Understanding Neural Network Expressivity via Polyhedral Geometry

Christoph Hertrich

joint works with

Amitabh Basu, Marco Di Summa, Martin Skutella (NeurIPS 2021)
Christian Haase, Georg Loho (ICLR 2023)

Workshop “Trends in Computational Discrete Optimization”, ICERM, Brown University, Providence, RI, USA, April 26, 2023
A Single ReLU Neuron

Rectified linear unit (ReLU): $\text{relu}(x) = \max\{0, \sum_{i=1}^{\ell} w_i x_i\}$
A Single ReLU Neuron

Outputs of previous neurons

\[\text{max}\{0, \sum_{i=1}^{\ell} w_i x_i\} \]

Rectified linear unit (ReLU): \(\text{relu}(x) = \max\{0, x\} \)
A Single ReLU Neuron
ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

\[
\begin{align*}
T_3 &\circ \text{relu} \circ T_2 \circ \text{relu} \circ T_1
\end{align*}
\]

Computes function $T_k \circ \text{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \text{relu} \circ T_1$ with linear transformations T_i.

Example: depth 3 (2 hidden layers).
ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

Computes function

\[T_k \circ \text{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \text{relu} \circ T_1 \]

with linear transformations \(T_i \).
ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

![Diagram of a ReLU feedforward neural network with inputs x_1, x_2, outputs y_1, y_2, y_3, and layers T_1, T_2, T_3.]

- Computes function

$$T_k \circ \text{relu} \circ T_{k-1} \circ \cdots \circ T_2 \circ \text{relu} \circ T_1$$

with linear transformations T_i.

- Example: depth 3 (2 hidden layers).
What is the class of functions computable by ReLU Neural Networks with a certain depth?
Universal approximation theorems:
One hidden layer enough to approximate any continuous function.
Universal approximation theorems:
One hidden layer enough to approximate any continuous function.

What about exact representability?
Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$
Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$
Example: Computing the Maximum of Four Numbers

\[
\begin{align*}
\text{\texttt{m}} & \quad 1 \quad 1 \\
\text{\texttt{x}_1} & \quad -1 \quad 1 \\
\text{\texttt{x}_2} & \quad 1 \quad 1 \\
\text{\texttt{x}_3} & \quad 1 \quad 1 \\
\text{\texttt{x}_4} & \quad -1 \quad -1 \\
\end{align*}
\]
Example: Computing the Maximum of Four Numbers

\[m = \max(x_1, x_2, x_3, x_4) \]

Inductively: Max of \(n \) numbers with \(\lceil \log_2(n) \rceil \) hidden layers.
Representing Arbitrary Piecewise Linear Functions

Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).
Observation

Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Wang, Sun [WS05])

Every CPWL function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ can be written as

$$f(x) = \sum_{i=1}^{p} \lambda_i \max\{a_{i,1}^T x, \ldots, a_{i,n+1}^T x\}.$$
Representing Arbitrary Piecewise Linear Functions

Observation
Every function represented by a ReLU NN is continuous and piecewise linear (CPWL).

Theorem (Wang, Sun [WS05])
Every CPWL function \(f : \mathbb{R}^n \to \mathbb{R} \) can be written as

\[
f(x) = \sum_{i=1}^{p} \lambda_i \max\{a_{i,1}^T x, \ldots, a_{i,n+1}^T x\}.
\]

Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])
Every CPWL function \(f : \mathbb{R}^n \to \mathbb{R} \) can be represented by a ReLU NN with \(\lceil \log_2(n + 1) \rceil \) hidden layers.
Theorem (Arora, Basu, Mianjy, Mukherjee [ABMM18])

Every CPWL function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(n + 1) \rceil$ hidden layers.

▶ Is logarithmic depth best possible?
Conjecture

Yes, there are functions which need $\lceil \log_2(n + 1) \rceil$ hidden layers!
Conjecture
Yes, there are functions which need $\lceil \log_2(n + 1) \rceil$ hidden layers!

Using [WS05], we show that this is equivalent to:

Conjecture
$\max\{0, x_1, \ldots, x_{2^k}\}$ cannot be represented with k hidden layers.
What is known?

Mukherjee, Basu (2017):

\[
\max \{0, x_1, x_2, x_3, x_4\}
\]

That's all!

No function known that provably needs more than 2 hidden layers ⇛ gap between 2 and \(\lceil \log_2 (n+1) \rceil\).

Smallest candidate: \(\max \{0, x_1, x_2, x_3, x_4\}\).
What is known?

- Mukherjee, Basu (2017): \(\max\{0, x_1, x_2\} \) not representable with 1 hidden layer:

\[
\begin{align*}
\text{max}\{0, x_1, x_2\} & \text{ not representable with 1 hidden layer:} \\
\end{align*}
\]

That's all!

No function known that provably needs more than 2 hidden layers ⇝ gap between 2 and \(\lceil \log_2 (n+1) \rceil \).

Smallest candidate: \(\max\{0, x_1, x_2, x_3, x_4\} \).
What is known?

- Mukherjee, Basu (2017):
 \[
 \max\{0, x_1, x_2\} \text{ not representable with 1 hidden layer:}
 \]

That’s all!
What is known?

- Mukherjee, Basu (2017):
 \[
 \text{max}\{0, x_1, x_2\} \text{ not representable with 1 hidden layer:}
 \]

That’s all!

- No function known that provably needs more than 2 hidden layers \(\leadsto\) gap between 2 and \(\lceil \log_2(n + 1) \rceil\).
What is known?

- Mukherjee, Basu (2017):
 \[\max\{0, x_1, x_2\} \text{ not representable with 1 hidden layer:} \]

That’s all!

- No function known that provably needs more than 2 hidden layers \[\leadsto \text{ gap between } 2 \text{ and } \lceil \log_2(n + 1) \rceil. \]

- Smallest candidate: \[\max\{0, x_1, x_2, x_3, x_4\}. \]
Our Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max\{0, x_1, x_2, x_3, x_4\} \)

 \textit{under an additional assumption on the network.}
Our Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for max\{0, x_1, x_2, x_3, x_4\}
 under an additional assumption on the network.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth $O(\log n)$ tight for networks with only integer weights.
Our Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max\{0, x_1, x_2, x_3, x_4\} \) under an additional assumption on the network.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth \(\mathcal{O}(\log n) \) tight for networks with only integer weights.
The Assumption

If ... there is a 2-hidden-layer NN computing $\max\{0, x_1, x_2, x_3, x_4\}$, Then ... also one with the following property:

The output of each neuron can only have breakpoints where the relative ordering of the five numbers $0, x_1, \ldots, x_4$ changes.
The Assumption

If ... there is a 2-hidden-layer NN computing $\max\{0, x_1, x_2, x_3, x_4\}$, Then ... also one with the following property:

The output of each neuron can only have breakpoints where the relative ordering of the five numbers $0, x_1, \ldots, x_4$ changes.

Example for $\max\{0, x_1, x_2\}$:
The Assumption

Example for \(\max\{0, x_1, x_2\} \):

\[
0 \geq x_2 \geq x_1 \\
x_1 \geq 0 \\
x_2 \geq x_1 \geq 0 \\
x_1 \geq x_2 \geq 0
\]

\(\binom{5}{2} = 10 \) hyperplanes ...

... divide the input space into \(5! = 120 \) simplicial cones.
The Assumption

Example for \(\max\{0, x_1, x_2\} \):

\[
\begin{align*}
0 & \geq x_2 \geq x_1 \\
x_2 & \geq 0 \geq x_1 \\
x_1 & \geq x_2 \geq 0
\end{align*}
\]

- \(\binom{5}{2} = 10 \) hyperplanes ...
- ... divide the input space into \(5! = 120 \) simplicial cones.
- Each cone spanned by 4 extreme rays.
The Assumption

Example for \(\max\{0, x_1, x_2\} \):

\[
0 \geq x_2 \geq x_1 \\
0 \geq x_1 \\
0 \geq x_2 \\
0 \geq x_1 \\
0 \geq x_2
\]

\[
x_2 \geq 0 \geq x_1 \\
x_1 \geq x_2 \geq 0
\]

\[
\binom{5}{2} = 10 \text{ hyperplanes} \ldots
\]

\[
\ldots \text{ divide the input space into } 5! = 120 \text{ simplicial cones.}
\]

\[
\text{Each cone spanned by 4 extreme rays.}
\]

\[
\text{Within each cone everything is linear.}
\]
The Assumption

Example for \(\max\{0, x_1, x_2\} \):

\[
\begin{array}{c}
x_2 \geq x_1 \\
0 \geq x_1 \\
0 \geq x_2 \\
x_1 \geq x_2 \geq 0
\end{array}
\]

\(\binom{5}{2} = 10 \) hyperplanes...

... divide the input space into \(5! = 120 \) simplicial cones.

Each cone spanned by 4 extreme rays.

Within each cone everything is linear.

30 extreme rays in total.
The Assumption

Example for $\max\{0, x_1, x_2\}$:

- $(\binom{5}{2}) = 10$ hyperplanes ...
- ... divide the input space into $5! = 120$ simplicial cones.
- Each cone spanned by 4 extreme rays.
- Within each cone everything is linear.
- 30 extreme rays in total.

\Rightarrow Vector space of possible CPWL functions is 30-dimensional!
Basic Linear Algebra Shows ...

... after 1 hidden layer:

exactly 14 of 30 dimensions can be reached.

... after 2 hidden layers:

\[\max \{0, x_1, x_2, x_3, x_4\} \]

is not contained in the 29-dimensional subspace!
Basic Linear Algebra Shows ...

- after 1 hidden layer:
 exactly 14 of 30 dimensions can be reached.
- after 2 hidden layers:
 at least 29 of 30 dimensions can be reached.
Basic Linear Algebra Shows ...

- ... after 1 hidden layer:
 exactly 14 of 30 dimensions can be reached.
- ... after 2 hidden layers:
 at least 29 of 30 dimensions can be reached.

$$\max\{0, x_1, x_2, x_3, x_4\}$$

is not contained in the 29-dimensional subspace!
Can we leave the 29-dimensional subspace?
Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:
Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

- $14 + 30 = 44$ continuous variables
- 30 binary variables
- A few hundred constraints
Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

- $14 + 30 = 44$ continuous variables
- 30 binary variables
- a few hundred constraints
- objective orthogonal to 29-dim. subspace

Theorem

A neural network satisfying our assumption needs 3 hidden layers to compute $\max\{0, x_1, x_2, x_3, x_4\}$.
Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

- $14 + 30 = 44$ continuous variables
- 30 binary variables
- A few hundred constraints
- Objective orthogonal to 29-dim. subspace

⇒ Solver (with exact arithmetic): Objective value zero
Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

- $14 + 30 = 44$ continuous variables
- 30 binary variables
- A few hundred constraints
- Objective orthogonal to 29-dim. subspace

\Rightarrow Solver (with exact arithmetic): Objective value zero

No!
Can we leave the 29-dimensional subspace?

Mixed-Integer Linear Program to model a neuron in 2nd layer:

- $14 + 30 = 44$ continuous variables
- 30 binary variables
- a few hundred constraints
- objective orthogonal to 29-dim. subspace

⇒ Solver (with exact arithmetic): Objective value zero

No!

Theorem

A neural network satisfying our assumption needs 3 hidden layers to compute $\max\{0, x_1, x_2, x_3, x_4\}$.
Our Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max \{0, x_1, x_2, x_3, x_4\} \)
 under an additional assumption on the network.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth \(\mathcal{O}(\log n) \) tight for networks with only integer weights.
Our Results

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for $\max\{0, x_1, x_2, x_3, x_4\}$ under an additional assumption on the network.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth $O(\log n)$ tight for networks with only integer weights.
Newton Polytope of a Convex CPWL Function

\[f(x) = \max \{ a_1^T x, \ldots, a_k^T x \} \quad \leadsto \quad P(f) = \text{conv} \{ a_1, \ldots, a_k \} \]

- dual to underlying polyhedral complex of the CPWL function

Example for \(\max \{0, x_1, x_2\} \):

\[
\begin{align*}
& x_2 \\
& 0 \quad x_1 \\
& \leadsto
\end{align*}
\]
Newton Polytope of a Convex CPWL Function

- $f(x) = \max\{a_1^T x, \ldots, a_k^T x\} \leadsto P(f) = \text{conv}\{a_1, \ldots, a_k\}$
- dual to underlying polyhedral complex of the CPWL function

Example for $\max\{0, x_1, x_2\}$:

\[0 \quad x_1 \quad x_2 \leadsto \]

Convex CPWL functions \(\cong\) Newton Polytopes
(positive) scalar multiplication \(=\) scaling
addition \(=\) Minkowski sum
taking maximum \(=\) taking convex hull of union
Newton Polytopes and Neural Networks

\(x_1\)

\(x_2\)

\(y\)
Newton Polytopes and Neural Networks

\[P_0 = \text{points} \]
Newton Polytopes and Neural Networks

\[P_0 = \text{points} \]

\[P_1 = \text{zonotopes} \]

\[P_k := \{ \sum_{i=1}^{m} \text{conv}(P_i, Q_i) \mid P_i, Q_i \in P_{k-1} \} \]
Newton Polytopes and Neural Networks

\[P_0 = \text{points} \]

\[P_1 = \text{zonotopes} \]

line segments
Newton Polytopes and Neural Networks

\[\mathcal{P}_0 = \text{points} \]
\[\mathcal{P}_1 = \text{zonotopes} \]
\[\mathcal{P}_2 \]

\[\text{line segments} \]

\[\mathcal{P}_k := \left\{ \sum_{i=1}^{m} \text{conv}(P_i, Q_i) \mid P_i, Q_i \in \mathcal{P}_{k-1} \right\} \]
Results for the Integer Case

Theorem

With only integer weights, \(k \) hidden layers are not enough to compute \(\max\{0, x_1, \ldots, x_{2^k}\} \).
Results for the Integer Case

Theorem

With only integer weights, k hidden layers are not enough to compute \(\max\{0, x_1, \ldots, x_{2^k}\} \).

- Use tropical geometry to represent NNs as lattice polytopes.

Example for \(\max\{0, x_1, x_2\} \):

\[
\begin{align*}
\text{0} & \quad \text{x}_1 & \quad \text{x}_2 \\
0 & \quad 0 & \quad 0
\end{align*}
\]

\(\mapsto \)

\[
\begin{align*}
\text{0} & \quad \text{x}_1 & \quad \text{x}_2 \\
0 & \quad 0 & \quad 0
\end{align*}
\]
Results for the Integer Case

Theorem
With only integer weights, \(k \) hidden layers are not enough to compute \(\max\{0, x_1, \ldots, x_{2^k}\} \).

- Use tropical geometry to represent NNs as lattice polytopes.

Example for \(\max\{0, x_1, x_2\} \):

- Subdivide polytopes “layer by layer” into “easier” polytopes.
Theorem

With only integer weights, k hidden layers are not enough to compute $\max\{0, x_1, \ldots, x_{2k}\}$.

- Use tropical geometry to represent NNs as lattice polytopes.

Example for $\max\{0, x_1, x_2\}$:

- Subdivide polytopes “layer by layer” into “easier” polytopes.

- Separate via parity of the normalized volume.
What’s Next?

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max\{0, x_1, x_2, x_3, x_4\} \) under an additional assumption on the network.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth \(\mathcal{O}(\log n) \) tight for networks with only integer weights.
What’s Next?

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max\{0, x_1, x_2, x_3, x_4\} \)
 under an additional assumption on the network.
 - Getting rid of assumption.
 - Getting rid of MIP.
 - Sharpen MIP to tackle 3-hidden-layer case.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth \(O(\log n) \) tight for networks with only integer weights.
What’s Next?

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max \{0, x_1, x_2, x_3, x_4\} \) under an additional assumption on the network.
 - Getting rid of assumption.
 - Getting rid of MIP.
 - Sharpen MIP to tackle 3-hidden-layer case.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth \(\mathcal{O}(\log n) \) tight for networks with only integer weights.
 - For general case: Polytopes and subdivisions seem promising.
 - Replace volume argument by different separation.
What’s Next?

- Hertrich, Basu, Di Summa, Skutella (NeurIPS 2021):
 2 hidden layers not enough for \(\max\{0, x_1, x_2, x_3, x_4\} \) under an additional assumption on the network.
 - Getting rid of assumption.
 - Getting rid of MIP.
 - Sharpen MIP to tackle 3-hidden-layer case.

- Haase, Hertrich, Loho (ICLR 2023):
 Depth \(\mathcal{O}(\log n) \) tight for networks with only integer weights.
 - For general case: Polytopes and subdivisions seem promising.
 - Replace volume argument by different separation.

Thank you!