Pierre Bonami, Tobias Achterberg Gurobi R&D

Gurobi Machine Learning

Using Trained Machine Learning Predictors in Gurobi

Agenda

Motivating Example

gurobi-machinelearning

Related Improvements in Gurobi 10.0

Performance Evaluation

Motivating Example

- Selling avocados in the US
 - Market is split into 8 regions $r \in R$
 - Total supply S
 - Want to decide shipment to each region
 - Maximizing profit:
 - sales shipping costs unsold penalty
 - with given
 - prices p_r , shipping costs c_r , waste penalty w
 - demand d_r in each region
- Demand estimated using a regression model

See webinar by Rahul Swamy and Jerry Yurchisin

Motivating Example: Estimating Demand

- Historical data of avocado sales from Hass Avocado Board (HAB) available on Kaggle and HAB website
- Features correlated to demand: year, peak season, region, price
- Regression gives reasonably good prediction of demand with those:
 - d = g(year, season, r, p)
- Regression performed with some machine learning package like scikit-learn
 - Linear regression
 - Logistic regression
 - Neural networks
 - Decision trees
 - Gradient boosted trees
 - ...

Motivating Example: Price Optimization

- A more complex problem: optimize the price p_r
- To do so, we need to model the relationship
 - d = g(year, season, r, p)
 - in the optimization problem
- *d* and *p* become variables for the optimization
- <u>Notebook</u> developed by J. Yurchisin and R. Swamy

Definitions and Scope

- In an optimization model we want to formulate y = g(x)
 - *x* input variables for the regression
 - *g* prediction function for trained regression model
 - y output variables
- x and y are regular decision variables:
 - Can appear in other constraints
 - Can be partially fixed (fixed features)
- g should be trained a priori by a (popular) python framework

Related works:

- Janos (Bergman et al. 2019)
- OptiCL (Maragno et al. 2021)
- ReluMIP (Schweidtmann, Mitsos 2018, 2021)
- <u>OMLT</u> (Ceccon et al. 2022)

Bergman, Huang, Brooks, Lodi, Raghunatha

Maragno, Wiberg, Bertsimas, Birbil, den Hertog, Fajemisin

Ceccon, Jalving, Haddad, Thebelt, Tsay, Laird, Misenei

Gurobi Machine Learning

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 7

Gurobi Machine Learning

- Open source python package:
 - <u>https://github.com/Gurobi/gurobi-machinelearning</u>
 - <u>https://gurobi-machinelearning.readthedocs.io/</u>
- Apache License 2.0
- Initial release 1.0.0 last November
- Version 1.2.0 recently released
- Supported only on a good-will basis, not through usual Gurobi support
 - But we will certainly do our best!

Regression Models Understood

- Linear/Logistic regression
- Decision trees
- Neural network with ReLU activation
- Random Forests
- Gradient Boosting
- Preprocessing:
 - Simple scaling
 - Polynomial features of degree 2
 - Column transformers
- Pipelines to combine them

- Dense layers
- ReLU layers
- Object Oriented, functional or sequential

O PyTorch

- Dense layers
- ReLU layers
- Only torch.nn.Sequential models

Example: Regression Model with sklearn

 R^2 value in the test set is 0.90, training set is 0.91

 $R^2 \in (\infty, 1]$: coefficient of determination

Example: Creating the Variables

m = gp.Model("Avocado_Price_Allocation") • Variables

р d

u

= C = b = L	<pre>gppd.add_vars(m gppd.add_vars(m m.addVar()</pre>			 <i>p_r</i> selling price per <i>d_r</i> demand <i>u</i> total unsold proc 	
			price	demand	
		Great_Lakes	<gurobi.var price[great_lakes]=""></gurobi.var>	<gurobi.var demand[great_lakes]=""></gurobi.var>	
		Midsouth	<gurobi.var price[midsouth]=""></gurobi.var>	<gurobi.var demand[midsouth]=""></gurobi.var>	
		Northeast	<gurobi.var price[northeast]=""></gurobi.var>	<gurobi.var demand[northeast]=""></gurobi.var>	
		Northern_New_England	<gurobi.var price[northern_new_england]=""></gurobi.var>	<gurobi.var demand[northern_new_england]=""></gurobi.var>	
		SouthCentral	<gurobi.var price[southcentral]=""></gurobi.var>	<gurobi.var demand[southcentral]=""></gurobi.var>	
		Southeast	<gurobi.var price[southeast]=""></gurobi.var>	<gurobi.var demand[southeast]=""></gurobi.var>	
		West	<gurobi.var price[west]=""></gurobi.var>	<gurobi.var demand[west]=""></gurobi.var>	
		Plains	<gurobi.var price[plains]=""></gurobi.var>	<gurobi.var demand[plains]=""></gurobi.var>	

- n_r selling price per unit
- roducts

Example: Objective and Constraints

m.setObjective(((p - c) * d).sum() - w * u, GRB.MAXIMIZE)
m.addConstr(d.sum() + u == S)

add_predictor_constr(m, pipeline, feats, d)

gurobipy-machinelearning

Example: Input of Regression Constraints

```
d_r = g(year, season, r, p_r) for r \in R
```

```
year peak
                                                                                                       region
                                                                                                                                          price
feats = pd.DataFrame(
                                                                   Great_Lakes 2020
                                                                                                   Great Lakes
                                                                                                                      <gurobi.Var price[Great Lakes]>
                                                                                        1
       data={
                                                                      Midsouth 2020
                                                                                                     Midsouth
                                                                                        1
                                                                                                                         <gurobi.Var price[Midsouth]>
               "year": 2020,
                                                                     Northeast 2020
                                                                                        1
                                                                                                     Northeast
                                                                                                                        <gurobi.Var price[Northeast]>
               "peak": 1,
                                                           Northern_New_England 2020
                                                                                        1
                                                                                         Northern_New_England <gurobi.Var price[Northern_New_England]>
               "region": regions,
                                                                   SouthCentral 2020
                                                                                        1
                                                                                                  SouthCentral
                                                                                                                      <gurobi.Var price[SouthCentral]>
               "price": p
                                                                     Southeast 2020
                                                                                        1
                                                                                                    Southeast
                                                                                                                        <gurobi.Var price[Southeast]>
                                                                          West 2020
                                                                                        1
                                                                                                        West
                                                                                                                            <gurobi.Var price[West]>
       },
                                                                         Plains 2020
                                                                                        1
                                                                                                        Plains
                                                                                                                           <gurobi.Var price[Plains]>
       index=regions)
```


Example: Adding Regression Constraints

from gurobi_ml import add_predictor_constr
pred_constr = add_predictor_constr(m, pipeline, feats, d)
pred_constr.print_stats()

```
Model for pipe:
88 variables
24 constraints
Input has shape (8, 4)
Output has shape (8, 1)
```

Pipeline has 2 steps:

Step	Output Shape	Variables	Constraints Linear Quadratic Ge		
col_trans	(8, 10)	24	 16	0	 0
lin_reg	(8, 1)	64	8	0	0

Example: Optimizing

m.Params.NonConvex = 2

m.optimize()

Explored 1 nodes (75 simplex iterations) in 0.04 seconds (0.00 work units) Thread count was 8 (of 8 available processors)

Solution count 2: 38.7675 36.5918

Optimal solution found (tolerance 1.00e-04) Best objective 3.876747585682e+01, best bound 3.876937455959e+01, gap 0.0049%

Example: Solution

Optimal net revenue: 38.1 million, unsold avocados: 0.34 millions

Comparison of Models for Price Optimization

	R ² test	R ² train	train time	optimization time	size
Linear Regression	0.898	0.909	0.02	0.05	1.0
Linear Regression polynomial feats	0.918	0.922	0.03	0.06	6.3
MLP Regression layers=[8]*2	0.941	0.950	1.08	0.97	6.1
Decision Tree max_leaf_nodes=50	0.921	0.941	0.02	0.02	3.9
Random Forest n_estimators=10, max_leaf_nodes=100	0.943	0.966	0.04	0.10	66.2
Gradient Boosting	0.946	0.958	0.15	0.41	84.5

for r in regressions_models:
 pred_constr = add_predictor_constr(m, r, feats, d)
 m.optimize()
 pred_constr.remove()

(size is the ratio between the size of the compressed lp files for regression model and linear regression)

Other Examples

- Gurobi Machine Learning package documentation:
 - Surrogate models (Polynomial features + NN)
 - Student Enrollment (Logistic regression)
 - Adversarial learning (Neural networks)
- Extra notebooks:
 - Variants of adversarial using Keras and Pytorch
 - Variants of Student Enrollment with Decision Trees, Gradient Boosted Trees and Random Forests
- References:
 - Bergman et al. 2019
 - Maragno et al. 2021
 - Schweidtmann, Mitsos 2018, 2021
 - Leyffer et al. 2022

Gurobi 10 Enhancements

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

Gurobi 10.0

- New features for models with ML predictor constraints
 - Logistic function as general function constraint
- Performance improvements relevant for models with ML predictor constraints
 - Optimization based bound tightening (OBBT)
 - Neural network detection

Gurobi 10.0

- New features for models with ML predictor constraints
 - Logistic function as general function constraint
- Performance improvements relevant for models with ML predictor constraints
 - Optimization based bound tightening (OBBT)
 - Neural network detection

Neural Networks with ReLU

Each neuron k has the following constraints/variables:

 $y_{mix} = w^T x_{in} + d$ $y_{out} = max(y_{mix}, 0)$

• The max function is nonlinear and formulated using a binary variable and big-M constraints

Neural Networks with ReLU

• Each neuron *k* has the following constraints/variables:

 $y_{mix} = w^T x_{in} + d$ $y_{out} = max(y_{mix}, 0)$

- The max function is nonlinear and formulated using a binary variable and big-M constraints
- Tightness of the formulation depends on bounds that can be inferred for y_{mix}
- Optimization based bound tightening known to be essential for adversarial NN
 - e.g., Fischetti, Jo 2018, Weng et.al. 2018

Optimization Based Bound Tightening

- Common technique for MINLP solvers
- Given the LP relaxation of a (non-convex) MI(NL)P
- For each variable *x*
 - Minimize/maximize x value over relaxation
 - Use optimal value as lower/upper bound for x

$\operatorname{conv}(y \ge f(x): l \le x \le u) \cap X$

Optimization Based Bound Tightening

- Common technique for MINLP solvers
- Given the LP relaxation of a (non-convex) MI(NL)P
- For each variable *x*
 - Minimize/maximize x value over relaxation
 - Use optimal value as lower/upper bound for x
 - Tighten coefficients of relaxation using new bounds
- Enhancements for OBBT (Gleixner et al. 2017)
 - Filter variables
 - Exploit warm starts
 - Use dual solution of OBBT LPs to tighten bounds in the tree

Optimization Based Bound Tightening

- For non-convex MIQCP:
 - 23% improvement overall
 - 61% improvement on models solved in ≥ 100 sec.
- For MIP and convex MIQP/MIQCP:
 - 1% improvement on models solved in ≥ 100 sec.
 - But big improvement on models with ReLU neural networks

$\operatorname{conv}(y \ge f(x): l \le x \le u) \cap X$

ReLU Neural Network MIP Formulation

• Each neuron k has the following constraints/variables:

$$y_{mix} = w^T x_{in} + d$$

$$y_{out} = max(y_{mix}, 0)$$

• MIP formulation:

$$y^{+} - y^{-} = w^{T} x_{in} + c$$

$$y^{+} \le u^{+} \cdot z$$

$$y^{-} \le u^{-} \cdot (1 - z)$$

$$0 \le y^{+} \le u^{+}$$

$$0 \le y^{-} \le u^{-}$$

- Output of neuron is just $y_{out} := y^+$
- Strength of Big-M formulation of indicators depends on bounds $-u^- \le y_{mix} \le u^+$ of y_{mix}

Bound Propagation

- Constraints for $y_{l,k} = y_{l,k}^+ y_{l,k}^-$ of k'th neuron in layer l: $y_{l,k}^+ - y_{l,k}^- = w_{l,k}^T y_{l-1,\cdot}^+ + d_{l,k}$ $y_{l+1,i}^+ - y_{l+1,i}^+ = w_{l+1,i,k} y_{l,k}^+ + \sum_{j \neq k} w_{l+1,i,j} y_{l,j}^+ + d_{l+1,i}$ for all i
- Constraints to propagate: $y_{l,k}^{+} = y_{l,k}^{-} + w_{l,k}^{T} y_{l-1,\cdot}^{+} + d_{l,k}$ $y_{l,k}^{-} = y_{l,k}^{+} - w_{l,k}^{T} y_{l-1,\cdot}^{+} - d_{l,k}$ $y_{l,k}^{+} = \frac{1}{w_{l+1,i,k}} \left(y_{l+1,i}^{+} - y_{l+1,i}^{+} - \sum_{j \neq k} w_{l+1,i,j} y_{l,j}^{+} - d_{l+1,i} \right) \text{ for all } i$
- Tighter bounds for neuron propagate into previous, same and next layer
- OBBT should be applied layer by layer (see Fischetti, Jo 2018)
 - How to identify the layers from the constraint structure?

input hidden output

Constraint Matrix Nonzero Pattern

hidden output

Constraint Matrix Nonzero Pattern

Constraint Matrix Nonzero Pattern

- Variables $y_{l,k}^+$ within the same layer have almost identical non-zero patterns (same for x_k^{in})
 - This layer's constraints: different pattern (but each variable only in one constraint)
 - Next layer's constraints: identical non-zero pattern, except for $w_{l,i,j} = 0$ (each var in many constraints)
- Consequence:
 - $p(i,j) = \operatorname{supp}(A_{,i})^T \operatorname{supp}(A_{,j}) / (\|\operatorname{supp}(A_{,i})\| \cdot \|\operatorname{supp}(A_{,j})\|)$ is large $\Leftrightarrow i$ and j in same layer

Identifying Layers

- Clustering algorithm for vectors $v_j = \operatorname{supp}(A_{,j}) \in \{0,1\}^m$
 - Number of clusters not known a priori
 - Need to exploit sparsity of data vectors
 - Cannot afford to calculate full distance matrix between all pairs of vectors
- Using a centroid-based clustering algorithm
 - Similar to k-means, but with ability to dynamically open up new clusters
 - Identify $(y_{l,k}^+, y_{l,k}^-)$ pairs in advance in the big-M indicator constraints
 - Merge $y_{l,k}^+$ and $y_{l,k}^-$ columns to identify more general types of neural networks
- Alternative clustering algorithms that may make sense
 - DBSCAN
 - OPTICS
 - Affinity propagation probably too slow
 - Mean shift

- Identify paired variables y^+ , y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$

Support vectors are vertices of the m-dimensional cube ...

- Identify paired variables y^+ , y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$

... projected to the unit sphere in the positive orthant

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / \|v_k + \delta s_j\| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / \|v_k + \delta s_j\| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / \|v_k + \delta s_j\| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster

- Identify paired variables y^+, y^- with $y^+y^- = 0$
 - Consider them to be a single variable
- Collect candidates *j* with at least 5 nonzeros
- Let $\tilde{s}_j = \operatorname{supp}(A_{\cdot,j}) \in \{0,1\}^m$ and $s_j = \tilde{s}_j / \|\tilde{s}_j\|$
- Start with C = 0 clusters and $\delta = \varepsilon = 0.5$
- At most 50 times:
 - For all candidates *j* in random order:
 - Find closest cluster center vector v_k , if any
 - If $d(j,k) := 1 v_k^T s_j < \varepsilon$: assign j to cluster k
 - Update $v_k \coloneqq (v_k + \delta s_j) / ||v_k + \delta s_j|| \in [0,1]^m$
 - Else if C < 100: $C \coloneqq C + 1$, $v_C \coloneqq s_j$
 - Else: do not assign *j* to any cluster
 - Update $\delta\coloneqq 0.97\delta$ and $\varepsilon\coloneqq 0.98\varepsilon$
 - If all $s_j^T v_{k_j} > 0.7$: stop (success)
 - If all clusters have less than 10 variables: stop (fail)

Performance Evaluation

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 45

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 45

Benchmarks: Test Set

- Goldstein-Price and Peak2d: 60 instances each,
 - Approximation of a nonlinear function with a neural network
 - #layers $\in \{2,3\}$ of #neurons $\in \{56,128,256\}$ each
 - 10 networks for each architecture trained with different seeds using scikit-learn
- Janos (Bergman et.al. 2019): 128 instances
 - 500 predictor constraints for each model
 - All regression models of scikit-learn, various hyperparameters
- TCL (Amasyali et.al. 2022): 70 instances
 - 40 PyTorch models, 30 scikit-learn: #layers $\in \{2,3\}$ of #neurons $\in \{128, 256\}$ each
 - Application in electrical engineering find valid input/output within bounds minimizing costs
- Adversarial machine learning on MNIST: 210 instances
 - scikit-learn: 2 layers of #neurons \in {50,100} and 6 layers of 500 neurons, 30 models each
 - Tensorflow: #layers $\in \{2,3\}$ of #neurons $\in \{50, 100, 200\}$, 20 models each

Computational Setup

- Models solved on Intel(R) Xeon(R) CPU E3-1240 CPUs
 - 3.5 GHz, 4 cores, 4 threads, 32 GB RAM
- Run Gurobi 9.5 and Gurobi 10.0
- Time limit 10,000 seconds
- Models with logistic regression excluded (9.5 can't solve)
- Models not solved by any in the time limit excluded
- Solve means 0.01% gap reached
 - Typically, most of the time is spent on proving the dual bound
 - Best solution is usually found much earlier

Gurobi 9.5 vs Gurobi 10.0

		Gurobi 9.5		Gurob		
test set	# models	% solved	time	% solved	time	speedup
GoldsteinPrice	43	100%	55	100%	24	2.2x
Peak2d	41	83%	120	100%	35	3.3x
Janos	38	97%	48	100%	39	1.2x
TCL	65	23%	5130	100%	63	80.1x
MNIST	136	47%	1614	100%	135	11.9x

Gurobi 9.5 vs Gurobi 10.0

Adversarial Machine Learning

- Given a trained neural network and one training example \overline{x}
- In a small neighborhood of \overline{x} show that either
 - Everything is classified like training example, or
 - Find a misclassified counter-example
- See
 - Fischetti, Jo 2018
 - Kouvaros, Lomuscio 2018

Adversarial Model: Detailed Results

				Gurob	9.5	Gurobi		
	# layers	size	# models	% solved	time	% solved	time	speedup
		50	20	100%	21	100%	3	5.4x
	2	100	20	95%	404	100%	20	19.3x
Keras		200	20	50%	2764	95%	28	94.5x
Rel dS		50	20	95%	197	100%	7	24.6x
	3	100	20	35%	4977	95%	75	65.7x
		200	20	15%	9272	95%	105	87.6x
	2	50	30	100%	17	100%	12	1.4x
scikit- learn		100	30	93%	511	100%	66	7.7x
	6	500	30	0%	10000	0%	10000	-

Time limit as in Fischetti/Jo: 300 sec

basic models		Gurobi 9.5	CPLEX 12.7*	
network layers	# mod	% solved	% solved	
8-8-8	99	100%	100%	
8-8-8-8-8	99	100%	97%	
20-10-8-8	99	100%	64%	
20-10-8-8-8	99	99%	24%	
20-20-10-10-10	100	27%	7%	

Fischetti/Jo MIP	-OBBT	Gurobi 9.5	CPLEX 12.7*
network layers	# mod	% solved	% solved
8-8-8	99	100%	100%
8-8-8-8-8	99	100%	100%
20-10-8-8	99	100%	100%
20-10-8-8-8	99	100%	98%
20-20-10-10-10	100	89%	67%

* From Fischetti/Jo paper, run on a 2.3 GHz Intel i7 laptop with 16 GB RAM (in 2017)

		basic	model		improved model				
	%solved	%gap	nodes	time (s)	%solved	%gap	nodes	time (s)	
DNN1	100	0.0	$1,\!903$	1.0	100	0.0	552	0.6	
DNN2	97	0.2	$77,\!878$	48.2	100	0.0	$11,\!851$	7.5	
DNN3	64	11.6	$228,\!632$	158.5	100	0.0	$20,\!309$	12.1	
DNN4	24	38.1	$282,\!694$	263.0	98	0.7	$68,\!563$	43.9	
DNN5	7	71.8	$193,\!725$	290.9	67	11.4	76,714	171.1	

Table 1 of Fischetti and Jo (2018)

• MIP based OBBT of Fischetti/Jo helps significantly for both Gurobi 9.5 and CPLEX 12.7

Time limit as in Fischetti/Jo: 300 sec

basic models		Gurobi 9.5	Gurobi	10.0	
network layers	# mod	% solved	% solved	speedup	
8-8-8	99	100%	100%	1.7x	
8-8-8-8-8	99	100%	100%	2.4x	
20-10-8-8	99	100%	100%	3.2x	
20-10-8-8-8	99	99%	100%	4.0x	
20-20-10-10-10	100	27%	88%	4.2x	

Fischetti/Jo MIP	-OBBT	Gurobi 9.5	Gurobi	10.0
network layers	# mod	% solved	% solved	speedup
8-8-8	99	100%	100%	1.0x
8-8-8-8-8	99	100%	100%	1.0x
20-10-8-8	99	100%	100%	1.1x
20-10-8-8-8	99	100%	100%	1.3x
20-20-10-10-10	100	89%	90%	1.2x

- Gurobi 10 much faster than 9.5 on ٠ basic model
- Only small speedup when bounds are ٠ already tightened in input model
 - Indicates that performance comes mostly from Gurobi 10's OBBT

GUROBI

Time limit as in Fischetti/Jo: 300 sec

basic models		Gurobi 9.5	Gurobi	10.0	Gurobi 10.0, OBBT=3		
network layers	# mod	% solved	% solved	speedup	% solved	speedup	
8-8-8	99	100%	100%	1.7x	100%	0.8x	
8-8-8-8-8	99	100%	100%	2.4x	100%	2.2x	
20-10-8-8	99	100%	100%	3.2x	100%	4.1x	
20-10-8-8-8	99	99%	100%	4.0x	100%	4.8x	
20-20-10-10-10	100	27%	88%	4.2x	95%	6.5x	

Fischetti/Jo MIP	-OBBT	OBBT Gurobi 9.5		10.0	Gurobi 10.0, OBBT=3		
network layers	# mod	% solved	% solved	speedup	% solved speedu		
8-8-8	99	100%	100%	1.0x	100%	0.6x	
8-8-8-8-8	99	100%	100%	1.0x	100%	0.9x	
20-10-8-8	99	100%	100%	1.1x	100%	1.2x	
20-10-8-8-8	99	100%	100%	1.3x	100%	1.5x	
20-20-10-10-10	100	89%	90%	1.2x	96%	2.5x	

- Gurobi 10 much faster than 9.5 on basic model
- Only small speedup when bounds are already tightened in input model
 - Indicates that performance comes mostly from Gurobi 10's OBBT
- Aggressive OBBT helps further on larger networks

Time limit as in Fischetti/Jo: 300 sec

basic models		Gurobi 9.5	Gurobi	10.0	Gurobi 10	.0, OBBT=3	dev version		dev version, OBBT=3	
network layers	# mod	% solved	% solved	speedup	% solved	speedup	% solved	speedup	% solved	speedup
8-8-8	99	100%	100%	1.7x	100%	0.8x	100%	1.6x	100%	0.6x
8-8-8-8-8	99	100%	100%	2.4x	100%	2.2x	100%	2.5x	100%	2.3x
20-10-8-8	99	100%	100%	3.2x	100%	4.1x	100%	3.1x	100%	4.4x
20-10-8-8-8	99	99%	100%	4.0x	100%	4.8x	100%	4.2x	100%	5.6x
20-20-10-10-10	100	27%	88%	4.2x	95%	6.5x	92%	4.5x	98%	7.9x

Fischetti/Jo MIP	-OBBT	Gurobi 9.5	Gurobi	10.0	Gurobi 10	.0, OBBT=3	dev version		dev version, OBBT=3	
network layers	# mod	% solved	% solved	speedup	% solved	speedup	% solved	speedup	% solved	speedup
8-8-8	99	100%	100%	1.0x	100%	0.6x	100%	1.0x	100%	0.5x
8-8-8-8-8	99	100%	100%	1.0x	100%	0.9x	100%	1.0x	100%	0.9x
20-10-8-8	99	100%	100%	1.1x	100%	1.2x	100%	1.2x	100%	1.3x
20-10-8-8-8	99	100%	100%	1.3x	100%	1.5x	100%	1.2x	100%	1.6x
20-20-10-10-10	100	89%	90%	1.2x	96%	2.5x	87%	1.3x	99%	3.5x

Conclusions

- Gurobi Machine Learning:
 - https://github.com/Gurobi/gurobi-machinelearning
 - Input very welcome: questions, suggestions, bug reports, pull requests, ...
- Performance for models with neural networks in Gurobi 10
- Also interesting for data science: gurobipy-pandas
 - https://github.com/Gurobi/gurobipy-pandas
- Dangers and Pitfalls
 - Complexity of ML models we can hope to handle is still limited
 - Methodological questions:
 - How to decide which prediction model to use?
 - How to make sure that optimization doesn't misuse results of the predictor?

A ng ng

Thank You!

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 57