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This work is part of a larger effort to develop efficient, scalable 
techniques for modeling complex, multiscale systems-of-systems

Our goal: develop an efficient
input à output mapping
for PDE models



CNN-based surrogate models offer a potential solution

• Low-cost approximation of full PDE model
• Captures statistical behavior of system
• Cheaper to run than full model
• Captures input-output relationship

Convolutional Neural Network
• Hidden layers perform convolutions
• Popular for image processing / computer vision tasks
• Good at modeling complex nonlinear processes
• Inexpensive forward pass



Problem: 

generalizable surrogates must be trained on
a large number of PDE solutions…

…but generating training data can be expensive

We propose transfer learning on multifidelity data
as a strategy to reduce the cost of training PDE surrogate models 



In transfer learning, we apply the knowledge
gained from training one model to training another model

Gilik et al. 2022

Instead of starting 
from scratch, initialize 
with pretrained model, 
retrain last few layers

à Reduces training 
time, resources & 
data requirements

Early layers capture
coarse features
(e.g. edges, shapes)
that generalize well
to new problems



Dimension

Resolution

Representation

More accurate, provides more information

Cheaper to produce

Multifidelity data spans multiple levels of deviation 
from the true system of interest

*this work

*Song & 
Tartakovsky, ‘22
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Train entire 
CNN on LFD

Retrain last 
layer on HFD

Retrain entire 
CNN on HFD

We adopt a dense encoder-decoder network architecture, 
and train in 3 phases to incorporate multifidelity data
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Our test problem: multiphase flow in a porous medium
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2, fluid phase 3 = 3 # , permeability

4, porosity .% #, 0 , saturation

5, viscosity " #, 0 , pressure

6, source/sink 7% #, 0 , velocity

• Numerical solutions to multiphase flow problems often 
expensive due to high degree of nonlinearity, stiffness

• Challenging problem for ensemble-based simulations

duplicate to 
create 2D image
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Observation 1: For a fixed number of training images,
model performance was roughly equivalent regardless of 
whether low-fidelity 1D data contained a single run or n runs
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Each datapoint represents average of 20 trials



Observation 2: With small data-generation budgets (e.g. 4 hours), 
models with training sets biased heavily towards either high- or low-fidelity data
performed worse than more evenly balanced models
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Dotted line represents avg. RMSE for 2D-only model 
trained on 12 hours of HFD data



Observation 3: In UQ, CNN surrogate trained on 4 hours of MFD performed 
similarly to Monte Carlo with 24 hours of HFD data, but with lower variance
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HFD target 4 hours MFD
single-run 1D data

current study CNN surrogate

Observation 4: MFD model qualitatively captures flow behavior 
but ability to capture vertical dynamics is hampered
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4 hours MFD
coarse v. fine mesh

Song & Tartakovsky, ‘22

12 hours HFD
2D data only



Summary
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Next steps


