

Approximation and Hardness of Quantum Max Cut

Presented by

Ojas Parekh Quantum Algorithms and Applications Collaboratory

with Kevin Thompson (Sandia)

including work with: Sevag Gharibian (U Paderborn), Yeongwoo Hwang (Harvard), John Kallaugher (Sandia), Joe Neeman (UT Austin), John Wright (UC Berkeley)

Trends in Computational Discrete Optimization April, 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Synergies between OR and Quantum Information Science (QIS)

INFORMS Challenge Paper:

Survey article and suggestions to engage QIS for operations researchers

Synergies Between Operations Research and Quantum Information Science P., 2023 <u>https://doi.org/10.1287/ijoc.2023.1268</u> (open access)

Special Issue of INFORMS Journal on Computing—Quantum computing and operations research Broadly targeting research at intersection of OR and QIS

Call will appear soon; papers due January 15, 2024

Guest Editors: Carleton Coffrin, Elisabeth Lobe, Giacomo Nannicini, Ojas Parekh

Quantum Computing

State of Quantum "Speedups"

Unproven exponential speedup:

Shor's quantum factorization algorithm [Shor, Polynomial-Time Algorithms for Prime Factorization..., 1995]

Provable modest speedup:

Grover's quantum search algorithm [Grover, A fast quantum mechanical algorithm for database search, 1996]

Provable exponential advantage in specialized settings:

Query and communication complexity [Childs et al., *Exponential Algorithmic Speedup by a Quantum Walk*, 2003] [Bar-Yossef et al., *Exponential Separation of Quantum and Classical...*, 2008] ... OPT Approximate Optimate

Optimization offers potential for new kinds of quantum advantages:
 Better quality solutions but not necessarily faster solution times

Quantum Bits Live in a Sphere

Quantum Algorithms Output Distributions

Quantum Optimization

What is Quantum Optimization?

Classical approaches for quantum Hamiltonians Classical optimization (e.g. DMRG, mean-field methods) **Quantum approaches for classical Hamiltonians Quantum approaches for quantum Hamiltonians** (e.g. AQC, QAOA for quantum Hamiltonians) (e.g. AQC, QAOA for quantum Hamiltonians) Quantum approaches for continuous optimization Classical Quantum

Problem

Classical

Quantum

Max Cut

Partition vertices of a graph two parts to maximize (weight of) crossing edges

Constraint Satisfaction Problem (CSP) version: Boolean assignment satisfying max # XOR clauses

 $(x_1 \oplus x_2), (x_1 \oplus x_4), (x_1 \oplus x_6), (x_2 \oplus x_3), \dots$

Model NP-hard discrete optimization problem and 2-CSP

Has driven developments in approximation algorithms

0.878...-approximation [Goemans and Williamson, 1995]

0.878...+ ε is unique games hard [Khot, Kindler, Mossel, O'Donnell, 2007]

Cut and related polytopes have advanced discrete optimization e.g., [Fiorini, Massar, Pokutta, Tiwary, de Wolf, 2012]

How farapproving of ion algorithms

0.87856 + ϵ approximations are NP-Hard! (under Unique Games Conjecture)

It's Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

 $Min_{\Psi} \left\langle \psi \left| \sum_{S} H_{S} \right| \psi \right\rangle \quad \begin{array}{l} \text{Hamiltonian, } \sum_{S} H_{S}, \text{ represents energy levels} \\ \text{of a physical system composed of "local" parts, S} \end{array}$

Discrete optimization problem becomes an eigenproblem on a large matrix

Image from https://en.wikipedia.org/wiki/Metastability

Hacking Nature to Solve Your Problems

- 1. Map solution values to energy levels of a physical system
- 2. Realize said physical system
- 3. Let Nature relax to a stable low-energy state

Minimum eigenstate is of form: $|\psi\rangle = \alpha |010\rangle + \beta |101\rangle$, with energy -2

Computational Complexity Considerations

Hamiltonian is exponentially large, $2^N \times 2^N$, for an *N*-node graph, but it is a sum of $O(N^2)$ local 4×4 Hamiltonians, one for each edge

Local Hamiltonians are efficient and require manipulating only a constant number of qubits

The Power of Quantum Computing?

Extended Quantum Church-Turing Thesis

Any "reasonable" model of computing can be *efficiently* simulated by a quantum Turing machine

It would be very surprising if quantum computers could solve NP-complete problems in quantum polynomial time (BQP).

Yet, there are problems In BQP that are very unlikely to be in classical polynomial time (P) or even NP!^{*}

Image from https://en.wikipedia.org/wiki/BQP

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea that captures universal quantum computing.

Using soap film to find Steiner Trees [Datta, Khastgir, & Roy; arXiv 0806.1340]

^{*}Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]

Quantum Approximation Algorithms

(Quantum) Approximation Algorithms

A α -approximation algorithm runs in polynomial time, and for any instance *I*, delivers an approximate solution such that:

(Quantum) Approximation Algorithms

A α -approximation algorithm runs in polynomial time, and for any instance *I*, delivers an approximate solution such that:

 $\frac{Value(Approximate_I)}{Value(Optimal_I)} \geq \alpha$

Heuristics

- Guided by intuitive ideas
- Perform well on practical instances
- May perform very poorly in worst case
- Difficult to prove anything about performance

Approximation Algorithms

- Guided by worst-case performance
- May perform poorly compared to heuristics
- Rigorous bound on worst-case performance
- Designed with performance proof in mind

Probability Distributions and Polynomials

Let's consider diagonal PSD matrices with trace = 1:

$$\begin{bmatrix} \frac{1+a}{2} & 0\\ 0 & \frac{1-a}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & \\ & 1 \end{bmatrix} + \frac{a}{2} \begin{bmatrix} 1 & \\ & -1 \end{bmatrix}$$
Bias *a* must satisfy $|a| \le 1$
$$\begin{bmatrix} \frac{1+a_1}{2} & 0\\ 0 & \frac{1-a_1}{2} \end{bmatrix} \otimes \begin{bmatrix} \frac{1+a_2}{2} & \\ & \frac{1-a_2}{2} \end{bmatrix} = \frac{l+a_1Z}{2} \otimes \frac{l+a_2Z}{2} = \frac{l+a_1Z \otimes l+a_2I \otimes Z+a_1a_2Z \otimes Z}{4}$$

Probability Distributions and Polynomials

Quantum "Distributions" and Polynomials

Let's consider diagonal PSD matrices with trace = 1:

$$\begin{bmatrix} \frac{1+a}{2} & 0\\ 0 & \frac{1-a}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & \\ & 1 \end{bmatrix} + \frac{a}{2} \begin{bmatrix} 1 & \\ & -1 \end{bmatrix}$$
$$I = \frac{1}{2} \begin{bmatrix} 1 & \\ & I \end{bmatrix} + \frac{a}{2} \begin{bmatrix} 1 & \\ & -1 \end{bmatrix}$$

Bias
$$a$$
 must satisfy $|a| \leq 1$

Biases must satisfy $|| (a, b, c) || \le 1$

Max Cut and Quantum Max Cut

Polynomials and Quantum Solutions

Classical

Real-coeff polynomial $P(I, Z_1, ..., Z_n)$ over **commutative** variables

Problem:
$$Max_{\{Z_i\}} \lambda_{max}(P(I, Z_1, ..., Z_n))$$

 $Z_i^2 = I$
 $Z_i Z_i = Z_i Z_i$

P represents a **diagonal** $M \in \mathbb{R}^{2^n \times 2^n}$

$$\begin{array}{cccc} 0,0 & \left[\begin{matrix} 0 & 0 & 0 & 0 \\ 0,1 & \left[\begin{matrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right] \\ 1,1 & \left[\begin{matrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right] \end{array}$$
$$P = \frac{1}{2} (I - Z_1 Z_2)$$

Quantum

Real-coeff polynomial $Q(I, X_1, Y_1, Z_1, ..., X_n, Y_n, Z_n)$ over **non-commutative** variables

 $\begin{aligned} &Max_{\{X_i,Y_i,Z_i\}} \lambda_{max} (\ \mathbf{Q}(I,X_1,Y_1,Z_1,\ldots,X_n,Y_n,Z_n)\) \\ & X_i^2 = Y_i^2 = Z_i^2 = I \\ & X_iY_i = -Y_iX_i, X_iZ_i = -Z_iX_i, Y_iZ_i = -Z_iY_i \\ & \text{Variables commute on different indices:} \\ & \text{e.g.}\ X_iZ_j = Z_jX_i \end{aligned}$

Q represents a **Hermitian** $M \in \mathbb{C}^{2^n \times 2^n}$

$$Q = \frac{1}{4} (I - X_1 X_2 - Y_1 Y_2 - Z_1 Z_2)$$

Polynomials and Quantum Solutions

Classical

Problem:
$$Max_{\{Z_i\}} \lambda_{max}(P(I, Z_1, ..., Z_n))$$

 $Z_i^2 = I$
 $Z_i Z_j = Z_j Z_i$

WLOG can take: $Z_i \in \{-1,1\}$

$$\begin{array}{c} 0,0\\0,1\\1,0\\1,1\end{array}\begin{bmatrix} 0 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 0\end{bmatrix}\\P = \frac{1}{2}(I - Z_1 Z_2)\end{array}$$

Quantum

 $\begin{aligned} &Max_{\{X_i,Y_i,Z_i\}} \lambda_{max} (Q(I,X_1,Y_1,Z_1,\ldots,X_n,Y_n,Z_n)) \\ &X_i^2 = Y_i^2 = Z_i^2 = I \\ &X_iY_i = -Y_iX_i, X_iZ_i = -Z_iX_i, Y_iZ_i = -Z_iY_i \\ &Variables \text{ commute on different indices:} \\ &e.g. X_iZ_j = Z_jX_i \end{aligned}$

WLOG: $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ e.g. $Z_2 = I \otimes Z \otimes I$... $Z_1 Z_3 = Z \otimes I \otimes Z \otimes I \dots$ $X_1Y_4 = X \otimes I \otimes I \otimes Y \dots$ $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $Q = \frac{1}{4}(I - X_1X_2 - Y_1Y_2 - Z_1Z_2)$

Quantum Max Cut: Physical Motivation

Max Cut Hamiltonian: $\sum (I - Z_i Z_i)/2$ Quantum Max Cut generalization: $\sum (I - X_i X_j - Y_i Y_j - Z_i Z_j)/4$

Physical motivation

Heisenberg model is fundamental for describing quantum magnetism, superconductivity, and charge density waves. Beyond 1 dimension,

Properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

Problem

Find max-energy value/state of Quantum Max Cut: $\sum (I - X_i X_j - Y_i Y_j - Z_i Z_j)/4$

(\equiv Find min-energy state of quantum Heisenberg model:

 $\sum (X_i X_j + Y_i Y_j + Z_i Z_j)/4,$ but different from approximation point of view)

[Gharibian, P; arXiv:1909.08846]

(h

Anti-ferromagnetic Heisenberg model: roughly heighboring quantum particles aim to align in

Quantum Max Cut

maximize overlap with singlet on each edge

Instance of 2-Local Hamiltonian

Find max eigenvalue of $H = \sum H_{ij}$,

 $H_{ij} = (I - X_i X_j - Y_i Y_j - Z_i Z_j)/4$

Each term is singlet projector: $H_{ij} = |\Psi^-\rangle\langle\Psi^-|$ $|\Psi^-\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$

Model 2-Local Hamiltonian?

Has driven advances in quantum approximation algorithms, based on generalizations of classical approaches

QMA-hard and each term is maximally entangled [Cubitt, Montanaro 2013]

Recent approximation algorithms [Gharibian and P. 2019], [Anshu, Gosset, Morentz 2020], [P. and Thompson 2021, 2021, 2022]

Evidence of unique games hardness [Hwang, Neeman, P., Thompson, Wright 2021]

Likely that approximation/hardness results transfer to 2-LH with positive terms [P., Thompson 2021, 2022] Approximation Algorithms for Quantum Max Cut

How far can we go?

Max-Cut in Quantum Language

Max-Cut in Quantum Language

Treat $|\psi\rangle$ as a classical string!

Measure in +1/-1 basis (or Z basis)

Then $s_u \equiv Z_u |\psi\rangle$

Observable:
$$h_{MAX-CUT} = \frac{1}{2}(\mathbb{I} - Z_u \otimes Z_v)$$

Quantum Max-Cut

Measure in Z basis and the X and Y bases

Observable: $m_{QM} \neq_X m'_{QU} \neq_H q_{U} \neq_M m'_{Z} \otimes dm_y \neq_u \otimes Z_v$)

Slide courtesy of Yeongwoo Hwang

Quantum Max-Cut

Slide courtesy of Yeongwoo Hwang

(Qocal daminitoniantProblem)

Associate **Hamiltonian** $h_{(u,v)}$ to each edge.

Energy: $\langle \psi | h_{(u,v)} | \psi \rangle$

Overall value given by,

$$\sum_{(u,v)\in E} \langle \psi | h_{(u,v)} | \psi \rangle = \langle \psi | \left(\sum_{(u,v)\in E} h_{(u,v)} \right) | \psi \rangle$$

i.e., this a **maximum eigenvalue** problem for matrix

$$\mathbf{H} = \sum_{(u,v)\in E} h_{(u,v)}$$

Slide courtesy of Yeongwoo Hwang

Classical 2-CSP clause: $(\neg x_i \land x_j)$

Diagonal rank-1 projector

General rank-1 projector

Quantum 2-CSP clause

Random assignment "earns" 1/4 of diagonal = k/4 for rank-k projectors

Research challenge: find classical applications for quantum CSPs, thinking of solutions as probability distributions over classical solutions

First approximations for Max k-Local Hamiltonian **Classical approximation scheme for planar graphs:** [Bansal, Bravyi, Terhal 2007: arXiv 0705.1115] **First nontrivial general approximations:** [Gharibian, Kempe 2011: arXiv 1101.3884] **Classical approximation scheme for dense instances Near-optimal product-state approx for special cases:** [Brandao, Harrow 2013: arXiv 1310.0017] Uses semidefinite programming (SDP) for bounds Approximation w.r.t. number of terms and degree: [Harrow, Montanaro 2015: arXiv 1507.00739]

All of these results use product states

Recent approximations for Max 2-Local Hamiltonian

QMA-hard 2-LH problem class	NP-hard specialization	P approximation for NP-hard specialization	(Product-state) Approximation for QMA- hard 2-LH problem
Max traceless 2-LH: $\sum_{ij} H_{ij},$ H_{ij} traceless	Max Ising: Max $-\sum_{ij} z_i z_j$, $z_i \in \{-1,1\}$	$\Omega(1/\log n)$ [Charikar, Wirth '04]	Ω(1/log n) [Bravyi, Gosset, Koenig, Temme '18] 0.184 (bipartite, no 1-local terms) [P, Thompson '20]
Max positive 2-LH: $\sum_{ij} H_{ij},$ $H_{ij} \ge 0$	Max 2-CSP	0.874 [Lewin, Livnat, Zwick '02]	0.25 [Random assignment] 0.282 [Hallgren, Lee '19] 0.328 [Hallgren, Lee, P '20] 0.387 / 0.498 (numerical) [P, Thompson '20] 0.5 (best possible via product states) [P, Thompson '21]
Quantum Max Cut: $\sum_{ij} I - X_i X_j - Y_i Y_j - Z_i Z_j$ (special case of above)	Max Cut: Max $\sum_{ij} I - z_i z_j$, $z_i \in \{-1,1\}$	0.878 [Goemans, Williamson '95]	0.498 [Gharibian, P '19] 0.5 [P, Thompson '22] 0.53* [Anshu, Gosset, Morenz '20] 0.533* [P, Thompson '21] 0.562* [Lee '22] (also [King '22])
Max 2-Quantum SAT: $\sum_{ij} H_{ij},$ $H_{ij} \ge 0$, rank 3	Max 2-SAT	0.940 [Lewin, Livnat, Zwick '02]	0.75 [Random Assignment] 0.764 / 0.821 (numerical) [P, Thompson '20] 0.833 best possible via product states

See [P, Thompson.; arXiv:2012.12347] for table

* These results are not product-state based

Quantum Relaxations

Max Cut Semidefinite Programming Relaxation

Quantum Moment Matrices are Positive

Quantum Max Cut SDP Relaxation

Quantum Lasserre Hierachy

is called degree-k pseudo density

ClassicalNon-commutative/Quantum[Lasserre 2001][Navascués, Pironio, Acin 2009 (2010 SIAM J Opt)][Parillo 2003]

Rounding Infeasible Solutions

 $Max Tr[H\tilde{\rho}]$ $Tr[\tilde{\rho}] = 1$ $Tr[\tilde{\rho} S^{\dagger}S] \ge 0, \forall \deg k S$

is called degree-k pseudo density

α -Approximation Algorithm -

Round optimal non-positive pseudo-density $\tilde{\rho}$ to suboptimal positive density ρ so that:

 $Tr[H\rho] \ge \alpha Tr[H\widetilde{\rho}] \ge \alpha \lambda_{max}(H)$

Approximating Quantum Max Cut

0.498-approximation for Quantum Max Cut

Use hyperplane rounding generalization inspired by [Briët, de Oliveira Filho, Vallentin 2010] to round the vectors x_i, y_i, z_i to scalars $\alpha_i, \beta_i, \gamma_i$ to obtain:

$$\rho = \frac{1}{2^n} \prod_i (I + \alpha_i X_i + \beta_i Y_i + \gamma_i Z_i), \ \alpha_i^2 + \beta_i^2 + \gamma_i^2 = 1$$

Classical rounding ($\mathbb{R}^n \to \mathbb{R}^1$)

$$v_i \in \mathbb{R}^n \longrightarrow \alpha_i = \frac{r^T v_i}{|r^T v_i|}$$
$$r \sim N(0, 1)^n$$

Product-state rounding $(\mathbb{R}^{3n} \to \mathbb{R}^3)$ $v_i \in \mathbb{R}^{3n} \to (\alpha_i, \beta_i, \gamma_i) = \left(\frac{r_x^T v_i}{\|r_x^T v_i\|}, \frac{r_y^T v_i}{\|r_y^T v_i\|}, \frac{r_z^T v_i}{\|r_z^T v_i\|}\right)$ $r_x, r_y, r_z \sim N(0, 1)^{3n}$

Max Cut vs Quantum Max Cut

Relaxation(upper bound) $Max \sum_{ij \in E} (1 - v_i \cdot v_j)/2$ $Max \sum_{ij \in E} (1 - 3v_i \cdot v_j)/4$ $\|v_i\| = 1$, for all $i \in V$
 $(v_i \in \mathbb{R}^n)$ $\|v_i\| = 1$, for all $i \in V$
 $(v_i \in \mathbb{R}^n)$

Rounding

$$\boldsymbol{v}_i \in \mathbb{R}^n \longrightarrow \boldsymbol{\alpha}_i = rac{r^T \boldsymbol{v}_i}{|r^T \boldsymbol{v}_i|}$$

Approximability

0.878 Lasserre 1 (optimal under unique games conjecture) 0.498 Lasserre 1
0.5 Lasserre 2 (optimal using product states)
(0.533 using 1- & 2-qubit ansatz)

$$\boldsymbol{v}_i \in \mathbb{R}^{3n} \longrightarrow (\boldsymbol{\alpha}_i, \boldsymbol{\beta}_i, \boldsymbol{\gamma}_i) = \left(\frac{\boldsymbol{r}_x^T \boldsymbol{v}_i}{\parallel \boldsymbol{r}_x^T \boldsymbol{v}_i \parallel}, \frac{\boldsymbol{r}_y^T \boldsymbol{v}_i}{\parallel \boldsymbol{r}_y^T \boldsymbol{v}_i \parallel}, \frac{\boldsymbol{r}_z^T \boldsymbol{v}_i}{\parallel \boldsymbol{r}_z^T \boldsymbol{v}_i \parallel}\right)$$

Monogamy of Entanglement

We generalize monogamy of entanglement bounds to edge energies μ_{ij} coming from Lasserre hierarchy

New nonlinear triangle bound:

Triangle Bound Lasserre₂ satisfies: $\begin{array}{ccc}
 & \mu_{01} = \operatorname{Tr}(\tilde{\rho}h_{01}) \\
 & \mu_{02} = \operatorname{Tr}(\tilde{\rho}h_{02}) \\
 & \mu_{12} = \operatorname{Tr}(\tilde{\rho}h_{12})
\end{array}$ $\begin{array}{ccc}
 & 0 \leq \mu_{01} + \mu_{02} + \mu_{12} \leq 3/2 \\
 & 4(\mu_{01}^2 + \mu_{02}^2 + \mu_{12}^2) - 8(\mu_{01}\mu_{02} + \mu_{01}\mu_{12} + \mu_{02}\mu_{12}) \leq 0
\end{array}$

 $\mu_{01} = 1 \Rightarrow \mu_{02} = 1/4$

These constraints fully capture the allowed values on a triangle!

Rounding Ansatze

Better Rounding Algorithm

PS rounding algorithm and singlet+PS rounding algorithm follow similar metaalgorithm, with different "building blocks"

$$\mu_{ij} = \operatorname{Tr}(\tilde{\rho}h_{ij})$$

 $0 \le \mu_{ij} \le 1$, if $\mu_{ij} \approx 1$ then $Lasserre_2$ "thinks" that edge should be a singlet.

Overall idea- Find the edges $Lasserre_2$ "thinks" should be a singlet, take care to get good objective value on these edges

Rounding Algorithm (cont.)

Block 1

- ➤ Star/Triangle bounds say that large edges must be adjacent to small edges ⇒ set L forms a subgraph of small degree
 - Threshold controls degree of subgraph

d=1 for PS rounding d=2 for Entangled

- > Why set them differently? Technical reasons
- > Tradeoff in d:
 - \succ d is too small \Rightarrow product state rounding bad
 - \succ d is too large \Rightarrow matching is bad

Block 2/Block 3

To learn more about Quantum Max Cut...

Qualitum Max Cut	
Optimal product-state approximations:	[P., Thompson 2022: arXiv 2206.08342]
Best-known Quantum Max Cut (QMC) approximations:	[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394] [P., Thompson 2021: arXiv 2105.05698] [Lee 2022: arXiv 2209.00789] [King 2022: arXiv 2209.02589]
Lasserre hierarchy in 2-LH approximations:	[P., Thompson 2021, 2022 above]
Prospects for unique-games hardness:	[Hwang, Neeman, P., Thompson, Wright 2021: arXiv 2111.01254]
Connections in approximating QMC and 2-LH:	[P., Thompson 2022 above, 2020: arXiv 2012.12347] [Anshu, Gosset, Morenz-Korol, Soleimanifar: arXiv 2105.01193]
Optimal space-bounded QMC approximations: (no quantum advantage possible!)	[Kallaugher, P. 2022: arXiv 2206.00213]

Thanks for reading this!

Goal: New quantum algorithms and rigorous advantages from the interplay of quantum simulation, optimization, and machine learning

FARELE Fundamental Algorithmic Research for Quantum Computing

Quantum Algorithms for Ideal Abstract Quantum Computers

Models: based on abstract complexity classes (e.g. BQP)Goal: identification of rigorous asymptotic quantum advantagesChallenge: potentially difficult or impossible to physically realize advantages

Quantum Algorithms for *Physically-inspired Abstract* Quantum Computers

Models: abstract imbued with physically-inspired features

 (e.g. DQC1, using few ancilla, restricted gate sets or topologies)

 Goal: rigorous quantum advantages under resource restrictions
 Challenge: models and results should help bridge ideal-physical gap

Quantum Algorithms for *Physical* Quantum Computers

Models: implementation on current and future quantum computers (e.g. "quantum software engineering" on IBM, Google systems)
Goal: empirical demonstration of quantum "wins"
Challenge: wins may be platform-specific, not sustainable asymptotically, or have no immediate practical applications

