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Quantum Computing



State of Quantum “Speedups”

§Unproven exponential speedup: 
Shor’s quantum factorization algorithm
[Shor, Polynomial-Time Algorithms for Prime Factorization…, 1995]

§Provable modest speedup: 
Grover’s quantum search algorithm
[Grover, A fast quantum mechanical algorithm for database search, 1996]

§Provable exponential advantage in specialized settings: 
Query and communication complexity
[Childs et al., Exponential Algorithmic Speedup by a Quantum Walk, 2003]
[Bar-Yossef et al., Exponential Separation of Quantum and Classical…, 2008]
…

§Optimization offers potential for new kinds of quantum advantages:
Better quality solutions but not necessarily faster solution times

Ap
pr

ox
im

at
e

O
pt

im
al



Classical bit:
(bit)

Prob. bit:
(p-bit)

Quantum bit:
(qubit)

OR

1 = Head 0 = Tail

{0, 1}

State space

Quantum Bits Live in a Sphere

0 with probability 𝟏 − 𝒑
1 with probability 𝒑 0 1𝒑

𝒂 𝟎 + 𝜷|𝟏⟩
0 with probability 𝜶 𝟐

1 with probability 𝜷 𝟐

Representation

𝟏
𝟎

𝟎
𝟏

2-d complex 
unit vector

3-d real 
unit vector
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000 001 010 011 100 101 110 111

Sequence of 
quantum gates 000 001 010 011 100 101 110 111

Quantum Algorithms Output Distributions

Seek to maximize probability 
of good solutions

Probability distribution over
𝟐𝑵 binary classical states

Sequence of physical manipulations 
of the 𝑁 qubits



Quantum Optimization



What is Quantum Optimization?

Classical approaches for quantum Hamiltonians
(e.g. DMRG, mean-field methods)

Quantum approaches for quantum Hamiltonians
(e.g. AQC, QAOA for quantum Hamiltonians)

Quantum approaches for classical Hamiltonians
(e.g. AQC, QAOA for quantum Hamiltonians)

Quantum approaches for continuous optimization

Classical optimization
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Max Cut

Model NP-hard discrete optimization problem and 2-CSP

Has driven developments in approximation algorithms

0.878…-approximation
[Goemans and Williamson, 1995]

0.878…+𝜺 is unique games hard 
[Khot, Kindler, Mossel, O'Donnell, 2007]

Cut and related polytopes have advanced discrete optimization
e.g., [Fiorini, Massar, Pokutta, Tiwary, de Wolf, 2012]

Partition vertices of a graph two parts 
to maximize (weight of) crossing edges

𝒙𝟏⊕𝒙𝟐 , 𝒙𝟏⊕𝒙𝟒 , 𝒙𝟏⊕𝒙𝟔 , 𝒙𝟐⊕𝒙𝟑 , …

Constraint Satisfaction Problem (CSP) version:
Boolean assignment satisfying max # XOR clauses



How far can we go?

0.87856 + 𝜖 approximations are NP-Hard! (under Unique Games Conjecture)

Algorithms for Max-Cut

Turn to approximation algorithms

1
2

Random

1
2 +

1
2𝑚

[Vitányi 1981]

1
2 +

1
2𝑛

[Haglin, Venkatesan 
1991]

1
2 +

1
2Δ

[Hofmeister, Lefmann 1995]

0.87856
[Goemans, Williamson 1995]

1
[Khot, Kindler Mossel, O’Donnell 2007]

ALG(𝐼)
OPT(𝐼)

Slide courtesy of Yeongwoo Hwang



It’s Natural to Optimize

𝑀𝑖𝑛& 𝜓 =
'
𝐻' 𝜓

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

Discrete optimization problem becomes an eigenproblem on a large matrix

Optimal discrete 
optimization solution

Min-energy 
eigenvector

Nature tends towards stable states…
So let nature solve your problems for you?

Image from https://en.wikipedia.org/wiki/Metastability

Hamiltonian, ∑𝑺𝑯𝑺, represents energy levels 
of a physical system composed of “local” parts, 𝑺

Local minimum

Global minimum



Hacking Nature to Solve Your Problems

1. Map solution values to energy levels of a physical system

2. Realize said physical system

3. Let Nature relax to a stable low-energy state

Minimum eigenstate is of form: 𝜓 = 𝛼 010 + 𝛽|101⟩, with energy -2

Vertices      
1    2   3       State

0
−1

−2
−1

−1
−2

−1
0

L,L,L≡ |𝟎𝟎𝟎⟩
L,L,R≡ |𝟎𝟎𝟏⟩
L,R,L≡ |𝟎𝟏𝟎⟩
L,R,R≡ |𝟎𝟏𝟏⟩
R,L,L≡ |𝟏𝟎𝟎⟩
R,L,R≡ |𝟏𝟎𝟏⟩
R,R,L≡ |𝟏𝟏𝟎⟩
R,R,R≡ |𝟏𝟏𝟏⟩

𝟎𝟎𝟎 𝟎𝟎𝟏 𝟎𝟏𝟎 𝟎𝟏𝟏 𝟏𝟎𝟎 𝟏𝟎𝟏 𝟏𝟏𝟎 |𝟏𝟏𝟏⟩

1 2 3

1
2

3

1 2 3

Hamiltonian for Max Cut on a path with 3 vertices             Some cuts on a path with 3 vertices

Left or Right
side of cut

Max Cut



Computational Complexity Considerations

𝐻 =

0
−1

−2
−1

−1
−2

−1
0

1 2 3

Hamiltonian is exponentially large, 2,×2,, for an 𝑁-node graph, but 
it is a sum of 𝑂(𝑁-) local 4×4 Hamiltonians, one for each edge

2 3𝐻!" = 𝐼 ⊗
0

−1
−1

0

=

0
−1

−1
0

0
−1

−1
0

+

𝟎𝟎 𝟎𝟏 𝟏𝟎 |𝟏𝟏⟩

1 2𝐻#! =
0

−1
−1

0

⊗ 𝐼 =

0
0

−1
−1

−1
−1

0
0

𝟎𝟎 𝟎𝟏 𝟏𝟎 |𝟏𝟏⟩

Local Hamiltonians are efficient and require manipulating only a constant number of qubits

|𝟎𝟎𝟎⟩
|𝟎𝟎𝟏⟩
|𝟎𝟏𝟎⟩
|𝟎𝟏𝟏⟩
|𝟏𝟎𝟎⟩
|𝟏𝟎𝟏⟩
|𝟏𝟏𝟎⟩
|𝟏𝟏𝟏⟩

|𝟎𝟎𝟎⟩
|𝟎𝟎𝟏⟩
|𝟎𝟏𝟎⟩
|𝟎𝟏𝟏⟩
|𝟏𝟎𝟎⟩
|𝟏𝟎𝟏⟩
|𝟏𝟏𝟎⟩
|𝟏𝟏𝟏⟩



The Power of Quantum Computing?

L = 5 =   27L L=   28
b) c)a)

Figure 2: Commonly reported soap film configurations for 6-pin regular hexagon.

11

Using soap film to find Steiner Trees
[Datta, Khastgir, & Roy; arXiv 0806.1340]

*Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]

Extended Quantum Church-Turing Thesis
Any “reasonable” model of computing can be efficiently simulated by a quantum Turing machine

It would be very surprising if quantum computers could solve NP-complete 
problems in quantum polynomial time (BQP).

Yet, there are problems In BQP that are very unlikely to be in classical 
polynomial time (P) or even NP!*

Image from https://en.wikipedia.org/wiki/BQP

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea 
that captures universal quantum computing.



Quantum Approximation 
Algorithms



𝑽𝒂𝒍𝒖𝒆 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆𝑰
𝑽𝒂𝒍𝒖𝒆(𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑰)

≥ 𝜶

A  𝜶-approximation algorithm runs in polynomial time, and for any instance I, 
delivers an approximate solution such that:

𝜶 = largest “gap” between 
optimal and approximate 
solutions over all instances 

solution
quality

Instance 1 Instance 2 Instance 3 …

Optimal value

Approximate
solution value

(Quantum) Approximation Algorithms

Approximation
Algorithm

(description of)
state 𝝆

𝑯 = ∑𝑯𝒊𝒋



𝑽𝒂𝒍𝒖𝒆 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆𝑰
𝑽𝒂𝒍𝒖𝒆(𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑰)

≥ 𝜶

A  𝜶-approximation algorithm runs in polynomial time, and for any instance I, 
delivers an approximate solution such that:

(Quantum) Approximation Algorithms

Heuristics
§ Guided by intuitive ideas
§ Perform well on practical instances
§ May perform very poorly in worst case
§ Difficult to prove anything about performance

Approximation Algorithms
§ Guided by worst-case performance
§ May perform poorly compared to heuristics
§ Rigorous bound on worst-case performance
§ Designed with performance proof in mind

Approximation
Algorithm

(description of)
state 𝝆

𝑯 = ∑𝑯𝒊𝒋



Probability Distributions and Polynomials

Let’s consider diagonal PSD matrices with trace = 1:

1 + 𝑎+
2 0

0
1 − 𝑎+
2

⊗

1 + 𝑎,
2

1 − 𝑎,
2

=
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2 ⊗
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2 =
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−1 Bias 𝒂 must satisfy 𝒂 ≤ 𝟏



Probability Distributions and Polynomials
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Quantum “Distributions” and Polynomials

Let’s consider diagonal PSD matrices with trace = 1:

𝑰 𝒁

1 + 𝑎
2

0

0
1 − 𝑎
2

=
1
2
1

1
+
𝑎
2
1

−1 Bias 𝒂 must satisfy 𝒂 ≤ 𝟏

𝑰 𝒁

1 + 𝑎
2

𝑏 − 𝑐𝑖
2

𝑏 + 𝑐𝑖
2

1 − 𝑎
2

=
1
2
1

1
+
𝑎
2
1

−1
+
𝑏
2
1

1
+
𝑐
2

−𝑖
𝑖

Biases must satisfy ∥ 𝒂, 𝒃, 𝒄 ∥ ≤ 𝟏

𝑿 𝒀



Max Cut and Quantum Max Cut

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

𝑥- , 𝑥. = 0,0
𝑥- , 𝑥. = 0,1
𝑥- , 𝑥. = 1,0
𝑥- , 𝑥. = 1,1

0,0 0,1 1,0 1,1

Diagonal matrix
diagonal encodes Boolean function:

𝑓 𝑧- , 𝑧. = 1/2(1 − 𝑧-𝑧.)
𝑧- ∈ {−1,1}

Maximum eigenvectors:
𝟎, 𝟏, 𝟎, 𝟎 = 𝟎𝟏 ,
𝟎, 𝟎, 𝟏, 𝟎 = 𝟏𝟎

with (eigen)value 1

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

General non-diagonal matrix
(𝐼 − 𝑋-𝑋. − 𝑌-𝑌. − 𝑍-𝑍.)/4

Maximum eigenvector:

𝟎,
𝟏
𝟐
, −

𝟏
𝟐
, 𝟎 =

𝟏
𝟐
𝟎𝟏 −

𝟏
𝟐
|𝟏𝟎⟩,

with (eigen)value 1

quantum
generalization

Maximum product state: e.g., 01
with energy 1/2

Classical Max Cut
2-variable constraint: 𝑥- ⊕𝑥.

Quantum Max Cut 
quantum 2-variable constraint

“anti-aligned” 
superposition of 

optimal Max Cut bases



Polynomials and Quantum Solutions

Classical Quantum

Real-coeff polynomial P 𝐼, 𝑍+, … , 𝑍/
over commutative variables

Problem: 𝑀𝑎𝑥{1%} 𝜆345 P 𝐼, 𝑍+, … , 𝑍/
𝑍-, = 𝐼
𝑍-𝑍. = 𝑍.𝑍-

P represents a diagonal 𝑀 ∈ ℝ,&×,&

Real-coeff polynomial Q(𝐼, 𝑋+, 𝑌+, 𝑍+, … , 𝑋/, 𝑌/, 𝑍/)
over non-commutative variables 

𝑀𝑎𝑥{7%,9%,1%} 𝜆345( Q 𝐼, 𝑋+, 𝑌+, 𝑍+, … , 𝑋/, 𝑌/, 𝑍/ )
𝑋-, = 𝑌-, = 𝑍-, = 𝐼
X:Y: = −Y:X:, X:Z: = −Z:X:, Y:Z: = −Z:Y:
Variables commute on different indices:
e.g. 𝑋-𝑍. = 𝑍.𝑋-

Q represents a Hermitian 𝑀 ∈ ℂ,&×,&

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

0,0
0,1
1,0
1,1

𝑃 =
1
2 𝐼 − 𝑍+𝑍, 𝑄 =

1
4 (𝐼 − 𝑋+𝑋, − 𝑌+𝑌, − 𝑍+𝑍,)



Polynomials and Quantum Solutions

Classical Quantum

Problem: 𝑀𝑎𝑥{1%} 𝜆345 P 𝐼, 𝑍+, … , 𝑍/
𝑍-, = 𝐼
𝑍-𝑍. = 𝑍.𝑍-

WLOG can take: 𝑍- ∈ {−1,1}

𝑀𝑎𝑥{7%,9%,1%} 𝜆345( Q 𝐼, 𝑋+, 𝑌+, 𝑍+, … , 𝑋/, 𝑌/, 𝑍/ )
𝑋-, = 𝑌-, = 𝑍-, = 𝐼
X:Y: = −Y:X:, X:Z: = −Z:X:, Y:Z: = −Z:Y:
Variables commute on different indices:
e.g. 𝑋-𝑍. = 𝑍.𝑋-

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

0,0
0,1
1,0
1,1

𝑃 =
1
2 𝐼 − 𝑍+𝑍, 𝑄 =

1
4 (𝐼 − 𝑋+𝑋, − 𝑌+𝑌, − 𝑍+𝑍,)

WLOG: 𝑍 = 1 0
0 −1 , 𝑋 = 0 1

1 0 , 𝑌 = 0 −𝑖
𝑖 0

e.g. 𝑍, = 𝐼⨂𝑍⨂𝐼 …
𝑍+𝑍; = 𝑍⨂𝐼⨂𝑍⨂𝐼…
𝑋+𝑌< = 𝑋⨂𝐼⨂𝐼⨂𝑌…



Anti-ferromagnetic Heisenberg model: roughly 
neighboring quantum particles aim to align in 
opposite directions.  This kind of Hamiltonian 
appears, for example, as an effective Hamiltonian 
for so-called Mott insulators.
[Image: Sachdev, arXiv:1203.4565]

May 23, 2012 0:24 WSPC - Proceedings Trim Size: 9.75in x 6.5in sachdev˙solvay5

5

Fig. 2. Ground state of the Heisenberg antiferromagnet on the triangular lattice with long-range
antiferromagnetic order. This state is not an example of gapped quantum matter.

Fig. 3. A snapshot of the RVB state on the triangular lattice. Each ellipse represents a singlet
valence bond, (| "#i� | #"i)/

p
2. The RVB state is a superposition of all di↵erent singlet pairings,

of which only one is shown above.

spin-charge separation: there are spinon excitations which carry spin S = 1/2 but
do not transfer any charge, as shown in Fig. 4.

Our understanding of the physics of RVB states advanced rapidly after the dis-
covery of cuprate high temperature superconductivity in 1986. Baskaran and An-
derson8 pointed out that a natural language for the description of RVB-like states

Physical motivation
Heisenberg model is fundamental for describing quantum magnetism, 
superconductivity, and charge density waves. Beyond 1 dimension,

Properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to 
analyze.

Problem
Find max-energy value/state of Quantum Max Cut: ∑ 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /𝟒

(≡ Find min-energy state of quantum Heisenberg model: 
∑ 𝑿𝒊𝑿𝒋 + 𝒀𝒊𝒀𝒋 + 𝒁𝒊𝒁𝒋 /𝟒,

but different from approximation point of view)

Max Cut Hamiltonian: 
∑(𝑰 − 𝒁𝒊𝒁𝒋)/𝟐

Quantum Max Cut generalization:
∑ 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /4

Quantum Max Cut: Physical Motivation

[Gharibian, P; arXiv:1909.08846]



Quantum Max Cut

Model 2-Local Hamiltonian?

Has driven advances in quantum approximation algorithms,
based on generalizations of classical approaches

QMA-hard and each term is maximally entangled
[Cubitt, Montanaro 2013]

Recent approximation algorithms
[Gharibian and P.  2019], [Anshu, Gosset, Morentz 2020], 
[P. and Thompson  2021, 2021, 2022]

Evidence of unique games hardness
[Hwang, Neeman, P., Thompson, Wright  2021]

Likely that approximation/hardness results transfer to 2-LH with 
positive terms
[P., Thompson  2021, 2022]

Instance of 2-Local Hamiltonian

Find max eigenvalue of 𝑯 = ∑𝑯𝒊𝒋,

𝑯𝒊𝒋 = 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /4

maximize overlap with 
singlet  on each edge

Each term is singlet projector:
𝑯𝒊𝒋 = |𝚿=⟩⟨𝚿=|
𝚿= = (|𝟎𝟏⟩ − |𝟏𝟎⟩)/ 𝟐

|𝚿0⟩⟨𝚿0|



Beyond product states: 0.53
[Anshu, Gossett, Morenz 2020]

Approximation Algorithms for Quantum Max Cut

How far can we go?

0.498
[Gharibian, P 2019]

0.533
[P, Thompson 2021]

0.562
[Lee 2022]

0.582 (Δ-free)
[King 2022]

1

Classical Intuition:
Best possible?

0.5
[P, Thompson 2022] 0.956

[Hwang, Neeman, P, Thompson, Wright 2022]
NP-hardness Barrier

Slide courtesy of Yeongwoo Hwang



Max-Cut 
in Quantum Language

𝑢 𝑣

Slide courtesy of Yeongwoo Hwang



𝑍}(|𝜓⟩)≠𝑍~(|𝜓⟩)?

Max-Cut 
in Quantum Language

𝑢 𝑣

+1 −1

Measure in +1/-1 basis (or Z basis)

Observable: ℎJKLMNOP =
Q
R
(𝕀 − 𝑍S ⊗𝑍T)

+1 -1 -1 +1 … +1 +1 -1 +1𝒔 =

𝑠S ≠ 𝑠T?

|𝜓⟩

??
Treat 𝜓 as a classical string!

Then 𝑠} ≡ 𝑍}|𝜓⟩

Slide courtesy of Yeongwoo Hwang



𝑚V ≠ 𝑚V
WObservable: ℎXJKLMNOP =

Q
Y
𝕀 − 𝑋S ⊗𝑋T − 𝑌S ⊗𝑌T − 𝑍S ⊗𝑍T𝑚V ≠ 𝑚V

W and 𝑚Z ≠ 𝑚Z
W and 𝑚[ ≠ 𝑚[

W ?

Quantum Max-Cut 

𝑚5

Measure in Z basis and
the X and Y bases

𝑚> 𝑚? 𝑚5
@ 𝑚>

@ 𝑚?
@

𝑢 𝑣

|𝜓⟩

Slide courtesy of Yeongwoo Hwang



Quantum Max-Cut 

Slide courtesy of Yeongwoo Hwang



Quantum Max-Cut 

Associate Hamiltonian ℎ(-,/) to each edge.

Energy: 𝜓 ℎ(-,/)|𝜓⟩

Overall value given by,

%
-,/ ∈1

𝜓 ℎ -,/ |𝜓⟩ = ⟨𝜓| %
-,/ ∈1

ℎ -,/ |𝜓⟩

i.e., this a maximum eigenvalue problem for matrix

|𝜓⟩

(Local Hamiltonian Problem)

H = 4
},~ ∈�

ℎ(},~)

ℎ(B,C) = |Ψ=⟩⟨Ψ=|

maximize overlap with 
singlet  on each edge

= (𝐼 − 𝑋-𝑋. − 𝑌-𝑌. − 𝑍-𝑍.)/4

Slide courtesy of Yeongwoo Hwang



Research challenge: find classical applications for quantum CSPs, thinking of 
solutions as probability distributions over classical solutions

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

𝑥- , 𝑥. = 0,0
𝑥- , 𝑥. = 0,1
𝑥- , 𝑥. = 1,0
𝑥- , 𝑥. = 1,1

0,0 0,1 1,0 1,1

Classical 2-CSP clause: (¬𝑥- ⋀ 𝑥.)

Diagonal rank-1 projector

Quantum 2-CSP clause

General rank-1 projector

quantum
generalization 

Quantum Generalization of Constraint Satisfaction (CSP)

0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

Random assignment “earns” 1/4 of diagonal = k/4 for rank-k projectors



First approximations for
Max k-Local Hamiltonian

[Bansal, Bravyi, Terhal 2007: arXiv 0705.1115]

[Gharibian, Kempe  2011: arXiv 1101.3884]

[Brandao, Harrow  2013: arXiv 1310.0017]

[Harrow, Montanaro 2015: arXiv 1507.00739]

Classical approximation scheme for planar graphs:

First nontrivial general approximations:
Classical approximation scheme for dense instances

Near-optimal product-state approx for special cases:
Uses semidefinite programming (SDP) for bounds

Approximation w.r.t. number of terms and degree:

All of these results use product states



QMA-hard 2-LH problem 
class

NP-hard
specialization

P approximation for
NP-hard specialization

(Product-state) Approximation for QMA-
hard 2-LH problem

Max traceless 2-LH:
∑12𝐻12,

𝐻12 traceless

Max Ising:
Max -∑12 𝑧1𝑧2 ,
𝑧1 ∈ {−1,1}

Ω(1/log 𝑛)
[Charikar, Wirth ‘04]

Ω(1/log 𝑛)
[Bravyi, Gosset, Koenig, Temme ‘18]
0.184 (bipartite, no 1-local terms)

[P, Thompson ‘20]

Max positive 2-LH:
∑12𝐻12,
𝐻12 ≽ 0

Max 2-CSP 0.874
[Lewin, Livnat, Zwick ’02] 

0.25 [Random assignment]
0.282 [Hallgren, Lee ‘19]

0.328 [Hallgren, Lee, P ‘20]
0.387 / 0.498 (numerical) [P, Thompson ‘20]

0.5 (best possible via product states) 
[P, Thompson ‘21]

Quantum Max Cut:
∑12 𝐼 − 𝑋1𝑋2 − 𝑌1𝑌2 − 𝑍1𝑍2
(special case of above)

Max Cut:
Max ∑12 𝐼 − 𝑧1𝑧2 ,
𝑧1 ∈ {−1,1}

0.878
[Goemans, Williamson ‘95]

0.498 [Gharibian, P ‘19]
0.5 [P, Thompson ‘22]

0.53* [Anshu, Gosset, Morenz ‘20]
0.533* [P, Thompson ‘21]

0.562* [Lee ‘22] (also [King ‘22])

Max 2-Quantum SAT:
∑12𝐻12,

𝐻12 ≽ 0, rank 3

Max 2-SAT 0.940
[Lewin, Livnat, Zwick ’02] 

0.75 [Random Assignment]
0.764 / 0.821 (numerical) [P, Thompson ‘20]

0.833… best possible via product states

Recent approximations for Max 2-Local Hamiltonian

See [P, Thompson.; arXiv:2012.12347] for table * These results are not product-state based



Quantum Relaxations



Max Cut Semidefinite Programming Relaxation

1 𝑚+, 𝑚+; ⋯
𝑚+, 1 𝑚,;
𝑚+; 𝑚,; 1
⋮ ⋱

≽ 0

Max ∑-.∈F(1 − 𝑚-.)/2 Max∑-.∈F(1 − 𝑣- ⋅ 𝑣.)/2

‖𝑣-‖ = 1, for all 𝑖 ∈ 𝑉
(𝑣- ∈ ℝ/)

Equivalent perspective: unit vectors 𝑣-, with 𝑚-. = 𝑣- ⋅ 𝑣.

≡

-1 +1Exact solution when 𝑣- ∈ ℝ+: 

Max Cut



Quantum Moment Matrices are Positive

⋯
𝑀++ 𝑀+, 𝑀+;

𝑀+,
G 𝑀,, 𝑀,;

𝑀+;
G 𝑀,;

G 𝑀;;

⋮ ⋱

= 𝑉𝑉G ≽ 0 ⟹ 𝑅𝑒 𝑉𝑉G ≽ 0

𝑋+
𝑌+
𝑍+
𝑋,
𝑌,
𝑍,
𝑋;
𝑌;
𝑍;

𝑋+ 𝑌+ 𝑍+ 𝑋, 𝑌, 𝑍, 𝑋; 𝑌; 𝑍;

𝑉 =

⟨𝑥+| = ⟨𝜓|𝑋+
⟨𝑦+| = ⟨𝜓|𝑌+
⟨𝑧+| = ⟨𝜓|𝑍+

⋮
⟨𝑥/| = ⟨𝜓|𝑋/
⟨𝑦/| = ⟨𝜓|𝑌/
⟨𝑧/| = ⟨𝜓|𝑍/

, 𝑀-. =
⟨𝜓|𝑋-𝑋.|𝜓⟩ ⟨𝑥-|𝑦.⟩ ⟨𝑥-|𝑧.⟩
⟨𝑦-|𝑥.⟩ ⟨𝑦-|𝑦.⟩ ⟨𝑦-|𝑧.⟩
⟨𝑧-|𝑥.⟩ ⟨𝑧-|𝑦.⟩ ⟨𝑧-|𝑧.⟩

⟨𝜓| ∈ ℂ,&
State on 𝒏 qubits

Entries of this 3𝑛×3𝑛
moment matrix are 
expectation values of 
all 2-local Pauli terms



Quantum Max Cut SDP Relaxation

1 0 0 ⋯
0 1 0 𝑀+, 𝑀+;
0 0 1

1 0 0
𝑀+,
H 0 1 0 𝑀,;

0 0 1
1 0 0

𝑀+;
H 𝑀,;

H 0 1 0
0 0 1

⋮ ⋱

≽ 0

𝑋+
𝑌+
𝑍+
𝑋,
𝑌,
𝑍,
𝑋;
𝑌;
𝑍;

𝑋+ 𝑌+ 𝑍+ 𝑋, 𝑌, 𝑍, 𝑋; 𝑌; 𝑍;

𝑀-. =
𝑥- ⋅ 𝑥. 𝑥- ⋅ 𝑦. 𝑥- ⋅ 𝑧.
𝑦- ⋅ 𝑥. 𝑦- ⋅ 𝑦. 𝑦- ⋅ 𝑧.
𝑧- ⋅ 𝑥. 𝑧- ⋅ 𝑦. 𝑧- ⋅ 𝑧.

Quantum Max Cut vector relaxation
Max ∑-.∈F(1 − 𝑥- ⋅ 𝑥. − 𝑦- ⋅ 𝑦. − 𝑧- ⋅ 𝑧.)/4

𝑥- , 𝑦- , ‖𝑧-‖ = 1, for all 𝑖 ∈ 𝑉
𝑥- ⋅ 𝑦- = 𝑥- ⋅ 𝑧- = 𝑦- ⋅ 𝑧- = 0, for all 𝑖 ∈ 𝑉

(𝑣- ∈ ℝ;/)

Max Cut vector relaxation
Max ∑-.∈F(1 − 𝑣- ⋅ 𝑣.)

‖𝑣-‖ = 1, for all 𝑖 ∈ 𝑉
(𝑣- ∈ ℝ/)

Real part of moment matrix

Max =
-.∈F

(1 − 3𝑣- ⋅ 𝑣.)/4

‖𝑣-‖ = 1, for all 𝑖 ∈ 𝑉
(𝑣- ∈ ℝ/)

𝑣! = (𝑥!⊕𝑦! ⊕𝑧!)/ 3

𝑥! = 𝑣! ⊕0⊕ 0
𝑦! = 0⊕ 𝑣! ⊕0
𝑧! = 0⊕ 0⊕ 𝑣!



Quantum Lasserre Hierachy

1
1

1
1

1
⋱

1
1

⋱
1

1
⋱

1

𝐼
𝑋+
𝑌+
𝑍+
𝑋,
⋮
𝑍/
𝑋+𝑋,
⋮

𝑍/=+𝑍/
𝑋+𝑋,𝑋;

⋮
𝑍+𝑍,…𝑍/

𝐼 𝑋+ 𝑌+ 𝑍+ 𝑋, … 𝑍/ 𝑋+𝑋, … 𝑍/=+ 𝑍/ 𝑋+𝑋,𝑋; … 𝑍+…𝑍/

𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒+ 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒,

Classical
[Lasserre 2001]
[Parillo 2003]

Non-commutative/Quantum
[Navascués, Pironio, Acìn 2009 (2010 SIAM J Opt)]

𝑴𝒂𝒙 𝑻𝒓 𝑯c𝝆
𝑻𝒓 c𝝆 = 𝟏
𝑻𝒓 c𝝆 𝑺$𝑺 ≥ 𝟎, ∀ deg-𝒌 𝑺

∀ deg-1 𝑺 ∀ deg-2 𝑺 ∀ deg-𝐧 𝑺

c𝝆 is called degree-k pseudo density



Rounding Infeasible Solutions

𝑴𝒂𝒙 𝑻𝒓 𝑯c𝝆
𝑻𝒓 c𝝆 = 𝟏
𝑻𝒓 c𝝆 𝑺$𝑺 ≥ 𝟎, ∀ deg-𝒌 𝑺

∀ deg-1 𝑺 ∀ deg-2 𝑺 ∀ deg-𝐧 𝑺

c𝝆 is called degree-k pseudo density

𝜶-Approximation Algorithm

Round optimal non-positive pseudo-density c𝝆 to sub-
optimal positive density 𝝆 so that:

𝑻𝒓 𝑯𝝆 ≥ 𝜶 𝑻𝒓 𝑯c𝝆 ≥ 𝜶 𝝀𝒎𝒂𝒙(𝑯)



Approximating Quantum Max Cut



0.498-approximation for Quantum Max Cut

Use hyperplane rounding generalization inspired by [Briët, de Oliveira Filho, Vallentin 2010] 
to round the vectors 𝒙𝒊, 𝒚𝒊, 𝒛𝒊 to scalars 𝜶𝒊, 𝜷𝒊, 𝜸𝒊 to obtain:

𝜌 =
1
2/�

-

(𝐼 + 𝛼-𝑋- + 𝛽-𝑌- + 𝛾-𝑍-) , 𝛼-,+𝛽-, + 𝛾-, = 1

Classical rounding (ℝ/ ⟶ℝ+)

𝑣- ∈ ℝ/ ⟶ 𝛼- =
𝑟H𝑣-
𝑟H𝑣-

𝑟~𝑁 0,1 /

Product-state rounding (ℝ;/ ⟶ℝ;)

𝑣- ∈ ℝ;/ ⟶ (𝛼- , 𝛽- , 𝛾-) =
𝑟5H𝑣-

∥ 𝑟5H𝑣- ∥
,
𝑟>H𝑣-

∥ 𝑟>H𝑣- ∥
,
𝑟?H𝑣-

∥ 𝑟?H𝑣- ∥
𝑟5 , 𝑟> , 𝑟?~𝑁 0,1 ;/

𝑣- 𝑣.

[Garibian, P.  2019]
ℝ+ ℝ;ℝI



Relaxation (upper bound)
𝐌𝐚𝐱 =

𝒊𝒋∈𝑬

(𝟏 − 𝒗𝒊 ⋅ 𝒗𝒋)/𝟐

‖𝒗𝒊‖ = 𝟏, for all 𝒊 ∈ 𝑽
(𝒗𝒊 ∈ ℝ𝒏)

Rounding

Approximability
(Product state

Max Cut vs Quantum Max Cut

𝐌𝐚𝐱 =
𝒊𝒋∈𝑬

(𝟏 − 𝟑𝒗𝒊 ⋅ 𝒗𝒋)/𝟒

‖𝒗𝒊‖ = 𝟏, for all 𝒊 ∈ 𝑽
(𝒗𝒊 ∈ ℝ𝒏)

𝒗𝒊 ∈ ℝ𝒏 ⟶ 𝜶𝒊 =
𝒓𝑻𝒗𝒊
𝒓𝑻𝒗𝒊

𝒗𝒊 ∈ ℝ𝟑𝒏 ⟶ (𝜶𝒊, 𝜷𝒊, 𝜸𝒊) =
𝒓𝒙𝑻𝒗𝒊

∥ 𝒓𝒙𝑻𝒗𝒊 ∥
,
𝒓𝒚𝑻𝒗𝒊

∥ 𝒓𝒚𝑻𝒗𝒊 ∥
,
𝒓𝒛𝑻𝒗𝒊

∥ 𝒓𝒛𝑻𝒗𝒊 ∥

0.878 Lasserre 1
(optimal under unique games conjecture)

0.498 Lasserre 1
0.500 Lasserre 2 (optimal using product states)
(0.533 using 1- & 2-qubit ansatz)



Star Bound

=
.P+

3

𝑇𝑟(𝜌ℎQ.) ≤
𝑞 + 1
2

Ø 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒+ gets 𝑞
Ø 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒, gets (𝑞 + 1)/2

[Lieb, Mattis, ’62]
[Anshu, Gosset, Morenz, ‘20]

Monogamy of 
Entanglement

Triangle Bound Lasserre, satisfies:

Ø These constraints fully capture the allowed values on a triangle!

Monogamy of Entanglement

We generalize monogamy of entanglement bounds to edge energies 𝝁𝒊𝒋 coming from Lasserre hierarchy

New nonlinear triangle bound:



Rounding Ansatze

Product State Ansatz

𝜌 = ∏- 𝜌- i

Singlets+Product States

𝜌$ =
𝐼 + 𝛼$𝑋$ + 𝛽$𝑌$ + 𝛾$𝑍$

2

𝜌%& =
𝐼 − 𝑋%𝑋& − 𝑌%𝑌& −𝑍% 𝑍&

4
i

j

k

𝜌 = ∏- 𝜌- ⋅ ∏.R 𝜌.R



Ø PS rounding algorithm and singlet+PS rounding algorithm follow similar meta-
algorithm, with different “building blocks”

Meta-Algorithm
1. Solve 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒, to get submatrix of 𝑀
2. Initialize 𝐿 = { }
3. For all ij calculate 𝜇-..  If 𝜇-. > 𝛾 add ij to L.
4. Find Maximum matching M on L.
5. Consider two states 

1. Take optimal state on M,    something standard on the rest
2. PS rounding from [GP ‘19]

6. Take whichever has better objective.

0 ≤ 𝜇-. ≤ 1, if 𝜇-. ≈ 1 then 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒, “thinks” that 
edge should be a singlet.

Overall idea- Find the edges 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒, “thinks” should be a singlet, take 
care to get good objective value on these edges 

i

j

Threshold
Block 1

Handling large 
edges

Block 2

Handling qubits 
outside M

Block 3

Better Rounding Algorithm



49Rounding Algorithm (cont.)

Block 1
Ø Star/Triangle bounds say that large edges must be adjacent to small edges ⇒

set L forms a subgraph of small degree
Ø Threshold controls degree of subgraph

Ø Why set them differently? Technical reasons 
Ø Tradeoff in d: 

Ø d is too small ⇒ product state rounding bad
Ø d is too large ⇒ matching is bad

d=1 for PS rounding
d=2 for Entangled

Block 2/Block 3



To learn more about
Quantum Max Cut…

[P., Thompson  2022: arXiv 2206.08342] 

[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394]
[P., Thompson  2021: arXiv 2105.05698]
[Lee  2022: arXiv 2209.00789]
[King  2022: arXiv 2209.02589]

[P., Thompson  2021, 2022 above] 

[Hwang, Neeman, P., Thompson, Wright  2021:
arXiv 2111.01254]

[P., Thompson  2022 above, 2020: arXiv 2012.12347]
[Anshu, Gosset, Morenz-Korol, Soleimanifar:
arXiv 2105.01193]

[Kallaugher, P.  2022: arXiv 2206.00213]

Optimal product-state approximations:

Best-known Quantum Max Cut (QMC) approximations:

Lasserre hierarchy in 2-LH approximations:

Prospects for unique-games hardness:

Connections in approximating QMC and 2-LH:

Optimal space-bounded QMC approximations:
(no quantum advantage possible!)



Thanks for reading this!



Goal: New quantum algorithms and rigorous advantages from the interplay of 
quantum simulation, optimization, and machine learning 

Optimization

Machine 
Learning

Quantum 
Simulation

Convex and gradient-based optimization

Convex/semidefinite relaxations

Quantum query complexity

Quantum sampling complexity
ML approaches for understanding and mitigating noise

Quantum approaches for linear algebra

(Approximate) extremal energy states
of physically-inspired Hamiltonians

Quantum approaches for differential equations

Quantum circuit optimization

Fundamental Algorithmic Research for Quantum Computing

We’re looking for 
interns and postdocs! 



Fundamental Algorithmic Research for Quantum Computing

Accelerated Research for Quantum Computing

Quantum Algorithms for Ideal Abstract Quantum Computers

Models: based on abstract complexity classes (e.g. BQP) 
Goal: identification of rigorous asymptotic quantum advantages
Challenge: potentially difficult or impossible to physically realize advantages

Quantum Algorithms for Physical Quantum Computers

Models: implementation on current and future quantum computers 
(e.g. “quantum software engineering” on IBM, Google systems)

Goal: empirical demonstration of quantum “wins”
Challenge: wins may be platform-specific, not sustainable asymptotically, 

or have no immediate  practical applications

Quantum Algorithms for Physically-inspired Abstract Quantum Computers

Models: abstract imbued with physically-inspired features 
(e.g. DQC1, using few ancilla, restricted gate sets or topologies)

Goal: rigorous quantum advantages under resource restrictions
Challenge: models and results should help bridge ideal-physical gap

FAR-Q
C


