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Background



MILPs

As usual, we want to solve a mixed-integer linear program

To solve these problems, it is customary to obtain dual bounds.
The simplest way is through the LP relaxation



Valid inequalities

Inequality valid for all MILP-feasible points                                                        

“Valid inequality”

Add it: same MILP, but possibly tighter LP (= better dual bound)



Cutting planes

Cutting plane: valid inequality + some LP-feasible point (x*,z*)
(                                             ) is cut off by the hyperplane if,                           

There are algorithms that, given a MILP, can produce cutting planes 
in polynomial time.



GMI cutting plane algorithm

The prototype is Gomory’s mixed-integer cutting plane algorithm.

1) Solve the LP relaxation of the problem, yielding a basis matrix B.
2) The GMI cuts are

Add them to the problem, yielding a tighter MILP.

=



3) We can compute the LP relaxation of this extended MILP, yielding
its basis matrix B1.

4) We can compute its GMI cuts

Again, these can be added to the MILP yielding a tighter MILP

GMI cutting plane algorithm

Etc.



GMI cutting plane algorithm

Note that in terms of A, D and z, rank-2 cuts are



Continuous cuts optimization



We saw that the GMI rank-1 cuts were

But actually, it is well known that for any v, W,

are valid.

You get the classical GMI cuts as a special case by taking 

GMI inequality “family”



Similarly, for any v1, W1, v2, W2=[W21, W22], the rank-2 GMI inequalities

are valid inequalities for the MILP, and we recover the classical GMI 
cuts by

GMI inequality “family”



In general, we have families of inequalities for every “rank”, valid for 
the MILP by construction, parametrized by continuous parameters 
θ = (v1, W1, v2, W2, …).

Question: what if, instead of choosing the parameters that the GMI 
separation algorithm tells us to take ( θ = (B-1b, B-1, B1-1b1, B1-1, ...) ), we try 
to find other, potentially better parameters θ?

Of course, it is not a new idea but we will try to do it differently.

GMI inequality “family”



Criterion: try to find the parameters θ such that, when the inequalities 
are added to the MILP, the LP dual bound is as high as possible

Challenge: really nasty nonlinear continuous optimization problem.

Optimization



Ad hoc two-step approach:
1. Solve the LP relaxation LPθ(A, b, c).
2. Take a gradient step to make the GMI family

inequalities Γθx + Δθz ≥ γθ cut off the 
LP solution (x*, z*):

Algorithm

(α = small step size, e.g., 1e-3)



A computational environment for implementing the previous 
algorithm is that of a Neural Network



Experiments



32 rank-1 GMI inequalities, randomly initialized



1000 variables
500 constraints



100 items
500 bids



300 nodes



20 customers
10 facilities
Discrete assignment



Cuts are added in rounds, but from one iteration to the other they 
are removed from the LP relaxation

● the bound is not necessarily monotone, but
● the size of the LP stays small

In some sense, 32 cuts per round are iteratively improved and made 
more robust (“distilled”), i.e., they are able to cut off simultaneously a 
cloud of solutions of the LP relaxation.

Differently from the classical cutting plane methods, it seems that the 
“memory” of the previous LPs remains (in some form) in the NN.

Discussion



Subadditive neural networks



LP duality

It is well known that every LP

has an associated equivalent dual LP



ILP duality

Every ILP

has an an associated equivalent infinite-
dimensional, “continuous” problem



Subadditive functions

A subadditive function is a function such that

Not necessarily differentiable, or even continuous, but to any 
subadditive function, we can associate its “upper directional 
derivative at zero” (UDDZ)



Recall “weighted tri” and “weighted abs” functions introduced to talk about 
GMI cuts, namely

It turns out that for any v and any W, 

is subadditive in y, and that absv(Wy) is its UDDZ, i.e.,

Example



Connection
There is an interesting connection between continuous cut 
optimization and the subadditive dual. 

Let us denote by Aθ, bθ, cθ the extended matrices obtained after adding 
K rounds of GMI valid inequalities, parametrized by θ = (v1, W1, …, vK, WK). 

We can rewrite our continuous cuts optimization problem as 

by using LP duality, which, in turn, can be expanded as



Connection



Now, introduce the functions

where [ , ] denotes concatenation. 
Note that each fk is subadditive, and has UDDZ

Then, our expression can be written (more or less) compactly as

Connection



Connection



Connection
Let us write

a function parametrized by (w, θ) = (w, v1, W1, …, vK, WK). 
Then, we really showed that





Connection

Therefore, we have

i.e.,

continuous cuts optimization
= subadditive dual with a “subadditive neural net”, whose 
subadditivity is guaranteed by the criterion of Theorem 1



Connection

Also:

1. classical GMI separation algorithm
= greedy layer-by-layer training of subadditive neural net

2. continuous cuts optimization
= end-to-end training of subadditive neural net



Diagram of a “subadditive neural network” f(y)

(= b, a1, …, an)
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Thank you!


