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This work is part of a larger effort to develop efficient, scalable
techniques for modeling complex, multiscale systems-of-systems

Our goal: develop an efficient
input = output mapping
for PDE models

2 sea-CROGS



CNN-based \surrogate models} offer a potential solution
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Low-cost approximation of full PDE model
Captures statistical behavior of system
Cheaper to run than full model

Captures input-output relationship

» Convolutional Neural Network

« Hidden layers perform convolutions

« Popular for image processing / computer vision tasks
« Good at modeling complex nonlinear processes

* |Inexpensive forward pass



Problem:

generalizable surrogates must be trained on
a large number of PDE solutions...

...but generating training data can be expensive

We propose transfer learning on multifidelity data
as a strategy to reduce the cost of training PDE surrogate models



In transfer learning, we apply the knowledge
gained from training one model to training another model
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Multifidelity data spans multiple levels of deviation
from the true system of interest

Dimension
*this work

Resolution

*Song &
Tartakovsky, 22

Representation

More accurate, provides more information

Cheaper to prodgce



We adopt a dense encoder-decoder network architecture,
and train in 3 phases to incorporate multifidelity data

Same architecture used in Zhu & Zabaras, 2018; Mo et al., 2019; Song & Tartakovsky, 2022

Dense blocks enhance information propagation, reduce training data requirement
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Our test problem: multiphase flow in a porous medium
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Observation 1: For a fixed number of training images,
model performance was roughly equivalent regardless of
whether low-fidelity 1D data contained a single run or n runs

We tested two types of low-fidelity (1D) data: Single- v. Multi-Run LFS Data
“Single-run”: 1 run per image (e.g. prev slide) Data—generation budget fixed at 12 hours (for multi-run images)
0.3
“Multi-run”: n=128 runs per image
Multi-run data: 02| S ° Py
contains 128 times more information, ¢"',§ T T
=
takes 128 times longer to generate, - -
requires 128 times less storage space
... a8 Smgle-run data 0.01 Each datapoint represents average of 20 trials
. 20 HFS 60 HFS 100 HFS 140 HFS
For small data generation budgets, both types of 1D data 278 LFS 185 LFS 91 LFS 1LFS
performed roughly equivalently Number of training images
Number of runs per of LFS image ® n=128 runs 1 run

Somewhere between these extremes may be optimal
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Observation 2: With small data-generation budgets (e.g. 4 hours),
models with training sets biased heavily towards either high- or low-fidelity data
performed worse than more evenly balanced models

We tested a data-generation budget of 4 hours

Data—-generation budget fixed at 4 hours
with both single- and multi-run LFS data

0.3

We also tested with single-run LFS data, where

the number of images matched the budget for \
g g 05 /

multi-run LFS data (green curve)

RMSE

MFD models with small data generation budgets
performed nearly as well as HFD models with 0.1
data-generation budgets ~3X larger (dotted line)

Dotted line represents avg. RMSE for 2D-only model
0.01 trained on 12 hours of HFD data
0 10 20 30 40
HFS samples in training set

1 run, same __ 1run,

Runs per LFS image — n=128 runs # images as n=128 full budget
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Observation 3: In UQ, CNN surrogate trained on 4 hours of MFD performed
similarly to Monte Carlo with 24 hours of HFD data, but with lower variance

UQ task: constrain PDF of “breakthrough time” (argmin S, (700, t) = 0.15)

CNN surrogate took 19 seconds to complete 2100 forward passes
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Observation 4: MFD model qualitatively captures flow behavior

but ability to capture vertical dynamics is hampered

Future work should test problems with more pronounced dynamics in both directions
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Summary

Transfer learning using 1D & 2D MFD
was effective for the multiphase flow
problem tested

Low- and high- content 1D data
performed similarly, despite >100x
difference in runtime & information
content

In UQ tasks, CNN surrogate
outperformed MC for up to 6x data
generation budget

Next steps

Investigate whether these results
generalizes to strongly multidirectional
dynamics

2D > 3D

Extension to graph context
e.g. graph pruning, coarse graining
Multilevel DDEC (in progress)
Integrate with CGC, GINNs
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