
Understanding Neural Network Expressivity
via Polyhedral Geometry

Christoph Hertrich

joint works with

Amitabh Basu, Marco Di Summa, Martin Skutella (NeurIPS 2021)

Christian Haase, Georg Loho (ICLR 2023)

Workshop “Trends in Computational Discrete Optimization”,
ICERM, Brown University, Providence, RI, USA,

April 26, 2023



A Single ReLU Neuron

x1

x2

x`

Outputs
of previous

neurons

max{0,
∑`

i=1 wixi}

w1

w2

w`

Rectified linear unit (ReLU): relu(x) = max{0, x}



A Single ReLU Neuron

x1

x2

x`

Outputs
of previous

neurons

max{0,
∑`

i=1 wixi}

w1

w2

w`

Rectified linear unit (ReLU): relu(x) = max{0, x}



A Single ReLU Neuron



ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons
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with linear transformations Ti .

I Example: depth 3 (2 hidden layers).
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What is the class of functions computable by
ReLU Neural Networks
with a certain depth?



Universal approximation theorems:

One hidden layer enough to approximate any continuous function.
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Example: Computing the Maximum of Two Numbers
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Example: Computing the Maximum of Four Numbers
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I Inductively: Max of n numbers with dlog2(n)e hidden layers.
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Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and
piecewise linear (CPWL).

Theorem (Wang, Sun [WS05])

Every CPWL function f : Rn → R can be written as

f (x) =

p∑
i=1

λi max{aTi ,1x , . . . , aTi ,n+1x}.

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])

Every CPWL function f : Rn → R can be represented by a
ReLU NN with dlog2(n + 1)e hidden layers.
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Natural Question

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])

Every CPWL function f : Rn → R can be represented by a
ReLU NN with dlog2(n + 1)e hidden layers.

I Is logarithmic depth best possible?



Conjecture

Yes, there are functions which need dlog2(n + 1)e hidden layers!

Using [WS05], we show that this is equivalent to:

Conjecture

max{0, x1, . . . , x2k} cannot be represented with k hidden layers.
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What is known?

I Mukherjee, Basu (2017):
max{0, x1, x2} not representable with 1 hidden layer:
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That’s all!

I No function known that provably needs more than 2 hidden
layers  gap between 2 and dlog2(n + 1)e.

I Smallest candidate: max{0, x1, x2, x3, x4}.
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Our Results

I Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):

2 hidden layers not enough for max{0, x1, x2, x3, x4}
under an additional assumption on the network.

I Haase, Hertrich, Loho (ICLR 2023):

Depth O(log n) tight for networks with only integer weights.
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The Assumption

If ... there is a 2-hidden-layer NN computing max{0, x1, x2, x3, x4},
Then ... also one with the following property:

The output of each neuron can only have breakpoints where the
relative ordering of the five numbers 0, x1, . . . , x4 changes.

Example for
max{0, x1, x2}:

x1 ≥ x2 ≥ 0

0 ≥ x2 ≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2
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I Each cone spanned by 4 extreme rays.

I Within each cone everything is linear.

I 30 extreme rays in total.

⇒ Vector space of possible CPWL functions is 30-dimensional!
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Basic Linear Algebra Shows ...

I ... after 1 hidden layer:
exactly 14 of 30 dimensions can be reached.

I ... after 2 hidden layers:
at least 29 of 30 dimensions can be reached.

max{0, x1, x2, x3, x4}
is not contained in the 29-dimensional subspace!
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Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

I 14 + 30 = 44 continuous variables

I 30 binary variables

I a few hundred constraints

I objective orthogonal to 29-dim. subspace

⇒ Solver (with exact arithmetic): Objective value zero

No!

Theorem
A neural network satisfying our assumption needs 3 hidden layers
to compute max{0, x1, x2, x3, x4}.
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Newton Polytope of a Convex CPWL Function

I f (x) = max{aT1 x , . . . , aTk x}  P(f ) = conv{a1, . . . , ak}
I dual to underlying polyhedral complex of the CPWL function

Example for
max{0, x1, x2}: x1

0
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Convex CPWL functions ∼= Newton Polytopes
(positive) scalar multiplication scaling

addition Minkowski sum
taking maximum taking convex hull of union
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Newton Polytopes and Neural Networks
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Results for the Integer Case

Theorem
With only integer weights, k hidden layers are not enough to
compute max{0, x1, . . . , x2k}.

I Use tropical geometry to represent NNs as lattice polytopes.

Example for
max{0, x1, x2}: x1
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I Subdivide polytopes “layer by layer” into “easier” polytopes.

+ =

I Separate via parity of the normalized volume.
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What’s Next?

I Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):

2 hidden layers not enough for max{0, x1, x2, x3, x4}
under an additional assumption on the network.

I Getting rid of assumption.
I Getting rid of MIP.
I Sharpen MIP to tackle 3-hidden-layer case.

I Haase, Hertrich, Loho (ICLR 2023):

Depth O(log n) tight for networks with only integer weights.

I For general case: Polytopes and subdivisions seem promising.
I Replace volume argument by different separation.

Thank you!
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