
Continuous cutting plane
algorithms

Andrea Lodi
Cornell Tech

andrea.lodi@cornell.edu

(joint work with Didier Chételat)

Trends in Computational Discrete Optimization
April 28, 2023 @ ICERM

Background

MILPs

As usual, we want to solve a mixed-integer linear program

To solve these problems, it is customary to obtain dual bounds.
The simplest way is through the LP relaxation

Valid inequalities

Inequality valid for all MILP-feasible points

“Valid inequality”

Add it: same MILP, but possibly tighter LP (= better dual bound)

Cutting planes

Cutting plane: valid inequality + some LP-feasible point (x*,z*)
() is cut off by the hyperplane if,

There are algorithms that, given a MILP, can produce cutting planes
in polynomial time.

GMI cutting plane algorithm

The prototype is Gomory’s mixed-integer cutting plane algorithm.

1) Solve the LP relaxation of the problem, yielding a basis matrix B.
2) The GMI cuts are

Add them to the problem, yielding a tighter MILP.

=

3) We can compute the LP relaxation of this extended MILP, yielding
its basis matrix B1.

4) We can compute its GMI cuts

Again, these can be added to the MILP yielding a tighter MILP

GMI cutting plane algorithm

Etc.

GMI cutting plane algorithm

Note that in terms of A, D and z, rank-2 cuts are

Continuous cuts optimization

We saw that the GMI rank-1 cuts were

But actually, it is well known that for any v, W,

are valid.

You get the classical GMI cuts as a special case by taking

GMI inequality “family”

Similarly, for any v1, W1, v2, W2=[W21, W22], the rank-2 GMI inequalities

are valid inequalities for the MILP, and we recover the classical GMI
cuts by

GMI inequality “family”

In general, we have families of inequalities for every “rank”, valid for
the MILP by construction, parametrized by continuous parameters
θ = (v1, W1, v2, W2, …).

Question: what if, instead of choosing the parameters that the GMI
separation algorithm tells us to take (θ = (B-1b, B-1, B1-1b1, B1-1, ...)), we try
to find other, potentially better parameters θ?

Of course, it is not a new idea but we will try to do it differently.

GMI inequality “family”

Criterion: try to find the parameters θ such that, when the inequalities
are added to the MILP, the LP dual bound is as high as possible

Challenge: really nasty nonlinear continuous optimization problem.

Optimization

Ad hoc two-step approach:
1. Solve the LP relaxation LPθ(A, b, c).
2. Take a gradient step to make the GMI family

inequalities Γθx + Δθz ≥ γθ cut off the
LP solution (x*, z*):

Algorithm

(α = small step size, e.g., 1e-3)

A computational environment for implementing the previous
algorithm is that of a Neural Network

Experiments

32 rank-1 GMI inequalities, randomly initialized

1000 variables
500 constraints

100 items
500 bids

300 nodes

20 customers
10 facilities
Discrete assignment

Cuts are added in rounds, but from one iteration to the other they
are removed from the LP relaxation

● the bound is not necessarily monotone, but
● the size of the LP stays small

In some sense, 32 cuts per round are iteratively improved and made
more robust (“distilled”), i.e., they are able to cut off simultaneously a
cloud of solutions of the LP relaxation.

Differently from the classical cutting plane methods, it seems that the
“memory” of the previous LPs remains (in some form) in the NN.

Discussion

Subadditive neural networks

LP duality

It is well known that every LP

has an associated equivalent dual LP

ILP duality

Every ILP

has an an associated equivalent infinite-
dimensional, “continuous” problem

Subadditive functions

A subadditive function is a function such that

Not necessarily differentiable, or even continuous, but to any
subadditive function, we can associate its “upper directional
derivative at zero” (UDDZ)

Recall “weighted tri” and “weighted abs” functions introduced to talk about
GMI cuts, namely

It turns out that for any v and any W,

is subadditive in y, and that absv(Wy) is its UDDZ, i.e.,

Example

Connection
There is an interesting connection between continuous cut
optimization and the subadditive dual.

Let us denote by Aθ, bθ, cθ the extended matrices obtained after adding
K rounds of GMI valid inequalities, parametrized by θ = (v1, W1, …, vK, WK).

We can rewrite our continuous cuts optimization problem as

by using LP duality, which, in turn, can be expanded as

Connection

Now, introduce the functions

where [,] denotes concatenation.
Note that each fk is subadditive, and has UDDZ

Then, our expression can be written (more or less) compactly as

Connection

Connection

Connection
Let us write

a function parametrized by (w, θ) = (w, v1, W1, …, vK, WK).
Then, we really showed that

Connection

Therefore, we have

i.e.,

continuous cuts optimization
= subadditive dual with a “subadditive neural net”, whose
subadditivity is guaranteed by the criterion of Theorem 1

Connection

Also:

1. classical GMI separation algorithm
= greedy layer-by-layer training of subadditive neural net

2. continuous cuts optimization
= end-to-end training of subadditive neural net

Diagram of a “subadditive neural network” f(y)

(= b, a1, …, an)

⠇

⠇

⠇

⠇

⠇

Thank you!

