Sparse Cholesky Factorization for solving PDEs with Gaussian processes

Yifan Chen

Applied and Computational Math, Caltech
ICERM, June 2023

The Paper

[Chen, Owhadi, Schäfer 2023]
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes

Houman Owhadi Caltech

Florian Schäfer Georgia Tech

Link: https://arxiv.org/abs/2304.01294

Gaussian processes (GPs) and kernel methods

GPs and kernel methods are widely used
in scientific computing and scientific machine learning

- Spatial statistics
- Surrogate modeling
- Experimental design and Bayes optimization
- Solving PDEs and inverse problems

Gaussian processes (GPs) and kernel methods

GPs and kernel methods are widely used
in scientific computing and scientific machine learning

- Spatial statistics
- Surrogate modeling
- Experimental design and Bayes optimization
- Solving PDEs and inverse problems

Focus of this talk: fast algorithms for the methodology

Computations in GPs and Kernel Methods

Dense kernel matrices: for example

$$
\Theta=k(\mathbf{X}, \mathbf{X})
$$

where $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{R}^{d}$ and $k(\mathbf{X}, \mathbf{X}) \in \mathbb{R}^{n \times n}$

Computations in GPs and Kernel Methods

Dense kernel matrices: for example

$$
\begin{array}{r}
\Theta=\left(\begin{array}{cc}
k(\mathbf{X}, \mathbf{X}) & \Delta_{\mathbf{y}} k(\mathbf{X}, \mathbf{X}) \\
\Delta_{\mathbf{x}} k(\mathbf{X}, \mathbf{X}) & \Delta_{\mathbf{x}} \Delta_{\mathbf{y}} k(\mathbf{X}, \mathbf{X})
\end{array}\right) \in \mathbb{R}^{N \times N} \\
\text { where } \mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{R}^{d} \text { and } k(\mathbf{X}, \mathbf{X}) \in \mathbb{R}^{n \times n}
\end{array}
$$

Computations in GPs and Kernel Methods

Dense kernel matrices: for example

$$
\begin{array}{r}
\Theta=\left(\begin{array}{cc}
k(\mathbf{X}, \mathbf{X}) & \Delta_{\mathbf{y}} k(\mathbf{X}, \mathbf{X}) \\
\Delta_{\mathbf{x}} k(\mathbf{X}, \mathbf{X}) & \Delta_{\mathbf{x}} \Delta_{\mathbf{y}} k(\mathbf{X}, \mathbf{X})
\end{array}\right) \in \mathbb{R}^{N \times N} \\
\text { where } \mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{R}^{d} \text { and } k(\mathbf{X}, \mathbf{X}) \in \mathbb{R}^{n \times n}
\end{array}
$$

Derivative entries, e.g., $\Delta_{\mathbf{x}} k$ arise naturally in PDE problems where we have derivative information
e.g., [Chen, Hosseni, Owhadi, Stuart 2021]

Computations in GPs and Kernel Methods

Dense kernel matrices: for example

$$
\begin{aligned}
& \Theta=\left(\begin{array}{cc}
k(\mathbf{X}, \mathbf{X}) & \Delta_{\mathbf{y}} k(\mathbf{X}, \mathbf{X}) \\
\Delta_{\mathbf{x}} k(\mathbf{X}, \mathbf{X}) & \Delta_{\mathbf{x}} \Delta_{\mathbf{y}} k(\mathbf{X}, \mathbf{X})
\end{array}\right) \in \mathbb{R}^{N \times N} \\
& \text { where } \mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{R}^{d} \text { and } k(\mathbf{X}, \mathbf{X}) \in \mathbb{R}^{n \times n}
\end{aligned}
$$

Derivative entries, e.g., $\Delta_{\mathbf{x}} k$ arise naturally in PDE problems where we have derivative information
e.g., [Chen, Hosseni, Owhadi, Stuart 2021]

Cubic bottleneck $O\left(N^{3}\right): \Theta$ is a dense matrix

Fast Algorithms

Many approximate methods:

- Nyström approximation, inducing points, sparse GPs, random features, covariance tapering, divide-and-conquer, structured kernel interpolation, hierarchical matrices, wavelets based methods, sparse Cholesky factorization ...

Fast Algorithms

Many approximate methods:

- Nyström approximation, inducing points, sparse GPs, random features, covariance tapering, divide-and-conquer, structured kernel interpolation, hierarchical matrices, wavelets based methods, sparse Cholesky factorization ...
- Based on low-rank/sparse ideas and their multiscale variants

Fast Algorithms

Many approximate methods:

- Nyström approximation, inducing points, sparse GPs, random features, covariance tapering, divide-and-conquer, structured kernel interpolation, hierarchical matrices, wavelets based methods, sparse Cholesky factorization ...
- Based on low-rank/sparse ideas and their multiscale variants
- Mostly developed when there is no derivatives of k

Fast Algorithms

Many approximate methods:

- Nyström approximation, inducing points, sparse GPs, random features, covariance tapering, divide-and-conquer, structured kernel interpolation, hierarchical matrices, wavelets based methods, sparse Cholesky factorization ...
- Based on low-rank/sparse ideas and their multiscale variants
- Mostly developed when there is no derivatives of k

The goal: advance methods for kernel matrices with derivatives

Fast Algorithms

Many approximate methods:

- Nyström approximation, inducing points, sparse GPs, random features, covariance tapering, divide-and-conquer, structured kernel interpolation, hierarchical matrices, wavelets based methods, sparse Cholesky factorization ...
- Based on low-rank/sparse ideas and their multiscale variants
- Mostly developed when there is no derivatives of k

The goal: advance methods for kernel matrices with derivatives

A new approach [Chen, Owhadi, Schäfer 2023]
A provable near-linear complexity algorithm even when there are derivatives of k

Outline

1 The Methodology: Sparse Cholesky Factorization

2 Numerical Examples for Solving Nonlinear PDEs

3 Summary

Outline

1 The Methodology: Sparse Cholesky Factorization

2 Numerical Examples for Solving Nonlinear PDEs

3 Summary

Warm-up: Nyström Approximation

- $\Theta \approx \Theta_{N M} \Theta_{M M}^{-1} \Theta_{M N}$, with complexity $O\left(N M^{2}\right)$

Warm-up: Nyström Approximation

- $\Theta \approx \Theta_{N M} \Theta_{M M}^{-1} \Theta_{M N}$, with complexity $O\left(N M^{2}\right)$
- Applied to kernel matrices with derivatives [Eriksson, Dong, Lee, Bindel 2018], [Yang, Li, Rana, Gupta, Venkatesh 2018], [Meng, Yang 2022]

Warm-up: Nyström Approximation

Nyström Approximation

$\Theta_{N M}$

Pivoted (Partial) Cholesky Factorization

$L_{N M}$

- $\Theta \approx \Theta_{N M} \Theta_{M M}^{-1} \Theta_{M N}$, with complexity $O\left(N M^{2}\right)$
- Applied to kernel matrices with derivatives [Eriksson, Dong, Lee, Bindel 2018], [Yang, Li, Rana, Gupta, Venkatesh 2018], [Meng, Yang 2022]

Nevertheless, for high accuracy in scientific/PDE problems, low rank approximation may not be enough

Increase the Rank \Rightarrow Full Cholesky Factorization

Pivoted Full Cholesky Factorization

$L_{N N}$

Pivoted Sparse Cholesky Factorization

$\hat{L}_{N N}$

- Not computationally affordable: complexity $O\left(N^{3}\right)$ again

Increase the Rank \Rightarrow Full Cholesky Factorization

Pivoted Full Cholesky Factorization

$L_{N N}$

Pivoted Sparse Cholesky Factorization

$\hat{L}_{N N}$

- Not computationally affordable: complexity $O\left(N^{3}\right)$ again
\Rightarrow Approach: Sparse Cholesky factorization

Sketch of the Result

[Chen, Owhadi, Schäfer 2023]
For Θ with derivative entries, we present a sparse Cholesky factorization algorithm with the state-of-the-art complexity

- $O\left(N \log ^{d}(N / \epsilon)\right)$ in space; and
- $O\left(N \log ^{2 d}(N / \epsilon)\right)$ in time

The algorithm outputs

- a permutation matrix $P_{\text {perm }}$; and
- a upper triangular matrix U with $O\left(N \log ^{d}(N / \epsilon)\right)$ nonzeros such that

$$
\left\|\Theta^{-1}-P_{\text {perm }}^{T} U U^{T} P_{\text {perm }}\right\|_{\text {Fro }} \leq \epsilon
$$

where $\|\cdot\|_{\text {Fro }}$ is the Frobenius norm
Assumptions on k to get rigorous results: see the paper

How? Probabilistic Interpretation of Cholesky Factorization

Connection between linear algebra and probability Let $\Theta \in \mathbb{R}^{N \times N}$, and $X \sim \mathcal{N}(0, \Theta)$

- Lower-triangular Cholesky factor of $\Theta=L L^{T}$

$$
\frac{L_{i j}}{L_{j j}}=\frac{\operatorname{Cov}\left[X_{i}, X_{j} \mid X_{1: j-1}\right]}{\operatorname{Var}\left[X_{j} \mid X_{1: j-1}\right]}
$$

- Upper-triangular Cholesky factor of $\Theta^{-1}=U U^{T}$

$$
\frac{U_{i j}}{U_{j j}}=(-1)^{i \neq j} \frac{\operatorname{Cov}\left[X_{i}, X_{j} \mid X_{1: j-1 \backslash\{i\}}\right]}{\operatorname{Var}\left[X_{j} \mid X_{1: j-1 \backslash\{i\}}\right]}
$$

Proof by mathematical induction on the value of j

Conditioning, Screening Effects, and Sparsity

Screening effects [Stein 2002] (when no derivative entries ...)

$$
\begin{aligned}
& k(x, y)=\exp (-|x-y|) \\
& \operatorname{Cov}[\text { past, future } \mid \text { middle }]=0
\end{aligned}
$$

Matérn's kernel
$\operatorname{Cov}\left[\right.$ fine x_{i}, fine $x_{j} \mid$ coarse] $\ll 1$
if x_{i} and x_{j} are well separated by coarse points

Conditioning, Screening Effects, and Sparsity

Screening effects [Stein 2002] (when no derivative entries ...)

$$
\begin{aligned}
& k(x, y)=\exp (-|x-y|) \\
& \operatorname{Cov}[\text { past, future } \mid \text { middle }]=0
\end{aligned}
$$

Matérn's kernel
$\operatorname{Cov}\left[\right.$ fine x_{i}, fine $x_{j} \mid$ coarse] << 1
if x_{i} and x_{j} are well separated by coarse points

Cholesky factors \approx sparse if points ordered from coarse to fine [Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021]

How to Order From Coarse to Fine?

Max-min ordering
The next ordered point is the farthest to points selected before

$$
\mathbf{x}_{k}=\operatorname{argmax}_{\mathbf{x}_{i}} \operatorname{dist}\left(\mathbf{x}_{i},\left\{\mathbf{x}_{j}, 1 \leq j<k\right\}\right)
$$

with its lengthscale defined by

$$
l_{k}=\operatorname{dist}\left(\mathbf{x}_{k},\left\{\mathbf{x}_{j}, 1 \leq j<k\right\}\right)
$$

How to Order From Coarse to Fine?

Max-min ordering
The next ordered point is the farthest to points selected before

$$
\mathbf{x}_{k}=\operatorname{argmax}_{\mathbf{x}_{i}} \operatorname{dist}\left(\mathbf{x}_{i},\left\{\mathbf{x}_{j}, 1 \leq j<k\right\}\right)
$$

with its lengthscale defined by

$$
l_{k}=\operatorname{dist}\left(\mathbf{x}_{k},\left\{\mathbf{x}_{j}, 1 \leq j<k\right\}\right)
$$

- Lead to developments of rigorous sparse Cholesky factorization algorithm for kernel matrices without derivative entries!
[Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021]

How to Order From Coarse to Fine?

Max-min ordering
The next ordered point is the farthest to points selected before

$$
\mathbf{x}_{k}=\operatorname{argmax}_{\mathbf{x}_{i}} \operatorname{dist}\left(\mathbf{x}_{i},\left\{\mathbf{x}_{j}, 1 \leq j<k\right\}\right)
$$

with its lengthscale defined by

$$
l_{k}=\operatorname{dist}\left(\mathbf{x}_{k},\left\{\mathbf{x}_{j}, 1 \leq j<k\right\}\right)
$$

- Lead to developments of rigorous sparse Cholesky factorization algorithm for kernel matrices without derivative entries!
[Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021]

What is missing: the case when derivative entries exist

Existence of Sparse Factors In the Case of Derivative Entries

A new coarse-to-fine ordering [Chen, Owhadi, Schäfer 2023]
Order the pointwise entries by max-min ordering of the points, then followed with arbitrary order of derivative entries
i.e., derivative entries treated as finer scales than pointwise ones

Existence of Sparse Factors In the Case of Derivative Entries

A new coarse-to-fine ordering [Chen, Owhadi, Schäfer 2023]
Order the pointwise entries by max-min ordering of the points, then followed with arbitrary order of derivative entries
i.e., derivative entries treated as finer scales than pointwise ones

Theorem [Chen, Owhadi, Schäfer 2023]
Consider the upper triangular inverse Cholesky factors of the reordered matrix $\Theta_{\text {reordered }}^{-1}=U^{\star} U^{\star T}$. For $1 \leq i \leq j \leq N$,

$$
\left|U_{i j}^{\star}\right| \leq C l_{j}^{\alpha} \exp \left(-\frac{\operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right)}{C l_{j}}\right)
$$

where C, α are generic constants. Here $\mathbf{x}_{P(i)}$ is the physical point corresponding to the i th ordered entry

- Proof assumes k : Green function of psd differential operators

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

- Sparse set: $\mathcal{S}_{l, \rho}=\left\{A \in \mathbb{R}^{N \times N}: A_{i j} \neq 0 \Rightarrow(i, j) \in S_{l, \rho}\right\}$

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

- Sparse set: $\mathcal{S}_{l, \rho}=\left\{A \in \mathbb{R}^{N \times N}: A_{i j} \neq 0 \Rightarrow(i, j) \in S_{l, \rho}\right\}$
- $U^{\rho}=\operatorname{argmin}_{U \in \mathcal{S}_{l, \rho}} \operatorname{KL}\left(\mathcal{N}\left(0, \Theta_{\text {reordered }}\right) \| \mathcal{N}\left(0,\left(U U^{T}\right)^{-1}\right)\right)$

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

- Sparse set: $\mathcal{S}_{l, \rho}=\left\{A \in \mathbb{R}^{N \times N}: A_{i j} \neq 0 \Rightarrow(i, j) \in S_{l, \rho}\right\}$
- $U^{\rho}=\operatorname{argmin}_{U \in \mathcal{S}_{l, \rho}} \operatorname{KL}\left(\mathcal{N}\left(0, \Theta_{\text {reordered }}\right) \| \mathcal{N}\left(0,\left(U U^{T}\right)^{-1}\right)\right)$
- Explicit solution formula [Vecchia 1988],[Marzouk et al. 2016], [Schäfer, Katzfuss, Owhadi 2021]

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

- Sparse set: $\mathcal{S}_{l, \rho}=\left\{A \in \mathbb{R}^{N \times N}: A_{i j} \neq 0 \Rightarrow(i, j) \in S_{l, \rho}\right\}$
- $U^{\rho}=\operatorname{argmin}_{U \in \mathcal{S}_{l, \rho}} \operatorname{KL}\left(\mathcal{N}\left(0, \Theta_{\text {reordered }}\right) \| \mathcal{N}\left(0,\left(U U^{T}\right)^{-1}\right)\right)$
- Explicit solution formula [Vecchia 1988],[Marzouk et al. 2016], [Schäfer, Katzfuss, Owhadi 2021]
- Can be implemented $O\left(N \rho^{d}\right)$ in space and $O\left(N \rho^{2 d}\right)$ time

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

- Sparse set: $\mathcal{S}_{l, \rho}=\left\{A \in \mathbb{R}^{N \times N}: A_{i j} \neq 0 \Rightarrow(i, j) \in S_{l, \rho}\right\}$
- $U^{\rho}=\operatorname{argmin}_{U \in \mathcal{S}_{l, \rho}} \operatorname{KL}\left(\mathcal{N}\left(0, \Theta_{\text {reordered }}\right) \| \mathcal{N}\left(0,\left(U U^{T}\right)^{-1}\right)\right)$
- Explicit solution formula [Vecchia 1988],[Marzouk et al. 2016], [Schäfer, Katzfuss, Owhadi 2021]
- Can be implemented $O\left(N \rho^{d}\right)$ in space and $O\left(N \rho^{2 d}\right)$ time
- Parallizable: decoupled problems for each column of U

Computing Sparse Factors In the Case of Derivative Entries

Sparsity pattern: entries outside

$$
S_{l, \rho}=\left\{1 \leq i \leq j \leq N: \operatorname{dist}\left(\mathbf{x}_{P(i)}, \mathbf{x}_{P(j)}\right) \leq \rho l_{j}\right\}
$$

is exponentially small regarding ρ

Algorithm: Given the sparsity pattern, using optimization to extract an optimal sparse factor U^{ρ} [Schäfer, Katzfuss, Owhadi 2021]

- Sparse set: $\mathcal{S}_{l, \rho}=\left\{A \in \mathbb{R}^{N \times N}: A_{i j} \neq 0 \Rightarrow(i, j) \in S_{l, \rho}\right\}$
- $U^{\rho}=\operatorname{argmin}_{U \in \mathcal{S}_{l, \rho}} \operatorname{KL}\left(\mathcal{N}\left(0, \Theta_{\text {reordered }}\right) \| \mathcal{N}\left(0,\left(U U^{T}\right)^{-1}\right)\right)$
- Explicit solution formula [Vecchia 1988],[Marzouk et al. 2016], [Schäfer, Katzfuss, Owhadi 2021]
- Can be implemented $O\left(N \rho^{d}\right)$ in space and $O\left(N \rho^{2 d}\right)$ time
- Parallizable: decoupled problems for each column of U
- Theory: $\rho=O(\log (N / \epsilon)) \Rightarrow\left\|\Theta_{\text {reordered }}^{-1}-U^{\rho}\left(U^{\rho}\right)^{T}\right\|_{\text {Fro }} \leq \epsilon$

Outline

1 The Methodology: Sparse Cholesky Factorization

2 Numerical Examples for Solving Nonlinear PDEs

3 Summary

Nonlinear Elliptic Equations

- 2D Example: nonlinear elliptic equation with $\tau(u)=u^{3}$

$$
-\Delta u+\tau(u)=f \quad \text { w/ Dirichlet's boundary condition }
$$

- $\Omega=[0,1]^{2}$. Collocation points uniformly distributed

Figure: Run 3 linearization steps with initialization as a zero function. Accuracy floor due to finite $\rho=4.0$

Burgers' Equation

- $\partial_{t} u+u \partial_{x} u-0.001 \partial_{x}^{2} u=0, \quad \forall(x, t) \in(-1,1) \times(0,1]$
- $\Delta t=0.02, \rho=4$, solve to $t=1$

Figure: Run 2 linearization steps at each time step

Monge-Ampère Equation

- Equation: $\operatorname{det}\left(D^{2} u\right)=f$ in $(0,1)^{2}$
- Truth $u(\mathbf{x})=\exp \left(0.5\left(\left(x_{1}-0.5\right)^{2}+\left(x_{2}-0,5\right)^{2}\right)\right)$
- Matérn kernel with $\nu=5 / 2$, lengthscale 0.3

Figure: Run 3 linearization steps with initial guess $1 / 2\|\mathbf{x}\|^{2}$. Accuracy floor due to finite ρ

Outline

1 The Methodology: Sparse Cholesky Factorization

2 Numerical Examples for Solving Nonlinear PDEs

3 Summary

Summary

Near-linear complexity sparse Cholesky factorization

- Order entries from coarse to fine, with derivative entries treated as finer scales compared to pointwise entries
- This ordering leads to approximately sparse factors
- Compute the inverse Cholesky factors via optimization

Summary

Near-linear complexity sparse Cholesky factorization

- Order entries from coarse to fine, with derivative entries treated as finer scales compared to pointwise entries
- This ordering leads to approximately sparse factors
- Compute the inverse Cholesky factors via optimization

Near-linear complexity GP/kernel solver for nonlinear PDEs

- Apply the factorization algorithm into the GP solver
- Each linearization in the solver is of near-linear complexity \Rightarrow a machine learning based near-linear complexity solver for general nonlinear PDEs (assuming the linearizations converge)

Summary

Near-linear complexity sparse Cholesky factorization

- Order entries from coarse to fine, with derivative entries treated as finer scales compared to pointwise entries
- This ordering leads to approximately sparse factors
- Compute the inverse Cholesky factors via optimization

Near-linear complexity GP/kernel solver for nonlinear PDEs

- Apply the factorization algorithm into the GP solver
- Each linearization in the solver is of near-linear complexity \Rightarrow a machine learning based near-linear complexity solver for general nonlinear PDEs (assuming the linearizations converge)

Further directions

- Fast algorithms for high dimensional problems: when d is large [Chen, Epperly, Tropp, Webber 2022]
- Optimize the ordering and sparsity patterns?

Thank You

[Chen, Owhadi, Schäfer 2023]
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes

Link: https://arxiv.org/abs/2304.01294

