Poster Session Blitz April 25, 2023

Rachael Alfant, Rice University Cristina Molero-Río, École Polytechnique Renan Spencer Trindade, École Polytechnique Nagisa Sugishita, University of Edinburgh William Wesley, University of California Davis

Preliminaries

Let $A \in \mathbb{Z}_{+}^{m \times n}$, $G \in \mathbb{Q}_{+}^{m \times p}$, and $b \in \mathbb{R}_{+}^{m}$. Assume cost vectors c, h > 0.

Consider the mixed-integer programming (MIP) problem:

$$z_{MIP}(b) := \max_{\mathbf{x} \in \mathbb{Z}_+^n, \mathbf{y} \in \mathbb{R}_+^p} \{ \mathbf{c}^\top \mathbf{x} + \mathbf{h}^\top \mathbf{y} \mid A\mathbf{x} + G\mathbf{y} \le \mathbf{b} \}.$$
(MIP)

And its LP relaxation:

$$z_{LPR}(b) := \max_{\mathbf{x} \in \mathbb{R}^n_+, \mathbf{y} \in \mathbb{R}^p_+} \{ \mathbf{c}^\top \mathbf{x} + \mathbf{h}^\top \mathbf{y} \mid A\mathbf{x} + G\mathbf{y} \le \mathbf{b} \}.$$
(LPR)

This is joint work with Dr. Tayo Ajayi and Dr. Andrew J. Schaefer. This research was supported by NSF grant CMMI-1933373.

R. M. Alfant

Periodicity of MIP Gap Functions

Periodicity of Absolute MIP Gap Functions

Definition

Given a set of RHSs, $\mathcal{B}[0, b] = \prod_{i=1}^{m} [0, b_i]$, the **Absolute** Gap Function for MIPs is defined as:

$$\Gamma: \mathcal{B}[0,\mathsf{b}] \to \mathbb{R}_+ \cup \{\infty\}, \ \Gamma(\widehat{oldsymbol{eta}}) := z_{LPR}(\widehat{oldsymbol{eta}}) - z_{MIP}(\widehat{oldsymbol{eta}}).$$

Theorem

Let a_j be the j^{th} column of A and g_k be the k^{th} column of G. Then, under certain conditions, $\Gamma(\widehat{\beta} - \eta a_j - \lambda g_k) = \Gamma(\widehat{\beta})$.

Enhancing classification and regression trees via mathematical optimization

Rafael Blanquero¹ Emilio Carrizosa¹ **Cristina Molero-Río**² Dolores Romero Morales³

¹Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain ²École Polytechnique, Palaiseau, France ³Copenhagen Business School, Frederiksberg, Denmark

Trends in Computational Discrete Optimization at Providence, USA

April 25th 2023

Cristina Molero-Río

Enhancing classification and regression trees via mathematical optimization

Mathematical Optimization

Machine Learning

Optimal Classification and Regression Trees

- We develop a Continuous Optimization formulation.
- We model probabilistic (as opposed to deterministic) splitting rules.

イロト イポト イヨト イヨト 三日

Enhancing classification and regression trees via mathematical optimization

Thank you for your attention!

molero@lix.polytechnique.fr

All this research is available at: https://www.researchgate.net/profile/Cristina_Molero-Rio

Cristina Molero-Río

Enhancing classification and regression trees via mathematical optimization

イロト イポト イヨト イヨト

2

An analysis of alternative perspective reformulations for piecewise-convex optimization

Renan Spencer Trindade¹

Claudia D'Ambrosio¹ Antonio Frangioni² Claudio Gentile³

¹LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France ²Dipartimento di Informatica, Università di Pisa, Pisa, Italy ³Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", Consiglio Nazionale delle Ricerche, Rome, Italy

Poster

Introduction

Sequential Convex MINLP

2 Formulations for SC-MINLP

- Incremental Model (IM)
- Multiple Choice Model (MCM)
- Convex Combination Model (CCM)

3 Comparison

- Theoretical
- Computational results

Thank you!

Pre-Trained Solution Methods for Unit Commitment

Nagisa Sugishita, Andreas Grothey, Ken McKinnon University of Edinburgh

April 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Pre-Trained Solution Methods for Unit Commitment

Find the optimal operation of generators given demand ω :

The dual problem is decomposable by generators

$$\max\left\{q(\omega, y) := \frac{1}{G} \sum_{g=1}^{G} q_g(\omega, y)\right\},\,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where G is the number of generators.

Improvement on Regularised Cutting-Plane Method

1. How should initialise the algorithm, i.e. get y_0 ?

Use machine learning to find a good point.

- 2. How should we accelerate the progress of the algorithm?
 - Only evaluate a subset of $q_g(\omega, y)$ and take incremental steps.

Question

What is the smallest *n* such that every *k*-coloring of $\{1, 2, ..., n\}$ produces a monochromatic solution to x + y = z?

< 4 ₽ × <

→

э

Question

What is the smallest *n* such that every *k*-coloring of $\{1, 2, ..., n\}$ produces a monochromatic solution to x + y = z?

This smallest *n* is called the **Schur number** S(k).

• S(2) = 5

1 2 3 4

I ∃ ►

э

Question

What is the smallest *n* such that every *k*-coloring of $\{1, 2, ..., n\}$ produces a monochromatic solution to x + y = z?

This smallest *n* is called the **Schur number** S(k).

•
$$S(2) = 5$$

1 2 3 4
• $S(3) = 14$:
1 2 3 4 5 6 7 8 9 10 11 12 13

э

Schur numbers

Table of all known Schur numbers:

k	S(k)	proof author/year	proof computation time
1	2		< 1 second
2	5		< 1 second
3	14		1 second

∃ →

Image: A matrix

æ

k	S(k)	proof author/year	proof computation time
1	2		< 1 second
2	5		< 1 second
3	14		1 second
4	45	Golomb and Baumert '65	< 20 minutes

Image: A matrix

문 문 문

-

Table of all known Schur numbers:

k	S(k)	proof author/year	proof computation time
1	2		< 1 second
2	5		< 1 second
3	14		1 second
4	45	Golomb and Baumert '65	< 20 minutes
5	161	Heule '18	14 years

∃ →

2

k	S(k)	proof author/year	proof computation time
1	2		< 1 second
2	5		< 1 second
3	14		1 second
4	45	Golomb and Baumert '65	< 20 minutes
5	161	Heule '18	14 years

• Heule's proof relies on sophisticated **SAT** solving techniques and a massive computation.

k	S(k)	proof author/year	proof computation time
1	2		< 1 second
2	5		< 1 second
3	14		1 second
4	45	Golomb and Baumert '65	< 20 minutes
5	161	Heule '18	14 years

- Heule's proof relies on sophisticated **SAT** solving techniques and a massive computation.
- Longest proof in history!

k	S(k)	proof author/year	proof computation time
1	2		< 1 second
2	5		< 1 second
3	14		1 second
4	45	Golomb and Baumert '65	< 20 minutes
5	161	Heule '18	14 years

- Heule's proof relies on sophisticated **SAT** solving techniques and a massive computation.
- Longest proof in history!
- Our goal: study generalizations of Schur numbers called **Rado numbers** using SAT solvers