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State of Quantum “Speedups”

=Unproven exponential speedup:

Shor’s quantum factorization algorithm
[Shor, Polynomial-Time Algorithms for Prime Factorization..., 1995]

"Provable modest speedup: OPT

Grover’s quantum search algorithm
[Grover, A fast quantum mechanical algorithm for database search, 1996]

V
>
C
:

=Provable exponential advantage in specialized settings:

Query and communication complexity

[Childs et al., Exponential Algorithmic Speedup by a Quantum Walk, 2003]
[Bar-Yossef et al., Exponential Separation of Quantum and Classical..., 2008]

Approxima’>

Optimal

=Optimization offers potential for new kinds of quantum advantages:
Better quality solutions but not necessarily faster solution times



Quantum Bits Live in a Sphere

Representation State space
Clas?':::)l bit: OR {0, 1}
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Quantum Algorithms Output Distributions

2N binary classical states

00O

Seek to maximize probability
of good solutions
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Algorithm

What is Quantum Optimization!

-
u . . .

@ i . Classical approaches for quantum Hamiltonians
8 Classical optimization (e.g. DMRG, mean-field methods)

£ Quantum approaches for classical Hamiltonians

3 (e.g. AQC, QAOA for quantum Hamiltonians) Quantum approaches for quantum Hamiltonians
§ (e.g. AQC, QAOA for guantum Hamiltonians)
o

Quantum approaches for continuous optimization

Classical Quantum

Problem




Model NP-hard discrete optimization problem and 2-CSP
Has driven developments in approximation algorithms

0.878...-approximation
[Goemans and Williamson, 1995]

0.878...+& is unique games hard
[Khot, Kindler, Mossel, O'Donnell, 2007]

Partition vertices of a graph two parts Cut and related polytopes have advanced discrete optimization
to maximize (weight of) crossing edges e.g., [Fiorini, Massar, Pokutta, Tiwary, de Wolf, 2012]

Boolean assignment satisfying max # XOR clauses

(x1 @ x2), (x1 D x4), (x1 D x6), (x2 D x3), ...




Algorithms for Max-Cut

Row faraggeromerge®ion algorithms

0.87856 + € approximations are NP-Hard! (under Unique Games Conjecture)

1

__I__

2

1

2m
[Vitanyi 1981] {1
272

[Hofmeister, Lefmann 1995]

0.87856
[Goemans, Williamson 1995]

ALG(D)
OPT(I) |
1
2
Random

[Haglin, Venkatesan

1991]

RN

1
[Khot, Kindler Mossel, O’Donnell 2007]

Slide courtesy of Yeongwoo Hwang



It’s Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

Miny (1/) ‘zSHS

Discrete optimization problem becomes an eigenproblem on a large matrix

Hamiltonian, ).¢ Hg, represents energy levels
of a physical system composed of “local” parts, $

)

Optimal discrete Min-energy

optimization solution eigenvector

Nature tends towards stable states...
So let nature solve your problems for you?

Global minimum
<2

Image from https://en.wikipedia.org/wiki/Metastability




Hacking Nature to Solve Your Problems

2. Realize said physical system

3. Let Nature relax to a stable low-energy state

Vx

Max Cut

Vertices

1 2 3 State
L,L,L=[000)
L,L,R=(001)
L,R,L=(010)
L,R,R=(011)
R,L,L=[100)
R,L,R=(101)
R,R,L=[110)
R,R,R=|111)
Left or Right

side of cut

Hamiltonian for Max Cut on a path with 3 vertices

|000) |001) |010) [011) |100) [101) |110) |111)

1. Map solution values to energy levels of a physical system -

~0-0-0

Some cuts on a path with 3 vertices

Minimum eigenstate is of form: |) = a|010) + £|101), with energy -2



Computationa

Hyp; =

Complexity Considerations

000

Hamiltonian is exponentially large, 2V %2V, for an N-node graph, but
it is a sum of O(N?) local 4x4 Hamiltonians, one for each edge

0

|00) |01) [10) [11)

H23=I®

0
-1
-1
0

|00) |01) [10) |11)

1 1000)
1001)
1010)
1011)
1100)
1101)
1110)
0d |111)

1 1000)
|001)
|010)
|011)
1100)
1101)
1110)
ol j111)

@ O

© 0

Local Hamiltonians are efficient and require manipulating only a constant number of qubits




The Power of Quantum Computing!?

Extended Quantum Church-Turing Thesis
Any “reasonable” model of computing can be efficiently simulated by a quantum Turing machine

( PSPACE problems )
It would be very surprising if guantum computers could solve NP-complete

ant: problems N problems in quantum polynomial time (BQP).

NP complete

----------------- Yet, there are problems In BQP that are very unlikely to be in classical

1 BQP Y~ s
‘ y | polynomial time (P) or even NP!*

N\ J :—:
Image from https://en.wikipedia.org/wiki/BQP % %
L=5 L=,27 L=28

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea
that captures universal quantum computing.

Using soap film to find Steiner Trees
[Datta, Khastgir, & Roy; arXiv 0806.1340]

*Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]



Quantum Approximation
Algorithms
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(Quantum) Approximation Algorithms

Approximation (description of)
Algorithm state p

A «a-approximation algorithm runs in polynomial time, and for any instance /,
delivers an approximate solution such that:

Value(Approximatey)

> a
Value(Optimal;)

Optimal value T —

|
— a = largest “gap” between
optimal and approximate

solutions over all instances

solution

guality

solution value

Instance 1 Instance 2 Instance 3 ...



(Quantum) Approximation Algorithms

Approximation

Algorithm

(description of)
state p

A «a-approximation algorithm runs in polynomial time, and for any instance /,
delivers an approximate solution such that:

Value(Approximatey)

Value(Optimal;)

Heuristics

= Guided by intuitive ideas

= Perform well on practical instances

= May perform very poorly in worst case

= Difficult to prove anything about performance

Approximation Algorithms
= Guided by worst-case performance
= May perform poorly compared to heuristics

= Rigorous bound on worst-case performance
= Designed with performance proof in mind




Probability Distributions and Polynomials

Let’s consider diagonal PSD matrices with trace = 1:

1+ a
2 1 arq | |
1—a _2[ 1]"'2[ _1] Bias a must satisfy |a| < 1
2 - I -
Z Z ZZ
1+a4 1 [1+a; 7 1 2 149>
2 0 2| 2 =I+alZ®I+azZ=I+alZ®I+a21®Z+a1aZZ®Z
1—a 1-—a, 2 2 2
2 - 2




Probability Distributions and Polynomials

1+ a4 1+ a,
2 2
1_a1 ®
2 i
1 _
a, = ——= aZZE i
1 0' " 3
4 4 _
0 3 1
i 4. 4 |
(1
_1 1 1
4 1 8
1.
|

Z4 Z, 217,
Tt aZ _T+aZ 1+aZQI+aIQZ+a,0,Z2Q7Z
1—a2 o 2 2 B 4
1
16
9
16
3
16- ]
1
1 1 ~1 1 ~1
—1 +8 1 16 —1
—1. —1.
Z4 Zy YAYA)



Quantum “Distributions” and Polynomials

Let’s consider diagenal PSD matrices with trace = 1:

1+ a
2 _1n ari . |
1—q —2[ 1]"‘2[ _1] Bias a must satisfy |[a| < 1
° I Z
‘14+a b —ci]

1 b .
b-l%ci 1Ea =§[1 1]+§[1 _1]+§[1 1]+%[i l]

2 2

| Z X Y

Biases must satisfy || (a,b,c) | < 1



Max Cut and Quantum Max Cut

Classical Max Cut Quantum Max Cut
2-variable constraint: x; @ x; quantum 2-variable constraint
0,0 0,1 1,0 1,1 ] ]
x,x=00[0 0 0 O quantum 0 0 0 0
x,x=0110 1 0 O generalization |0 1/2 -1/2 0
x,x,=10(0 0 1 0 ‘ o -1/2 1/2 O
xl-,xj = 1,1 0O 0 0 0] 10 0 0 0.
Diagonal matrix General non-diagonal matrix
diagonal encodes Boolean function: (I —XX; —YY,—Z;Z;) /4 “anti-aligned”
f(Ziij) =1/2(1 — z;z)) §uperposition of
z; € {~1,1} Maximum eigenvector; optimal Max Cut bases
(oi—i 0)—i|01)—i|10> I
Maximum eigenvectors: VA 2 N ) N/ ]
(0,1,0,0) = |[01), with (eigen)value 1
(0,0,1,0) = |10) |
with (eigen)value 1 Maximum product state: e.g., [01)
with energy 1/2 I



Polynomials and Quantum Solutions

Classical

Real-coeff polynomial P(1,Z4, ..., Z,,)

over commutative variables

Problem: Maxz y Apmax(PU,

Zi =1

P represents a diagonal M €

0,00 0 0 O]
0110 1 0 O
1,00 0 1 O
1,110 0 0 O.

1
P = E(I - lez)

le ---;Zn) )

Rz”xz"

Quantum

Real-coeff polynomial Q(I, Xy, Y1, Z4, ., X5, Yo Z2,)
over non-commutative variables

Max{Xi,Yi,Zi} Amax( Q(I: X1; er Zli anr Yn'Zn) )
XF=Y?=27ZF=1
XiYi = _YiXi' Xi Zi = _ZiXil Yi Zi = _ZiYi
Variables commute on different indices:

Q represents a Hermitian M € C2"*2"
0 0 0 07
0 1/2 -1/2 0
0 —-1/2 1/2 0
0 0 0 0.

Q= (1 — X1 X, — 1Y, — Z1ZZ)

AN



Polynomials and Quantum Solutions

Classical Quantum
Problem: Max ;. Ao (PU, Z4, ..., Z) ) Maxiy,y.z3 Amax(QU, X1, Y1, Z1, oo, X, Ynu Z3) )
Zi =1 Xt =Y =27 =1
ZLZ] = Z]Zl XiYi - _YiXi' XiZi - _ZiXil Yi Zi - _ZiYi
Variables commute on different indices:
WLOG can take: Z; € {—1,1} =1 0], _[0 1] ,_[0 —i
‘ woe:z=[ SLx=[] oJv=[;

eg. 7, = IQZQI ...
7.7, = ZQIQZQ®I...
X,Y, = XQIQI®Y ...

000 0 0 O [0 0 0 0]
010 1 0 0 o 1/2 -1/2 0
1,00 0 1 0 0 —-1/2 1/2 0
1,110 0 0 Ol 0 0 0 0.
1 1
P= E(I —717,) Q= Z(l - XX, =YY, —7,7,)



Quantum Max Cut: Physical Motivation

Max Cut Hamiltonian: Quantum Max Cut generalization:

SU-2Z)/2 " y(I-XX,-VY,-2Z

Physical motivation
Heisenberg model is fundamental for describing quantum magnetism,
superconductivity, and charge density waves. Beyond 1 dimension,

Properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to
analyze.

Problem
Find max-energy value/state of Quantum Max Cut: Z(I —XiX; - Y;¥Y; - ZiZ]-)/4

(= Find min-energy state of quantum Heisenberg model:
Y(X:X;+Y.Y;+Z,Z;)/4,
but different from approximation point of view)
[Gharibian, P; arXiv:1909.08846]

iZj)/4

Anti-ferromagnetic Heisenberg model: roughly
neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian
for so-called Mott insulators.

[Image: Sachdeyv, arXiv:1203.4565]




Quantum Max Cut

Model 2-Local Hamiltonian?
maximize overlap with

singlet on each edge . . . . .
- il Has driven advances in quantum approximation algorithmes,

PN (P based on generalizations of classical approaches

QMA-hard and each term is maximally entangled
[Cubitt, Montanaro 2013]

Find max eigenvalue of H = ) H;;, Recent approximation algorithms
[Gharibian and P. 2019], [Anshu, Gosset, Morentz 2020],
[P. and Thompson 2021, 2021, 2022]

Evidence of unique games hardness

. . . [Hwang, Neeman, P., Thompson, Wright 2021]
Each term is singlet projector:

H;jj = [P~ WP |
|¥-) = (]01) — |10))/V2

Likely that approximation/hardness results transfer to 2-LH with

positive terms
[P., Thompson 2021, 2022]




Approximation Algorithms for Quantum Max Cut

How far can we go?

0.533
[P, Thompson 2021]

0.498 0.582 (A-free)
[Gharibian, P 2019] [King 2022]

|
] |

0.5 0.562
[P, Thompson 2022] [Lee 2022] . PO_I._?]56 |
[Bey(md product states: 0.53 [Hwang, Neeman, P, Thompson, Wright 2022]

[ ]

NP-hard i
Anshu, Gossett, Morenz 2020 ardness Barrier

Classical Intuition:
Best possible?

Slide courtesy of Yeongwoo Hwang



Max-Cut
in Quantum Language

Slide courtesy of Yeongwoo Hwang



Max-Cut

in Quantum Language

Treat |y) as a classical string!

Measure in +1/-1 basis (or Z basis)

Then s, = Z,|Y)

-1 L+t -1+
“ NN

Zy (I P Bul))?

Observable: hyix_cyr = %(]I -7, 7Z,)

Slide courtesy of Yeongwoo Hwang



Quantum Max-Cut

Measure in Z basis and
the X and Y bases

| \
A |A |
| |
| |
| |
v v
my, m,,

Observable: iy ligane é’c@#m"z@d’% =#F®Y, -7, 7,

Slide courtesy of Yeongwoo Hwang



Quantum Max-Cut

Slide courtesy of Yeongwoo Hwang



(Qcat ddamMton@ntProblem)

Associate Hamiltonian A, .,y to each edge.

Energy: (lplh(u,v) 1Y)

Overall value given by,

N Wl 9) = <¢|( > h@w)) %)

(W, v)€EE (u,v)EE

singlet on each edge

hww) = |‘P-><w-|/

i
maximize overlap with|

l.e., this a maximum eigenvalue problem for matrix

(WV)EE Slide courtesy of Yeongwoo Hwang |



Quantum Generalization of Constraint Satisfaction (CSP)

Classical 2-CSP clause: (—x; A x;) Quantum 2-CSP clause
0,0 0,1 1,0 1,1 ) ]
x,x=00[0 0 0 O quantum 0 0 0 0
x,x;=0110 1 0 O generalization o 1/2 -1/2 0
Xi,Xj = 1,1 _O 0 O O_ _O 0 O 0_
Diagonal rank-1 projector General rank-1 projector

Random assignment “earns” 1/4 of diagonal = k/4 for rank-k projectors

Research challenge: find classical applications for qguantum CSPs, thinking of
solutions as probability distributions over classical solutions



First approximations for
Max k-Local Hamiltonian

8 FI{EIET S () U E U ENER I H A ELEIEE G W [Bansal, Bravyi, Terhal 2007: arXiv 0705.1115]

TS E L\ EI-EHECLE T Ji U EMELE [Gharibian, Kempe 2011: arXiv 1101.3884]
Classical approximation scheme for dense instances

NEETE e I EIN T e Lo [T S E LI To o I o) @ (o] iKY T4 E 1IN =L [Brandao, Harrow 2013: arXiv 1310.0017]
Uses semidefinite programming (SDP) for bounds

Yool (LT VAN M T T30 T o) BT e [ e Mo T4¢-1-Hl [Harrow, Montanaro 2015: arXiv 1507.00739]

All of these results use product states




Recent approximations for Max 2-Local Hamiltonian

QMA-hard 2-LH problem NP-hard

class specialization

Max traceless 2-LH: Makx Ising:
Hj;j traceless z; € {—1,1}
Max positive 2-LH: Max 2-CSP
2ij Hij,
H;ij 70
Quantum Max Cut: Max Cut:
ZUI—XLX] —YlY] _ZiZj MaxZijI—zizj,
(special case of above) z; € {—1,1}
Max 2-Quantum SAT: Max 2-SAT

2ij Hij.
H;j = 0, rank 3
See [P, Thompson.; arXiv:2012.12347] for table

P approximation for
NP-hard specialization

Q(1/logn)
[Charikar, Wirth ‘04]

0.874
[Lewin, Livnat, Zwick '02]

0.878
[Goemans, Williamson ‘95]

0.940
[Lewin, Livnat, Zwick '02]

(Product-state) Approximation for QMVA-
hard 2-LH problem

Q(1/logn)
[Bravyi, Gosset, Koenig, Temme ‘18]
0.184 (bipartite, no 1-local terms)
[P, Thompson ‘20]

0.25 [Random assignment]
0.282 [Hallgren, Lee ‘19]
0.328 [Hallgren, Lee, P ‘20]
0.387 / 0.498 (numerical) [P, Thompson ‘20]
0.5 (best possible via product states)
[P, Thompson ‘21]

0.498 [Gharibian, P ‘19]
0.5 [P, Thompson ‘22]
0.53* [Anshu, Gosset, Morenz ‘20]
0.533* [P, Thompson ‘21]
0.562* [Lee 22] (also [King ‘22])

0.75 [Random Assignment]
0.764 / 0.821 (numerical) [P, Thompson ‘20]
0.833... best possible via product states

* These results are not product-state based
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Max Cut Semidefinite Programming Relaxation

Max ZUEE(]‘ — mu)/Z MaXZijEE(]‘ — Vi v])/z

1 mip; My3
mq, 1 mys3
mi3 Mpys 1

|lvi]| =1, foralli eV
(v; €R™)

WV
o

Rn

<

Equivalent perspective: unit vectors v;, with m;; = v; - v;

Max Cut

L

Exact solution when v; € R!: -1+—@ > +1




Quantum Moment Matrices are Positive

(x| = (P[X77
(1l = (@I,
State on n qubits (2| = (W|Z, WIXi X[y (xily;)  (xilz)
| € C2" ‘ V= : M= il lyy) (ilz)
(xnl = (WX, (zi|x;) (zily;) (zilz;)
(yn| = (WY,
(z,| = (Yl|Z,]
X1 2y Xy Yy Z; Xz V3o Z3 Entries of this 3nx3n
X, T moment matrix are
Yi M4 M;, M3 expectation values of
Zq all 2-local Pauli terms
X
Y, Mt M M
12 22 23 =Vt 0= Re(VV') >0
Z;
X3
%5 M, MJ, Mss
Z3




Quantum Max Cut SDP Relaxation

X, N Z; X, Y, Z, X3 Y5 Z,
X, 1 0 0
v, [0 1 0 M, M5
Zy |10 0 1
X, 1 0 0
Y, M, 0 1 0 M, < 0 M;,;
Z; 0 0 1
X3 1 0 0
Ys M, M2, 0 1 0
Z3 0 0 1

Real part of moment matrix

Quantum Max Cut vector relaxation

MaX Zl]EE(]‘_xl.x]_yl.y]_Zl.Z])/Ll- vi=(xi€|9yi®zi)/\/§ MaX 2(1_3171'17])/4

ijEE
W L ly;ll ||z = 1, foralli € V xi=v;D0ODO .
Xi Vi =x;-2z=y;-z;=0,foralli eV yi=00v, S0 |lvill =1, foralli €V
zi=OEBOGBvi (leRn)

(v; € R™)

|

xlX]

Yi - Xj
Zi‘xj

Xi*Yj
Yi*Yj
Zi " Yj

xi'Zj

Yi - Zj
Zi‘Zj

|

Max Cut vector relaxation
Max Y;iep(1 — v; - v))

|vi|| =1, foralli €V

(vl- € ]Rn)



Quantum Lasserre Hierachy

V deg-1$ Vdeg-2S Vdegns$
Lasserre, Lasserre,

X Y 7y X, Zn XXy o Zn-1Zn X XoXz o Zj..

X143

Zn-1Zn

X, X, X 1 Max Tr[Hp]
: Tr(p] =1

1 Tr|pSTS| = 0,v deg-k S

AV
p is called degree-k pseudo density

Classical Non-commutative/Quantum
[Lasserre 2001] [Navascués, Pironio, Acin 2009 (2010 SIAM J Opt)]

[Parillo 2003]



Rounding Infeasible Solutions

V deg-1$ Vdeg-2S Vdegns$

a-Approximation Algorithm

|01)- 10}
/2. .ﬂ.

Round optimal non-positive pseudo-density p to sub-
optimal positive density p so that:

Tr[Hp] = a Tr[Hp] = a A,,4,(H)

Max Tr|Hp]
Trip] =1
Tr|pS'S| =0,V deg-k S

p is called degree-k pseudo density



Approximating Quantum Max Cut
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0.498-approximation for Quantum Max Cut

Use hyperplane rounding generalization inspired by [Briét, de Oliveira Filho, Vallentin 2010]
to round the vectors x;, y;, z; to scalars a;, B;, Y; to obtain:

1
pP=on I+ aX; + BYi +viZ), af +B7 +vi =1
i
Classical rounding (R" — R1) Product-state rounding (R3" — R3)
rTv; rlv; rl v, r, v;
v; ER" > q; = : v; € R3" — (q;, -,.=( o, Zl)
l l |T'Tvi| l ( l IBl yl) " rxTvi " " r}z"vi " " TZTvl' "
r~N(0,1)" Ty Ty, T;~N(0,1)°"

v; * — -

[Garibian, P. 2019]



MEVEOITAYs Quantum Max Cut

EEYELT] (upper bound)

Max Z(l —V;-v})/2

ijEE

|lv;]| =1, foralli eV
(v; € R")

Rounding
rTvi

v, ER" > a; = o]
l

Approximability

0.878 Lasserre 1
(optimal under unique games conjecture)

Max 2(1 — 3vi : v])/4

ijEE

|lv;|]| =1,foralli eV
(v; € R")

rlv, riv;  rly,
) )
I v I ryw I v |l

v; ERY — (a;, B, 7)) = (

0.498 Lasserre 1
0.5 Lasserre 2 (optimal using product states)
(0.533 using 1- & 2-qubit ansatz)




Monogamy of Entanglement

nogamy of
[Lieb, Mattis, ’62] Monogamy o

Star Bound  [anshu, Gosset, Morenz, “20] / Entanglement
m
q+1
z Tr(phyj) < — » Lasserre, gets q
=1 » Lasserre, gets (g +1)/2

We generalize monogamy of entanglement bounds to edge energies ;; coming from Lasserre hierarchy

New nonlinear triangle bound:

Trla:ngle Bound Lasserre, satisfies: 0 < po1 + poz + piz < 3/2

o = Ao 2 2 28
A poz2 = Tr(pho2) (K01 + 1oz 4 112) — 8(po1ft02 + po1fin2
+po2pt12) <0

pi2 = Tr(phi2)

1 2

po1 = 1= po2 = 1/4

» These constraints fully capture the allowed values on a triangle!



Rounding Ansatze

Product State Ansatz

p =1l p;

Singlets+Product States
p=11i pi-lljk Pjx

T= XXy — Y,Y —Z; Zx

Pjk = 4

I+ a;X; + BiYi +viZ;
pi = >




Better Rounding Algorithm

» PS rounding algorithm and singlet+PS rounding algorithm follow similar meta-

algorithm, with different “building blocks”

pij = Tr(phij)
0 <u;; <1, if y;; = 1then Lasserre, “thinks” that
edge should be a singlet.

Overall idea- Find the edges Lasserre, “thinks” should be a singlet, take

care to get good objective value on these edges

Meta-Algorithm
Solve Lasserre, to get submatrix of M

Initialize L = { }
For all ij calculate y;;. If y;; >[y[add ij to L.

Find Maximum matching M on L.
Consider two states

G A WN =

Block 1

Threshold

Block 2

Handling large

edges

1. Take optimal state on M, ||something standard on the rest Block 3

2. PS rounding from [GP ‘19]
6. Take whichever has better objective.

N

Handling qubits
outside M




Rounding Algorithm (cont.)

Block 1

» Star/Triangle bounds say that large edges must be adjacent to small edges =

set L forms a subgraph of small degree
» Threshold controls degree of subgraph

d=1 d=2 d=3

» Why set them differently? Technical reasons

» Tradeoff in d:
» dis too small = product state rounding bad
> dis too large = matching is bad

d=1 for PS rounding
d=2 for Entangled

Block 2/Block 3 " M
I A Psrounding
> from[GP '19]

singlet s



To learn more about
Quantum Max Cut...

Optimal product-state approximations:

Best-known Quantum Max Cut (QMC) approximations:

Lasserre hierarchy in 2-LH approximations:

Prospects for unique-games hardness:

Connections in approximating QMC and 2-LH:

Optimal space-bounded QMC approximations:

(no quantum advantage possible!)
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[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394]
[P., Thompson 2021: arXiv 2105.05698]

[Lee 2022: arXiv 2209.00789]

[King 2022: arXiv 2209.02589]

[P., Thompson 2021, 2022 above]

[Hwang, Neeman, P., Thompson, Wright 2021:
arXiv 2111.01254]

[P., Thompson 2022 above, 2020: arXiv 2012.12347]
[Anshu, Gosset, Morenz-Korol, Soleimanifar:

arXiv 2105.01193]

[Kallaugher, P. 2022: arXiv 2206.00213]
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 rEgrRITAC.

Fundamental Algorithmic Research for Quantum Computing

Goal: New quantum algorithms and rigorous advantages from the interplay of
guantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states

of physically-inspired Hamiltonians Convex and gradient-based optimization
Quantum approaches for differential equations , \ Convex/semidefinite relaxations
Quantum circuit optimization Quantum query complexity

We’re looking for
interns and postdocs!

Machine

Quantum

Simulation

Learning

Quantum sampling complexity
R us. ocearTieNTor | Office of ML approaches for understanding and mitigating noise

W) ENERGY science Quantum approaches for linear algebra




" ZIMOAN.. Fundamental Algorithmic Research for Quantum Computing

Quantum Algorithms for Ideal Abstract Quantum Computers

Models: based on abstract complexity classes (e.g. BQP)
Goal: identification of rigorous asymptotic quantum advantages
Challenge: potentially difficult or impossible to physically realize advantages

Quantum Algorithms for Physically-inspired Abstract Quantum Computers

Models: abstract imbued with physically-inspired features

(e.g. DQC1, using few ancilla, restricted gate sets or topologies)
Goal: rigorous quantum advantages under resource restrictions
Challenge: models and results should help bridge ideal-physical gap

Quantum Algorithms for Physical Quantum Computers

Models: implementation on current and future quantum computers
(e.g. “quantum software engineering” on IBM, Google systems)
Goal: empirical demonstration of quantum “wins”
Challenge: wins may be platform-specific, not sustainable asymptotically,
or have no immediate practical applications

% .S. DEPARTMENT OF Ofﬁce Of
2 ENERGY Science Accelerated Research for Quantum Computing




