Convex hull of bounded monomials on two-variable cones

Pietro Belotti - DEIB, Politecnico di Milano
Trends in Computational Discrete Optimization, ICERM, 27 April 2023

Find the convex hull of

$$
\begin{aligned}
F= & \left\{\left(x_{1}, x_{2}, z\right) \in \mathbb{R}_{+}^{3}:\right. \\
& z=x_{1}^{a_{1}} x_{2}^{a_{2}}, \\
& \ell \leq z \leq u, \\
& \left.p x_{1} \leq x_{2} \leq q x_{1}\right\},
\end{aligned}
$$

with a_{1}, a_{2} positive, $0 \leq \ell<u$, and $0<p<q$.

Motivation

Mixed Integer Nonlinear Optimization (MINLO) problems

$$
\begin{array}{lll}
\min & f_{0}(\boldsymbol{x}) & \\
\text { s.t. } & f_{j}(\boldsymbol{x}) \leq b_{j} & \forall j=1,2, \ldots, m \\
& \ell_{i} \leq x_{i} \leq u_{i} & \forall i=1,2, \ldots, n \\
& \boldsymbol{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} &
\end{array}
$$

with f_{j} nonlinear, possibly nonconvex but factorable (i.e., "non-blackbox"), are solved to global optimality by

1. reformulation
2. branch-and-bound

Reformulate $S=\left\{\boldsymbol{x}: \sum_{j \in J} b_{j} \prod_{i \in \ell_{j}} x_{i}^{\mathrm{a}_{j}} \leq b_{0}\right\}$: add auxiliaries y, t.

$$
\begin{aligned}
& \sum_{j \in J} b_{j y_{j}} \leq b_{0} \\
& y_{j}=\prod_{i \in l_{1}} t_{j i} \\
& t_{j i}=x_{i}^{a_{j i}}
\end{aligned}
$$

Then a convex relaxation is $R=R^{\prime} \cap\left(\bigcap_{j \in J} R_{j}^{\prime \prime}\right) \cap\left(\bigcap_{i \in \ell_{j}, j \in J} R_{j i}^{\prime \prime \prime}\right)$

$$
\begin{array}{llll}
R^{\prime} & =\quad\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{t}): \sum_{j \in J} b_{j} y_{j} \leq b_{0}\right\} & & \\
R_{j}^{\prime \prime} \supseteq \operatorname{conv}\left(\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{t}): y_{j}=\prod_{i \in I_{j}} t_{j i}\right\}\right) & \forall j \in J & \\
R_{j i}^{\prime \prime \prime} \supseteq \operatorname{conv}\left(\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{t}): t_{j i}=x_{i}^{a_{i j}}\right\}\right) & \forall i \in I_{j}, \quad \forall j \in J
\end{array}
$$

R may not be the convex hull of S even if $R^{\prime \prime}$ and $R^{\prime \prime \prime}$ are tightest Example: $x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2} \leq 1$.

$$
2 x_{1} x_{2}^{3}+3 x_{1} x_{2}-4 x_{1}^{2} x_{2}^{6} \leq 2
$$

with $x_{1} \in[0,2]$ and $x_{2} \in[0,1]$, is reformulated as

$$
\begin{aligned}
& 2 y_{1}+3 y_{2}-4 y_{3} \leq 2 \\
& y_{1}=x_{1} t_{1} \quad y_{2}=x_{1} x_{2} \quad y_{3}=t_{2} t_{3} \\
& t_{1}=x_{2}^{3} \quad t_{2}=x_{1}^{2} \quad t_{3}=x_{2}^{6}
\end{aligned}
$$

A convex relaxation is

$$
\begin{array}{rlrl}
2 y_{1}+3 y_{2}-4 y_{3} & \leq 2 \\
t_{1} \geq x_{2}^{3} & t_{1} & \leq x_{2} \\
t_{2} \geq x_{1}^{2} & t_{2} & \leq 2 x_{1} \\
t_{3} \geq x_{2}^{6} & t_{3} & \leq x_{2}
\end{array}
$$

plus all McCormick inequalities for $y_{1}=x_{1} t_{1}, y_{2}=x_{1} x_{2}$, and $y_{3}=t_{2} t_{3}$.

Known convex hulls

$$
B=\left\{\left(x_{1}, x_{2}, z\right): z=x_{1} x_{2}, x_{1} \in\left[\ell_{1}, u_{1}\right], x_{2} \in\left[\ell_{2}, u_{2}\right]\right\}
$$

The convex hull is (McCormick '76, Al-Khayyal \& Falk '83)

$$
\begin{aligned}
& H=\left\{\left(x_{1}, x_{2}, z\right):\right. \\
& z \geq \ell_{2} x_{1}+\ell_{1} x_{2}-\ell_{2} \ell_{1} \\
& z \geq u_{2} x_{1}+u_{1} x_{2}-u_{2} u_{1} \\
& z \leq \ell_{2} x_{1}+u_{1} x_{2}-\ell_{2} u_{1} \\
& \left.z \leq u_{2} x_{1}+\ell_{1} x_{2}-u_{2} \ell_{1}\right\}
\end{aligned}
$$

Bounded multilinear functions

With bounds on z in a bilinear set, i.e.,

$$
B^{\prime}=\left\{\left(x_{1}, x_{2}, z\right): z=x_{1} x_{2}, x_{1} \in\left[\ell_{1}, u_{1}\right], x_{2} \in\left[\ell_{2}, u_{2}\right], z \in[\ell, u]\right\},
$$

the McCormick inequalities alone don't give the convex hull.

- There are infinitely many additional inequalities ${ }^{1}$ for the upper envelope of B^{\prime}, i.e. of the form $z \leq c_{1} x_{1}+c_{2} x_{2}+c_{0}$;
- The convex hull of B^{\prime} is the union of three sets ${ }^{2}$, each a subset of a second-order cone, i.e. $\boldsymbol{c}^{T} \boldsymbol{x}+c_{0} \geq\|G \boldsymbol{x}+\boldsymbol{g}\|_{2}$.

[^0]It would be really nice to find the convex hull of

$$
B^{\prime \prime}=\left\{\left(x_{1}, x_{2}, z\right) \in \mathbb{R}_{+}^{3}: z=x_{1}^{a_{1}} x_{2}^{a_{2}}, x_{1} \in\left[\ell_{1}, u_{1}\right], x_{2} \in\left[\ell_{2}, u_{2}\right], z \in[\ell, u]\right\},
$$

for general a_{1}, a_{2} (for $a_{1}, a_{2} \geq 1$ see Nguyen et al. 2018^{3}). Instead we'll talk about the convex hull of

$$
F=\left\{\left(x_{1}, x_{2}, z\right) \in \mathbb{R}_{+}^{3}: z=x_{1}^{a_{1}} x_{2}^{a_{2}}, p x_{1} \leq x_{2} \leq q x_{1}, z \in[\ell, u]\right\} .
$$

for $0 \leq \ell<u$ and $0<p<q$.

[^1]
Upper envelopes in $n \geq 2$ dimensions

(The easy part)

Definition

Given $T \subseteq \mathbb{R}^{n}$ and a function $f: T \rightarrow \mathbb{R}$,

- The epigraph of f in T is $\operatorname{epi}(f, T)=\{(\boldsymbol{x}, z) \in T \times \mathbb{R}: z \geq f(\boldsymbol{x})\}$
- The hypograph of f in T is $\operatorname{hyp}(f, T)=\{(\boldsymbol{x}, z) \in T \times \mathbb{R}: z \leq f(\boldsymbol{x})\}$.

Definition

Given $T \subseteq \mathbb{R}^{n}$ and a function $f: T \rightarrow \mathbb{R}$, the lower envelope $E_{L}(f, T)$ (resp. upper envelope $E_{U}(f, T)$) of f over T is the convex hull of the epigraph (resp. hypograph) of f in T.

Upper envelope for F_{0} if $\beta \leq 1$

Consider $n \geq 2, N=\{1,2, \ldots, n\}$, and $f(x)=\prod_{k \in N} x_{k}^{a_{k}}$. Define

$$
F_{0}=\left\{(\boldsymbol{x}, z) \in \mathbb{R}_{+}^{n} \times \mathbb{R}: z=f(\boldsymbol{x}), z \in[\ell, u]\right\}
$$

Also, define $\beta:=\sum_{k \in N} a_{i}$ and

$$
F_{0}^{\leq}=\left\{(\boldsymbol{x}, z) \in \mathbb{R}_{+}^{n} \times \mathbb{R}: z \leq f(\boldsymbol{x}), z \in[\ell, u]\right\} .
$$

Fact: $\boldsymbol{f}(\boldsymbol{x})$ is concave if $\beta \leq 1$, nonconvex \& nonconcave otherwise.

Lemma

If $\beta \leq 1$, then $\operatorname{conv}\left(F_{0}\right)=F_{0}^{\leq}$.

For $\beta \geq 1$, consider the cone

$$
\mathcal{K}=\left\{(\boldsymbol{x}, z) \in \mathbb{R}_{+}^{n} \times \mathbb{R}:\left(z-z_{0}\right)^{\beta} \leq \gamma \prod_{k \in N} x_{k}^{a_{k}}\right\}
$$

(its vertex is $\left(\mathbf{0}, z_{0}\right)$) with z_{0}, γ such that

$$
\begin{aligned}
& \{(\boldsymbol{x}, z) \in \mathcal{K}: z=\ell\}=\left\{(\boldsymbol{x}, z) \in F_{0}: z=\ell\right\} \\
& \{(\boldsymbol{x}, z) \in \mathcal{K}: z=u\}=\left\{(\boldsymbol{x}, z) \in F_{0}: z=u\right\} \\
& \Rightarrow \quad z_{0}=\frac{u^{\frac{1}{\beta}} \ell-\ell^{\frac{1}{\beta}} u}{u^{\frac{1}{\beta}}-\ell^{\frac{1}{\beta}}}, \quad \gamma=\left(\frac{u-\ell}{u^{\frac{1}{\beta}}-\ell^{\frac{1}{\beta}}}\right)^{\beta} .
\end{aligned}
$$

Lemma

If $\beta \geq 1$, then $\operatorname{conv}\left(F_{0}\right)=\{(\boldsymbol{x}, z) \in \mathcal{K}: \ell \leq z \leq u\}$.

A two-variable cone appears!

For any $i, j \in N$ with $i \neq j$, consider the set

$$
F=\left\{(\boldsymbol{x}, z) \in \mathbb{R}_{+}^{n} \times \mathbb{R}: z=f(\boldsymbol{x}), z \in[\ell, u], p x_{i} \leq x_{j} \leq q x_{i}\right\} .
$$

(bounded for $n=2$, unbounded for $n>2$).

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1}^{1.7} x_{2}^{1.5} \in[0.4,10] \text { with } \\
& p=0.35, q=3 .
\end{aligned}
$$

Recall $f(\boldsymbol{x})=\prod_{i \in N} x_{i}^{a_{j}}$.
Define $W_{i j}:=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: p x_{i} \leq x_{j} \leq q x_{i}\right\}$
Define $X:=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: f(\boldsymbol{x}) \in[\ell, u]\right\}$.

Lemma $(\beta \geq 1)$

The upper envelope of f on $W_{i j} \cap X$ is

$$
\begin{aligned}
H= & \left\{(\boldsymbol{x}, z) \in \mathbb{R}_{+}^{n} \times \mathbb{R}:\right. \\
& \left(z-z_{0}\right)^{\beta} \leq \gamma \prod_{k \in N} x_{k}^{a_{k}}, \\
& z \in[\ell, u], \\
& \left.p x_{i} \leq x_{j} \leq q x_{i}\right\} .
\end{aligned}
$$

Lemma $(\beta \leq 1)$
The upper envelope of f on $W_{i j} \cap X$ is

$$
\begin{aligned}
H= & \left\{(\boldsymbol{x}, z) \in \mathbb{R}_{+}^{n} \times \mathbb{R}:\right. \\
& z \leq \prod_{k \in N} x_{k}^{a_{k}}, \\
& z \in[\ell, u], \\
& \left.p x_{i} \leq x_{j} \leq q x_{i}\right\} .
\end{aligned}
$$

\Rightarrow Same as upper envelope of F_{0} with $\left\{(\boldsymbol{x}, z): p x_{i} \leq x_{j} \leq q x_{i}\right\}$ (unlike bounds on x_{1}, x_{2}).

Lower envelopes ($n \geq 2$)

For any $\xi \in \mathbb{R}$, consider the level set $C_{\xi}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}: x_{1} x_{2}=\xi\right\}$.
For p, q with $0<p<q$, define $\boldsymbol{x}^{(p)}$ and $\boldsymbol{x}^{(q)}$ as the intersections of C_{ξ} with $x_{2}=p x_{1}$ and with $x_{2}=q x_{1}$ respectively.

Property

The slope of the line through $\boldsymbol{x}^{(p)}$ and $\boldsymbol{x}^{(q)}$ is independent of ξ.

$x_{1} x_{2}, p=0.35, q=3$

$x_{1}^{0.3} x_{2}^{0.6}, p=0.19, q=3.6$

Proposition

Given $\boldsymbol{a} \in \mathbb{R}_{+}^{n}, i, j \in N$ with $i \neq j$, and $p, q \in \mathbb{R}_{+}$with $0<p<q$, there exist $d_{i}<0$ and $d_{j}>0$ such that for any \check{x} that satisfies $\check{x}_{j}=p \check{x}_{i}$ and $\prod_{i \in N} \check{x}_{i}^{a_{i}}=\xi$, there exists a solution $(\bar{s}, \overline{\boldsymbol{x}}) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{n}$ to the nonlinear system

$$
\begin{aligned}
& \bar{x}_{j}=q \bar{x}_{i} \\
& \left(\bar{x}_{i}, \bar{x}_{j}\right)=\left(\check{x}_{i}+\bar{s} d_{i}, \check{x}_{j}+\bar{s} d_{j}\right) \\
& \bar{x}_{k}=\check{x}_{k} \quad \forall k \notin\{i, j\} \\
& \prod_{k \in N} \bar{x}_{k}^{a_{k}}=\xi .
\end{aligned}
$$

\Rightarrow Bijection: $S_{p}:=\left\{\boldsymbol{x}: x_{j}=p x_{i}, f(\boldsymbol{x})=\xi\right\} \quad \longleftrightarrow \quad S_{q}:=\left\{\boldsymbol{x}: x_{j}=q x_{i}, f(\boldsymbol{x})=\xi\right\}$ Every pair $\left(\boldsymbol{x}^{(p)}, \boldsymbol{x}^{(q)}\right) \in S_{p} \times S_{q}$ is on a line with slope $\left(0,0, \ldots, d_{i}, 0, \ldots, d_{j}, 0, \ldots, 0\right)$ independent of ξ.

1. Replace $\quad\left(\bar{x}_{i}, \bar{x}_{j}\right)=\left(\check{x}_{i}+\bar{s} d_{i}, \check{x}_{j}+\bar{s} d_{j}\right)$ with $\quad\left(\bar{x}_{i}, \bar{x}_{j}\right)=\left(\eta_{i} \check{x}_{i}, \eta_{j} \check{x}_{j}\right)$
2. η_{i} and η_{j} are such that $\frac{\eta_{j}}{\eta_{i}}=\frac{q}{p}$ and $\eta_{i}^{a_{i}} \eta_{j}^{a_{j}}=1$
\Rightarrow Find $\eta_{i}=(q / p)^{-\frac{\partial_{j}}{a_{i}+a_{j}}}, \eta_{j}=(q / p)^{\frac{a_{j}}{a_{i}+a_{j}}}$
3. Solving for \bar{s} yields $\frac{d_{i}}{d_{j}} \frac{\eta_{j}-1}{\eta_{i}-1}=\frac{1}{p}$
\Rightarrow Can find d_{i} and d_{j} independent of ξ

$$
\begin{aligned}
d_{i} & =q^{-a_{j} /\left(a_{i}+a_{j}\right)}-p^{-a_{j} /\left(a_{i}+a_{j}\right)} \\
d_{j} & =q^{a_{i} /\left(a_{i}+a_{j}\right)}-p^{a_{i} /\left(a_{i}+a_{j}\right)}
\end{aligned}
$$

On the direction $\left(d_{i}, d_{j}\right)$, the value of $f(\boldsymbol{x})$ is the same across the two half-lines $x_{j}=p x_{i}$ and $x_{j}=q x_{i}$.
\Rightarrow On an orthogonal direction $\left(d_{j},-d_{i}\right)$, we can define a function whose level curves are precisely the lines with direction $\left(d_{i}, d_{j}\right)$.

$$
\begin{aligned}
P_{i j} & :=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: x_{j}=p x_{i}\right\} \\
Q_{i j} & :=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: x_{j}=q x_{i}\right\} \\
W_{i j} & :=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: p x_{i} \leq x_{j} \leq q x_{i}\right\} \\
X & :=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: f(\boldsymbol{x}) \in[\ell, u]\right\} . \\
C_{\xi} & :=\left\{\boldsymbol{x} \in \mathbb{R}_{+}^{n}: x_{i} x_{j}=\xi\right\}
\end{aligned}
$$

Proposition

The function
$f_{\ell}^{\prime}(\boldsymbol{x})=\lambda\left(d_{j} x_{i}-d_{i} x_{j}\right)^{a_{i}+a_{j}} \prod_{k \in N \backslash\{i, j\}} x_{k}^{a_{k}}$, with
$\lambda=p^{a_{j}} /\left(d_{j}-d_{i} p\right)^{a_{i}+a_{j}}$,

1. matches the value of $f(\boldsymbol{x})$ for $\boldsymbol{x} \in P_{i j} \cup Q_{i j}$;
2. is $\leq f(\boldsymbol{x})$ for $\boldsymbol{x} \in W_{i j}$;
3. is the lower envelope of $f(\boldsymbol{x})$ in $W_{i j}$ for $n=2$ and $\beta=a_{1}+a_{2} \geq 1$.

Proposition

For $\beta \leq 1$, the function

$$
f_{\ell}^{\prime \prime}(\boldsymbol{x})=\zeta\left(d_{j} x_{i}-d_{i} x_{j}\right)^{\frac{a_{i}+a_{j}}{\beta}}\left(\prod_{k \in N \backslash\{i, j\}} x_{k}^{a_{k}}\right)^{\frac{1}{\beta}}+\zeta_{0}
$$

with $\zeta=\lambda^{1 / \beta} \frac{u-\ell}{u^{1 / \beta}-\ell^{1 / \beta}}$ and ζ_{0} equal to z_{0} defined for \mathcal{K},

1. matches $f(x)$ at $\left(P_{i j} \cup Q_{i j}\right) \cap\left(C_{\ell} \cup C_{u}\right)$;
2. is $\leq f(\boldsymbol{x})$ in $X \cap W_{i j}$;
3. is the lower envelope of f over

$$
\operatorname{conv}\left(\left(P_{i j} \cup Q_{i j}\right) \cap\left(C_{\ell} \cup C_{u}\right)\right) \text { for } n=2
$$

$$
f_{\ell}^{\prime \prime}(\boldsymbol{x})=\zeta\left(d_{j} x_{i}-d_{i} x_{j}\right)^{\frac{a_{i}+a_{j}}{\beta}}\left(\prod_{k \in N \backslash\{i, j\}} x_{k}^{a_{k}}\right)^{\frac{1}{\beta}}+\zeta_{0}
$$

1. $f_{\ell}^{\prime \prime}(\boldsymbol{x})$ matches $f(\boldsymbol{x})$ at $\left(P_{i j} \cup Q_{i j}\right) \cap\left(C_{\ell} \cup C_{u}\right)$:

Reduces to solving a linear system in ζ, ζ_{0};
2. $f_{\ell}^{\prime \prime}(x) \leq f(x)$ in $X \cap W_{i j}$:

The conic function $f_{u}(\boldsymbol{x})=z_{0}+\left(\prod_{i \in N} x_{i}^{a_{i}}\right)^{\frac{1}{\beta}}$ giving the upper envelope for $\beta \geq 1$ is actually a lower bounding function for $f(\boldsymbol{x})$ when $\beta \leq 1$, so $f_{u}(\boldsymbol{x}) \leq f(\boldsymbol{x})$. Proving that $f_{\ell}^{\prime \prime}(\boldsymbol{x}) \leq f_{u}(\boldsymbol{x})$ is easy as they have the same structure.
3. $f_{\ell}^{\prime \prime}(x)$ is the lower envelope of f over $\operatorname{conv}\left(\left(P_{i j} \cup Q_{i j}\right) \cap\left(C_{\ell} \cup C_{u}\right)\right)$ for $n=2$:

For $n=2$ the function is linear; it matches the (concave) function $f(\boldsymbol{x})$ at the extreme points of $\operatorname{conv}\left(\left(P_{i j} \cup Q_{i j}\right) \cap\left(C_{\ell} \cup C_{u}\right)\right)$, i.e. the four points composing $\left(P_{i j} \cup Q_{i j}\right) \cap\left(C_{\ell} \cup C_{u}\right)$ itself.

Upper envelope (for $\beta \geq 1$)

Remarks

The above gives us the convex hull of F for $n=2$ (next slides).
For $\beta \geq 1$,

- the conic function $f_{U}(\boldsymbol{x}):=z_{0}+(\gamma f(\boldsymbol{x}))^{\frac{1}{\beta}}$ is the upper envelope;
- f_{U} matches f for $f(x) \in\{\ell, u\}$;
- the non-linear function $f_{L}^{\prime}(\boldsymbol{x})=\lambda\left(d_{2} x_{1}-d_{1} x_{2}\right)^{\beta}$ matches f for $\frac{x_{2}}{x_{1}} \in\{p, q\}$.

For $\beta \leq 1$,

- the function $f(\boldsymbol{x})$ is concave, so it forms its own upper envelope;

■ the linear function $f_{L}^{\prime \prime}(\boldsymbol{x})=\zeta\left(d_{2} x_{1}-d_{1} x_{2}\right)+\zeta_{0}$ only matches f in four points: the intersections of $x_{2}=p x_{1} \vee x_{2}=q x_{1}$ with $f(\boldsymbol{x}) \in\{\ell, u\}$.

Theorem

The convex hull of

$$
F=\left\{\left(x_{1}, x_{2}, z\right) \in \mathbb{R}_{+}^{3}: z=x_{1}^{a_{1}} x_{2}^{a_{2}}, z \in[\ell, u], p x_{1} \leq x_{2} \leq q x_{1}\right\}
$$

is

For $\beta \geq 1$	For $\beta \leq 1$
$\begin{aligned} H= & \left\{\left(x_{1}, x_{2}, z\right) \in \mathbb{R}_{+}^{3}:\right. \\ & z \geq \max \left\{\ell, \lambda\left(d_{2} x_{1}-d_{1} x_{2}\right)^{\beta}\right\}, \\ & z \leq \min \left\{u, z_{0}+\left(\gamma x_{1}^{a_{1}} x_{2}^{a_{2}}\right)^{\frac{1}{\beta}}\right\}, \\ & \left.p x_{1} \leq x_{2} \leq q x_{1}\right\} \end{aligned}$	$\begin{aligned} H= & \left\{\left(x_{1}, x_{2}, z\right) \in \mathbb{R}_{+}^{3}:\right. \\ & z \geq \max \left\{\ell, \zeta\left(d_{2} x_{1}-d_{1} x_{2}\right)+\zeta_{0}\right\}, \\ & z \leq \min \left\{u, x_{1}^{a_{1}} x_{2}^{a_{2}}\right\}, \\ & \left.p x_{1} \leq x_{2} \leq q x_{1}\right\} . \end{aligned}$

Volume of the convex hull (for $n=2$)

For both $\beta \geq 1$ and $\beta \leq 1$, the convex hull is defined by two inequalities:

$$
\begin{aligned}
H= & \left\{(\boldsymbol{x}, z): \max \left\{\ell, g_{1}(\boldsymbol{x})\right\} \leq z \leq \min \left\{u, g_{2}(\boldsymbol{x})\right\}\right. \\
& \left.p x_{1} \leq x_{2} \leq q x_{1}\right\} .
\end{aligned}
$$

The volume could be computed as the integral of the difference:

$$
\min \left\{u, g_{2}(\boldsymbol{x})\right\}-\max \left\{\ell, g_{1}(\boldsymbol{x})\right\}
$$

but this would be a nightmare.

Key observation: the cross-section of H at $z=\xi$ has the same structure for $\xi \in[\ell, u]$, both for $\beta \geq 1$ and for $\beta \leq 1$.

Specifically, the structure only depends on whether $\beta \geq 1$ or $\beta \leq 1$.
Idea: compute the area of

$$
A(\xi)=\{(\boldsymbol{x}, z) \in H: z=\xi\}
$$

then the volume of the convex hull is

$$
V=\int_{\ell}^{u} A(\xi) d \xi
$$

Cross-section at $z=\xi$

Volume of the convex hull $(\beta \geq 1)$

Area:

$$
A(\xi)=b_{1} \xi^{\frac{2}{\beta}}+b_{2}\left(\xi-z_{0}\right)^{2}+b_{3}\left(\xi-z_{0}\right)^{1+\frac{1}{a_{2}}}
$$

for opportune values of b_{1}, b_{2}, b_{3} which depend on $a_{1}, a_{2}, p, q, \ell, u$.
Volume:

$$
\begin{aligned}
V= & {\left[b_{1} \frac{\beta}{\beta+2} z^{1+\frac{2}{\beta}}+\frac{1}{3} b_{2}\left(z-z_{0}\right)^{3}+\frac{a_{2}}{2 a_{2}+1} b_{3}\left(z-z_{0}\right)^{2+\frac{1}{a_{2}}}\right]_{\ell}^{u} } \\
= & b_{1} \frac{\beta}{\beta+2}\left(u^{1+\frac{2}{\beta}}-\ell^{1+\frac{2}{\beta}}\right)+\frac{1}{3} b_{2}\left(\left(u-z_{0}\right)^{3}-\left(\ell-z_{0}\right)^{3}\right)+ \\
& \frac{a_{2}}{2 a_{2}+1} b_{3}\left(\left(u-z_{0}\right)^{2+\frac{1}{a_{2}}}-\left(\ell-z_{0}\right)^{2+\frac{1}{a_{2}}}\right)
\end{aligned}
$$

Branching rules

Suppose we write a branch-and-bound algorithm that uses such convex hulls to find a lower bound at each node.

In order to maintain the structure, only two branching rules should be used for

$$
\left\{\left(x_{1}, x_{2}, z\right): z=f(x), z \in[\ell, u], p x_{1} \leq x_{2} \leq q x_{1}\right\}
$$

- select $r \in(p, q)$, then branch on

$$
x_{2} \leq r x_{1} \quad \vee \quad x_{2} \geq r x_{1}
$$

as this will create two subproblems, with constraints $p x_{1} \leq x_{2} \leq r x_{1}$ and $r x_{1} \leq x_{2} \leq q x_{1}$, respectively;

- select $\xi \in(\ell, u)$, then branch on

$$
z \leq \xi \quad \vee \quad z \geq \xi
$$

We know the closed form of the volume $V(\ell, u, p, q)$, so we can find ξ and r to satisfy either of the following two criteria:

■ Minimize the total resulting volume: $V(\ell, \xi, p, q)+V(\xi, u, p, q)$ if we branch on z or $V(\ell, u, p, r)+V(\ell, u, r, q)$ if we branch on x_{2} / x_{1}.

- Make the volumes of the two branches equal (balanced branching), i.e., $V(\ell, \xi, p, q)=V(\xi, u, p, q)$ or $V(\ell, u, p, r)=V(\ell, u, r, q)$.

Using $p x_{1} \leq x_{2} \leq q x_{1}$ instead of $\left(x_{1}, x_{2}\right) \in\left[\ell_{1}, u_{1}\right] \times\left[\ell_{2}, u_{2}\right]$ has its pros and cons.

+ we have a convex hull;
- we can't always find tight p or q.

Using the convex hull within a branch-and-bound requires us to maintain the structure via two branching rules:

- on the ratio x_{2} / x_{1} (tricky);

■ on z; closer to usual branching rules, though z is most likely auxiliary.
But there is no experimental support yet for whether these branching rules are effective or not.

References

Pe Belotti (2023), "Convex hull of bounded monomials on two-variable cones", submitted.
TT Nguyen, JPP Richard, M Tawarmalani, "Deriving convex hulls through lifting and projection," Mathematical Programming 169.2 (2018): 377-415.
KM Anstreicher, S Burer, and K Park. Convex hull representations for bounded products of variables. J. of Global Optimization, 80:757-778, 2021.

Thank you

pietro.belotti@polimi.it

[^0]: ${ }^{1}$ P. B., A. J. Miller, and M. Namazifar. Valid inequalities and convex hulls for multilinear functions. Electronic Notes in Discrete Math. 36:805-812, 2010.
 ${ }^{2}$ K. M. Anstreicher, S. Burer, and K. Park. Convex hull representations for bounded products of variables. J. of Global Optimization, 80:757-778, 2021.

[^1]: ${ }^{3}$ Nguyen, Trang T., Jean-Philippe P. Richard, and Mohit Tawarmalani, "Deriving convex hulls through lifting and projection," Mathematical Programming 169.2 (2018): 377-415.

