods, sparse Cholesky factorization ...

• Based on low-rank/sparse ideas and their multiscale variants
• Mostly developed when there is no derivatives of k

The goal: advance methods for kernel matrices with derivatives

A new approach [Chen, Owhadi, Schäfer 2023]

A provable near-linear complexity algorithm
even when there are derivatives of k
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Outline

1 The Methodology: Sparse Cholesky Factorization

2 Numerical Examples for Solving Nonlinear PDEs

3 Summary
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Warm-up: Nyström Approximation

• Θ ≈ ΘNMΘ−1MMΘMN , with complexity O(NM2)

• Applied to kernel matrices with derivatives [Eriksson, Dong, Lee,

Bindel 2018], [Yang, Li, Rana, Gupta, Venkatesh 2018], [Meng, Yang 2022]

Nevertheless, for high accuracy in scientific/PDE problems,
low rank approximation may not be enough
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Increase the Rank ⇒ Full Cholesky Factorization

• Not computationally affordable: complexity O(N3) again

⇒ Approach: Sparse Cholesky factorization



6/17

Increase the Rank ⇒ Full Cholesky Factorization

• Not computationally affordable: complexity O(N3) again

⇒ Approach: Sparse Cholesky factorization



7/17

Sketch of the Result

[Chen, Owhadi, Schäfer 2023]

For Θ with derivative entries, we present a sparse Cholesky
factorization algorithm with the state-of-the-art complexity
• O(N logd(N/ε)) in space; and
• O(N log2d(N/ε)) in time

The algorithm outputs
• a permutation matrix Pperm; and
• a upper triangular matrix U with O(N logd(N/ε)) nonzeros

such that
‖Θ−1 − P TpermUUTPperm‖Fro ≤ ε

where ‖ · ‖Fro is the Frobenius norm

Assumptions on k to get rigorous results: see the paper
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How? Probabilistic Interpretation of Cholesky Factorization

Connection between linear algebra and probability

Let Θ ∈ RN×N , and X ∼ N (0,Θ)

• Lower-triangular Cholesky factor of Θ = LLT

Lij
Ljj

=
Cov[Xi, Xj |X1:j−1]

Var[Xj |X1:j−1]
(i ≥ j)

• Upper-triangular Cholesky factor of Θ−1 = UUT

Uij
Ujj

= (−1)i 6=j
Cov[Xi, Xj |X1:j−1\{i}]

Var[Xj |X1:j−1\{i}]
(i ≤ j)

Proof by mathematical induction on the value of j
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Conditioning, Screening Effects, and Sparsity

Screening effects [Stein 2002] (when no derivative entries ...)

Cholesky factors ≈ sparse if points ordered from coarse to fine
[Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021]
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How to Order From Coarse to Fine?

Max-min ordering
The next ordered point is the farthest to points selected before

xk = argmaxxidist(xi, {xj , 1 ≤ j < k})

with its lengthscale defined by

lk = dist(xk, {xj , 1 ≤ j < k})

• Lead to developments of rigorous sparse Cholesky factorization
algorithm for kernel matrices without derivative entries!
[Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021]

What is missing: the case when derivative entries exist
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Existence of Sparse Factors In the Case of Derivative Entries

A new coarse-to-fine ordering [Chen, Owhadi, Schäfer 2023]

Order the pointwise entries by max-min ordering of the points,
then followed with arbitrary order of derivative entries

i.e., derivative entries treated as finer scales than pointwise ones

Theorem [Chen, Owhadi, Schäfer 2023]

Consider the upper triangular inverse Cholesky factors of the
reordered matrix Θ−1reordered = U?U?T . For 1 ≤ i ≤ j ≤ N ,

|U?ij | ≤ Clαj exp

Ç
−

dist(xP (i),xP (j))

Clj

å
where C,α are generic constants. Here xP (i) is the physical point
corresponding to the ith ordered entry

• Proof assumes k: Green function of psd differential operators
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Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

Sl,ρ = {1 ≤ i ≤ j ≤ N : dist(xP (i),xP (j)) ≤ ρlj}

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to
extract an optimal sparse factor Uρ [Schäfer, Katzfuss, Owhadi 2021]

• Sparse set: Sl,ρ = {A ∈ RN×N : Aij 6= 0⇒ (i, j) ∈ Sl,ρ}
• Uρ = argminU∈Sl,ρ KL

(
N (0,Θreordered) ‖ N (0, (UUT )−1)

)
• Explicit solution formula [Vecchia 1988],[Marzouk et al. 2016],

[Schäfer, Katzfuss, Owhadi 2021]
• Can be implemented O(Nρd) in space and O(Nρ2d) time
• Parallizable: decoupled problems for each column of U

• Theory: ρ = O(log(N/ε))⇒ ‖Θ−1reordered − U
ρ(Uρ)T ‖Fro ≤ ε
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Nonlinear Elliptic Equations

• 2D Example: nonlinear elliptic equation with τ(u) = u3

−∆u+ τ(u) = f w/ Dirichlet’s boundary condition

• Ω = [0, 1]2. Collocation points uniformly distributed
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Figure: Run 3 linearization steps with initialization as a zero
function. Accuracy floor due to finite ρ = 4.0
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Burgers’ Equation

• ∂tu+ u∂xu− 0.001∂2xu = 0, ∀(x, t) ∈ (−1, 1)× (0, 1]

• ∆t = 0.02, ρ = 4, solve to t = 1
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Figure: Run 2 linearization steps at each time step
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Monge-Ampère Equation

• Equation: det(D2u) = f in (0, 1)2

• Truth u(x) = exp
(
0.5((x1 − 0.5)2 + (x2 − 0, 5)2)

)
• Matérn kernel with ν = 5/2, lengthscale 0.3
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Figure: Run 3 linearization steps with initial guess 1/2‖x‖2. Accuracy
floor due to finite ρ
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Summary

Near-linear complexity sparse Cholesky factorization
• Order entries from coarse to fine, with derivative entries

treated as finer scales compared to pointwise entries
• This ordering leads to approximately sparse factors
• Compute the inverse Cholesky factors via optimization

Near-linear complexity GP/kernel solver for nonlinear PDEs
• Apply the factorization algorithm into the GP solver
• Each linearization in the solver is of near-linear complexity
⇒ a machine learning based near-linear complexity solver for
general nonlinear PDEs (assuming the linearizations converge)

Further directions
• Fast algorithms for high dimensional problems: when d is large

[Chen, Epperly, Tropp, Webber 2022]

• Optimize the ordering and sparsity patterns?
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Thank You

[Chen, Owhadi, Schäfer 2023]

Sparse Cholesky Factorization
for Solving Nonlinear PDEs via Gaussian Processes

Link: https://arxiv.org/abs/2304.01294

https://arxiv.org/abs/2304.01294
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