Approximation and Hardness of Quantum Max Cut

```
Presented by
Ojas Parekh
Quantum Algorithms and Applications Collaboratory
with Kevin Thompson (Sandia)
```

including work with: Sevag Gharibian (U Paderborn), Yeongwoo Hwang (Harvard), John Kallaugher (Sandia), Joe Neeman (UT
Austin), John Wright (UC Berkeley)

Trends in Computational Discrete Optimization April, 2023 Apri, 2023

Synergies between OR and Quantum Information Science (QIS)

INFORMS Challenge Paper:
Survey article and suggestions to engage QIS for operations researchers

Synergies Between Operations Research and Quantum Information Science P., 2023
https://doi.org/10.1287/ijoc.2023.1268 (open access)

Special Issue of INFORMS Journal on Computing-Quantum computing and operations research Broadly targeting research at intersection of OR and QIS

Call will appear soon; papers due January 15, 2024

Guest Editors: Carleton Coffrin, Elisabeth Lobe, Giacomo Nannicini, Ojas Parekh

Quantum Computing

State of Quantum "Speedups"

-Unproven exponential speedup:
Shor's quantum factorization algorithm
[Shor, Polynomial-Time Algorithms for Prime Factorization..., 1995]
-Provable modest speedup:
Grover's quantum search algorithm
[Grover, A fast quantum mechanical algorithm for database search, 1996]
-Provable exponential advantage in specialized settings:
Query and communication complexity
[Childs et al., Exponential Algorithmic Speedup by a Quantum Walk, 2003]
[Bar-Yossef et al., Exponential Separation of Quantum and Classical..., 2008]

-Optimization offers potential for new kinds of quantum advantages:
Better quality solutions but not necessarily faster solution times

Quantum Bits Live in a Sphere

Representation
Classical bit:
(bit)

1 = Head

State space
$\{0,1\}$

$$
0 \text { = Tail }
$$

Prob. bit: (p-bit)

0 with probability 1 - \boldsymbol{p}
1 with probability p

Quantum bit: (qubit)

0 with probability $|\alpha|^{2}$ 1 with probability $|\boldsymbol{\beta}|^{2}$

Quantum Optimization

What is Quantum Optimization?

Max Cut

Partition vertices of a graph two parts to maximize (weight of) crossing edges

Constraint Satisfaction Problem (CSP) version: Boolean assignment satisfying max \# XOR clauses $\left(x_{1} \oplus x_{2}\right),\left(x_{1} \oplus x_{4}\right),\left(x_{1} \oplus x_{6}\right),\left(x_{2} \oplus x_{3}\right), \ldots$

Model NP-hard discrete optimization problem and 2-CSP
Has driven developments in approximation algorithms
0.878...-approximation
[Goemans and Williamson, 1995]
$0.878 \ldots+\varepsilon$ is unique games hard
[Khot, Kindler, Mossel, O'Donnell, 2007]
Cut and related polytopes have advanced discrete optimization e.g., [Fiorini, Massar, Pokutta, Tiwary, de Wolf, 2012]

Algorithms for Max-Cut

How faraqqurcuérgetion algorithms

$0.87856+\epsilon$ approximations are NP-Hard! (under Unique Games Conjecture)

It's Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

$$
\operatorname{Min}_{\Psi}\langle\psi| \sum_{S} H_{S}|\psi\rangle \quad \begin{gathered}
\text { Hamiltonian, } \sum_{S} H_{S}, \text { represents energy levels } \\
\text { of a physical system composed of "local" parts, } S
\end{gathered}
$$

Discrete optimization problem becomes an eigenproblem on a large matrix

Nature tends towards stable states... So let nature solve your problems for you?

[^0]
Hacking Nature to Solve Your Problems

1. Map solution values to energy levels of a physical system
2. Realize said physical system
3. Let Nature relax to a stable low-energy state

Max Cut
$|000\rangle|001\rangle|010\rangle|011\rangle|100\rangle|101\rangle|110\rangle|111\rangle$
Vertices

Hamiltonian for Max Cut on a path with 3 vertices
Some cuts on a path with 3 vertices

Minimum eigenstate is of form: $|\psi\rangle=\alpha|010\rangle+\beta|101\rangle$, with energy -2

Computational Complexity Considerations

Hamiltonian is exponentially large, $2^{N} \times 2^{N}$, for an N-node graph, but it is a sum of $O\left(N^{2}\right)$ local 4×4 Hamiltonians, one for each edge

$$
\begin{aligned}
& + \\
& H_{23}=I \otimes \underbrace{\left[\begin{array}{llllll}
0 & & & & \\
& -1 & & \\
& & -1 & \\
|00|
\end{array}\right]}_{|00\rangle|01\rangle|10\rangle|11\rangle}=\left[\begin{array}{llllllll}
0 & & & & & & & \\
\\
& -1 & & & & & & \\
\\
& & -1 & & & & & \\
\\
& & & 0 & & & & \\
& \begin{array}{l}
|000\rangle \\
|001\rangle \\
|010\rangle \\
|011\rangle \\
|100\rangle \\
|101\rangle \\
|110\rangle \\
\\
\\
\end{array} & & & & & & -1
\end{array}\right]
\end{aligned}
$$

Local Hamiltonians are efficient and require manipulating only a constant number of qubits

The Power of Quantum Computing?

Extended Quantum Church-Turing Thesis

Any "reasonable" model of computing can be efficiently simulated by a quantum Turing machine

Image from https://en.wikipedia.org/wiki/BQP

Using nature to solve optimization problems is an old idea

In the quantum setting, it is a surprisingly powerful idea that captures universal quantum computing.

Using soap film to find Steiner Trees [Datta, Khastgir, \& Roy; arXiv 0806.1340]

Quantum Approximation Algorithms

(Quantum) Approximation Algorithms

A α-approximation algorithm runs in polynomial time, and for any instance I, delivers an approximate solution such that:

(Quantum) Approximation Algorithms

A α-approximation algorithm runs in polynomial time, and for any instance I, delivers an approximate solution such that:

$$
\frac{\text { Value }\left(\text { Approximate }_{I}\right)}{\text { Value }\left(\text { Optimal }_{I}\right)} \geq \alpha
$$

Heuristics

- Guided by intuitive ideas
- Perform well on practical instances
- May perform very poorly in worst case
- Difficult to prove anything about performance

Approximation Algorithms

- Guided by worst-case performance
- May perform poorly compared to heuristics
- Rigorous bound on worst-case performance
- Designed with performance proof in mind

Probability Distributions and Polynomials

Let's consider diagonal PSD matrices with trace $=1$:
$\left[\begin{array}{cc}\frac{1+a}{2} & 0 \\ 0 & \frac{1-a}{2}\end{array}\right]=\frac{1}{2} \underbrace{\left[\begin{array}{ll}1 & 1\end{array}\right]}_{\boldsymbol{I}}+\frac{a}{2} \underbrace{\left[\begin{array}{ll}1 & -1\end{array}\right]}_{\boldsymbol{Z}} \quad$ Bias a must satisfy $|a| \leq 1$
$\left[\begin{array}{cc}\frac{1+a_{1}}{2} & 0 \\ 0 & \frac{1-a_{1}}{2}\end{array}\right] \otimes\left[\begin{array}{cc}\frac{1+a_{2}}{2} & \\ & \frac{1-a_{2}}{2}\end{array}\right]=\frac{I+a_{1} Z}{2} \otimes \frac{I+a_{2} Z}{2}=\frac{I+a_{1} Z \otimes I+a_{2} I \otimes Z}{}+a_{1} a_{2} Z \otimes Z\left(\begin{array}{l}Z_{1} Z_{2} \\ 4\end{array}\right.$

Probability Distributions and Polynomials

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{1+a_{1}}{2} & 0 \\
0 & \frac{1-a_{1}}{2}
\end{array}\right] \otimes\left[\begin{array}{cc}
\frac{1+a_{2}}{2} & \\
& \frac{1-a_{2}}{2}
\end{array}\right]=\frac{I+a_{1} Z}{2} \otimes \frac{I+a_{2} Z}{2}=\frac{I+a_{1} Z \otimes I+a_{2} I \otimes Z}{} \frac{\boldsymbol{Z}_{\mathbf{2}}}{4} \frac{\mathbf{Z}_{1} a_{2} \mathbf{Z}_{\mathbf{2}}}{}} \\
& \begin{array}{l}
a_{1}=-\frac{1}{2} \\
{\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & \frac{3}{4}
\end{array}\right] \otimes\left[\begin{array}{lll}
a_{2}=\frac{1}{2}
\end{array}\right.} \\
\left.\begin{array}{lll}
\frac{3}{4} & \\
& \frac{1}{4}
\end{array}\right]
\end{array}=\left[\begin{array}{llll}
\frac{3}{16} & & & \\
& \frac{1}{16} & & \\
& & \frac{9}{16} & \\
& & & \frac{3}{16}
\end{array}\right]
\end{aligned}
$$

Quantum "Distributions" and Polynomials

Let's consider diagonal PSD matrices with trace $=1$:

$$
\left[\begin{array}{cc}
\frac{1+a}{2} & 0 \\
0 & \frac{1-a}{2}
\end{array}\right]=\frac{\frac{1}{2}}{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}+\frac{\frac{a}{2}}{2} \underbrace{\left[\begin{array}{cc}
1 & -1
\end{array}\right]}_{\boldsymbol{Z}} \quad \text { Bias } a \text { must satisfy }|\boldsymbol{a}| \leq \mathbf{1}
$$

$$
\left[\begin{array}{cc}
\frac{1+a}{2} & \frac{b-c i}{2} \\
\frac{b+c i}{2} & \frac{1-a}{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\boldsymbol{I}}+\underbrace{\frac{a}{2}}_{\boldsymbol{Z}} \begin{array}{ll}
{\left[\begin{array}{ll}
1 & -1
\end{array}\right]}
\end{array}+\frac{b}{2} \underbrace{\left[\begin{array}{ll}
1 & 1
\end{array}\right]}_{\boldsymbol{X}}+\underbrace{\frac{c}{2}}_{\boldsymbol{Y}} \begin{array}{ll}
{\left[\begin{array}{ll}
i & -i
\end{array}\right]}
\end{array}
$$

$$
\text { Biases must satisfy \| }(a, b, c) \| \leq 1
$$

Max Cut and Quantum Max Cut

Classical Max Cut
2-variable constraint: $x_{i} \oplus x_{j}$

Quantum Max Cut quantum 2-variable constraint

$$
\begin{aligned}
& x_{i}, x_{j}=0,0 \\
& x_{i}, x_{j}=0,1 \\
& x_{i}, x_{j}=1,0 \\
& x_{i}, x_{j}=1,1
\end{aligned}\left[\begin{array}{cccc}
0 & 0 & 1,0 & 1,1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Diagonal matrix
diagonal encodes Boolean function:

$$
\begin{aligned}
f\left(z_{i}, z_{j}\right) & =1 / 2\left(1-z_{i} z_{j}\right) \\
z_{i} & \in\{-1,1\}
\end{aligned}
$$

Maximum eigenvectors:
$(0,1,0,0)=|01\rangle$,
$(0,0,1,0)=|10\rangle$
with (eigen)value 1
$\underset{\text { quantum }}{\longrightarrow}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 / 2 & -1 / 2 & 0 \\ 0 & -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

General non-diagonal matrix

$$
\left(I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}\right) / 4
$$

$$
\left.I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}\right) / 4 \quad \begin{gathered}
\text { "anti-aligned" } \\
\text { superposition of }
\end{gathered}
$$

$$
\begin{gathered}
\text { Maximum eigenvector: } \\
\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)=\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle
\end{gathered}
$$

with (eigen)value 1
Maximum product state: e.g., |01>
with energy $1 / 2$

Polynomials and Quantum Solutions

Classical

Real-coeff polynomial $\mathrm{P}\left(I, Z_{1}, \ldots, Z_{n}\right)$ over commutative variables

Problem: $\operatorname{Max}_{\left\{Z_{i}\right\}} \lambda_{\max }\left(\mathrm{P}\left(I, Z_{1}, \ldots, Z_{n}\right)\right)$

$$
\begin{aligned}
& Z_{i}^{2}=I \\
& Z_{i} Z_{j}=Z_{j} Z_{i}
\end{aligned}
$$

P represents a diagonal $M \in \mathbb{R}^{2^{n} \times 2^{n}}$

$$
\begin{array}{r}
0,0 \\
0,1 \\
1,0 \\
1,1
\end{array}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Quantum

Real-coeff polynomial Q $\left(I, X_{1}, Y_{1}, Z_{1}, \ldots, X_{n}, Y_{n}, Z_{n}\right)$ over non-commutative variables

$$
\begin{gathered}
\operatorname{Max}_{\left\{X_{i}, Y_{i}, Z_{i}\right\}} \\
\lambda_{\max }\left(\mathrm{Q}\left(I, X_{1}, Y_{1}, Z_{1}, \ldots, X_{n}, Y_{n}, Z_{n}\right)\right) \\
X_{i}^{2}=Y_{i}^{2}=Z_{i}^{2}=I \\
\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=-\mathrm{Y}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}=-\mathrm{Z}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}=-\mathrm{Z}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{gathered}
$$

Variables commute on different indices:

$$
\text { e.g. } X_{i} Z_{j}=Z_{j} X_{i}
$$

Q represents a Hermitian $M \in \mathbb{C}^{2^{n} \times 2^{n}}$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 / 2 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
Q=\frac{1}{4}\left(I-X_{1} X_{2}-Y_{1} Y_{2}-Z_{1} Z_{2}\right)
\end{gathered}
$$

Polynomials and Quantum Solutions

Classical

Problem: $\operatorname{Max}_{\left\{Z_{i}\right\}} \lambda_{\max }\left(\mathrm{P}\left(I, Z_{1}, \ldots, Z_{n}\right)\right)$

$$
\begin{aligned}
& Z_{i}^{2}=I \\
& Z_{i} Z_{j}=Z_{j} Z_{i}
\end{aligned}
$$

Variables commute on different indices:

WLOG can take: $Z_{i} \in\{-1,1\}$

Quantum

$$
\begin{gathered}
\operatorname{Max}_{\left\{X_{i}, Y_{i}, Z_{i}\right\}} \lambda_{\max }\left(\mathrm{Q}\left(I, X_{1}, Y_{1}, Z_{1}, \ldots, X_{n}, Y_{n}, Z_{n}\right)\right) \\
X_{i}^{2}=Y_{i}^{2}=Z_{i}^{2}=I \\
\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=-Y_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}=-\mathrm{Z}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}=-\mathrm{Z}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{gathered}
$$

$$
\text { e.g. } X_{i} Z_{j}=Z_{j} X_{i}
$$

WLOG: $Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], Y=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$

$$
\begin{aligned}
& \text { e.g. } Z_{2}=I \otimes Z \otimes I \ldots \\
& Z_{1} Z_{3}=Z \otimes I \otimes Z \otimes I \ldots \\
& X_{1} Y_{4}=X \otimes I \otimes I \otimes Y \ldots
\end{aligned}
$$

$$
\begin{aligned}
& 0,0 \\
& 0,1 \\
& 1,0 \\
& 1,1
\end{aligned}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
P=\frac{1}{2}\left(I-Z_{1} Z_{2}\right)
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 / 2 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
Q=\frac{1}{4}\left(I-X_{1} X_{2}-Y_{1} Y_{2}-Z_{1} Z_{2}\right)
\end{gathered}
$$

Quantum Max Cut: Physical Motivation

Max Cut Hamiltonian:
 $\sum\left(I-Z_{i} Z_{j}\right) / 2$
 Quantum Max Cut generalization:
 $\sum\left(I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}\right) / 4$

Physical motivation

Heisenberg model is fundamental for describing quantum magnetism, superconductivity, and charge density waves. Beyond 1 dimension,

Properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

Problem

Find max-energy value/state of Quantum Max Cut: $\sum\left(I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}\right) / 4$

Anti-ferromagnetic Heisenberg model: roughly neighboring quantum particles aim to align in opposite directions. This kind of Hamiltonian appears, for example, as an effective Hamiltonian for so-called Mott insulators.
[Image: Sachdev, arXiv:1203.4565]
but different from approximation point of view)

Quantum Max Cut

Instance of 2-Local Hamiltonian

Find max eigenvalue of $H=\sum H_{i j}$,

$$
H_{i j}=\left(I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}\right) / 4
$$

Each term is singlet projector:
$\boldsymbol{H}_{i j}=\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|$
$\left|\Psi^{-}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{2}$

Model 2-Local Hamiltonian?

Has driven advances in quantum approximation algorithms, based on generalizations of classical approaches

QMA-hard and each term is maximally entangled
[Cubitt, Montanaro 2013]
Recent approximation algorithms
[Gharibian and P. 2019], [Anshu, Gosset, Morentz 2020],
[P. and Thompson 2021, 2021, 2022]

Evidence of unique games hardness

[Hwang, Neeman, P., Thompson, Wright 2021]
Likely that approximation/hardness results transfer to 2-LH with positive terms
[P., Thompson 2021, 2022]

Approximation Algorithms for Quantum Max Cut

How far can we go?

Max-Cut
in Quantum Language

Treat $|\psi\rangle$ as a classical string!
Measure in $+1 /-1$ basis (or Z basis)
Then $s_{u} \equiv Z_{u}|\psi\rangle$

Observable: $h_{M A X-C U T}=\frac{1}{2}\left(\mathbb{I}-Z_{u} \otimes Z_{v}\right)$

Measure in Z basis and the X and Y bases

Quantum Max-Cut

(Cacat tdamliMtoniāntProblem)

Associate Hamiltonian $h_{(u, v)}$ to each edge.

Energy: $\langle\psi| h_{(u, v)}|\psi\rangle$

Overall value given by,

$$
\sum_{(u, v) \in E}\langle\psi| h_{(u, v)}|\psi\rangle=\langle\psi|\left(\sum_{(u, v) \in E} h_{(u, v)}\right)|\psi\rangle
$$

i.e., this a maximum eigenvalue problem for matrix

$$
\mathrm{H}=\sum_{(u, v) \in E} h_{(u, v)}
$$

```
Classical 2-CSP clause: ( }\neg\mp@subsup{x}{i}{}\wedge\mp@subsup{x}{j}{})\quad\mathrm{ Quantum 2-CSP clause
Quantum 2-CSP clause
```

$$
\begin{aligned}
& x_{i}, x_{j}=0,0 \\
& x_{i}, x_{j}=0,1 \\
& x_{i}, x_{j}=1,0 \\
& x_{i}, x_{j}=1,1
\end{aligned}\left[\begin{array}{cccc}
0 & 0 & 0 & 1,0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Diagonal rank-1 projector

General rank-1 projector

Random assignment "earns" $1 / 4$ of diagonal $=k / 4$ for rank $-k$ projectors

Research challenge: find classical applications for quantum CSPs, thinking of solutions as probability distributions over classical solutions

First approximations for Max k-Local Hamiltonian

Classical approximation scheme for planar graphs:

First nontrivial general approximations: Classical approximation scheme for dense instances

Near-optimal product-state approx for special cases: Uses semidefinite programming (SDP) for bounds

Approximation w.r.t. number of terms and degree:
[Bansal, Bravyi, Terhal 2007: arXiv 0705.1115]
[Gharibian, Kempe 2011: arXiv 1101.3884]
[Brandao, Harrow 2013: arXiv 1310.0017]
[Harrow, Montanaro 2015: arXiv 1507.00739]

All of these results use product states

Recent approximations for Max 2-Local Hamiltonian

QMA-hard 2-LH problem class	NP-hard specialization	P approximation for NP-hard specialization	(Product-state) Approximation for QMAhard 2-LH problem
Max traceless 2-LH: $\begin{gathered} \sum_{i j} H_{i j} \\ H_{i j} \text { traceless } \end{gathered}$	Max Ising: $\begin{gathered} \operatorname{Max}-\sum_{i j} z_{i} z_{j} \\ z_{i} \in\{-1,1\} \end{gathered}$	$\Omega(1 / \log n)$ [Charikar, Wirth '04]	$\Omega(1 / \log n)$ [Bravyi, Gosset, Koenig, Temme '18] 0.184 (bipartite, no 1-local terms) [P , Thompson '20]
Max positive 2-LH: $\begin{aligned} & \sum_{i j} H_{i j}, \\ & H_{i j} \succcurlyeq 0 \end{aligned}$	Max 2-CSP	0.874 [Lewin, Livnat, Zwick '02]	0.25 [Random assignment] 0.282 [Hallgren, Lee '19] 0.328 [Hallgren, Lee, P^{\prime} '20] 0.387 / 0.498 (numerical) [P, Thompson '20] 0.5 (best possible via product states) [P , Thompson '21]
Quantum Max Cut: $\sum_{i j} I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}$ (special case of above)	Max Cut: $\begin{gathered} \operatorname{Max} \sum_{i j} I-z_{i} z_{j}, \\ \quad z_{i} \in\{-1,1\} \end{gathered}$	0.878 [Goemans, Williamson '95]	0.498 [Gharibian, P '19] 0.5 [P, Thompson '22] 0.53* [Anshu, Gosset, Morenz '20] 0.533* [P, Thompson '21] 0.562* [Lee '22] (also [King '22])
Max 2-Quantum SAT: $\begin{gathered} \sum_{i j} H_{i j}, \\ H_{i j} \succcurlyeq 0, \text { rank } 3 \end{gathered}$	Max 2-SAT	0.940 [Lewin, Livnat, Zwick '02]	0.75 [Random Assignment] 0.764 / 0.821 (numerical) [P, Thompson '20] 0.833 ... best possible via product states
See [P, Thompson.; arXiv:2012.12347] for table			* These results are not product-state based

Quantum Relaxations

$\operatorname{Max} \sum_{i j \in E}\left(1-m_{i j}\right) / 2$

$$
\operatorname{Max} \sum_{i j \in E}\left(1-v_{i} \cdot v_{j}\right) / 2
$$

$$
\left[\begin{array}{cccc}
1 & m_{12} & m_{13} & \cdots \\
m_{12} & 1 & m_{23} & \\
m_{13} & m_{23} & 1 & \\
\vdots & & & \ddots
\end{array}\right] \succcurlyeq 0
$$

$$
\bar{\equiv}
$$

Quantum Moment Matrices are Positive

State on n qubits
$\langle\psi\| \in \mathbb{C}^{2^{n}}$

\left\langle y_{1}\right|=\langle\psi| Y_{1}

\left\langle z_{1}\right|=\langle\psi| Z_{1}

\vdots

\left\langle x_{n}\right|=\langle\psi| X_{n}

\left\langle y_{n}\right|=\langle\psi| Y_{n}

\left\langle z_{n}\right|=\langle\psi| Z_{n}\end{array}\right], M_{i j}=\left[$$
\begin{array}{ccc}\langle\psi| X_{i} X_{j}|\psi\rangle & \left\langle x_{i} \mid y_{j}\right\rangle & \left\langle x_{i} \mid z_{j}\right\rangle \\
\left\langle y_{i} \mid x_{j}\right\rangle & \left\langle y_{i} \mid y_{j}\right\rangle & \left\langle y_{i} \mid z_{j}\right\rangle \\
\left\langle z_{i} \mid x_{j}\right\rangle & \left\langle z_{i} \mid y_{j}\right\rangle & \left\langle z_{i} \mid z_{j}\right\rangle\end{array}
$$\right]\)

Quantum Max Cut SDP Relaxation

Real part of moment matrix

Quantum Max Cut vector relaxation

$\operatorname{Max} \sum_{i j \in E}\left(1-x_{i} \cdot x_{j}-y_{i} \cdot y_{j}-z_{i} \cdot z_{j}\right) / 4$
$\left\|x_{i}\right\|,\left\|y_{i}\right\|,\left\|z_{i}\right\|=1$, for all $i \in V$ $x_{i} \cdot y_{i}=x_{i} \cdot z_{i}=y_{i} \cdot z_{i}=0$, for all $i \in V$ $\left(v_{i} \in \mathbb{R}^{3 n}\right)$

$$
\begin{array}{cc}
v_{i}=\left(x_{i} \oplus y_{i} \oplus z_{i}\right) / \sqrt{3} & \text { Max } \sum_{i j \in E}\left(1-3 v_{i} \cdot v_{j}\right) / 4 \\
x_{i}=v_{i} \oplus 0 \oplus 0 & \\
y_{i}=0 \oplus v_{i} \oplus 0 & \left\|v_{i}\right\|=1, \text { for all } i \in V \\
z_{i}=0 \oplus 0 \oplus v_{i} & \left(v_{i} \in \mathbb{R}^{n}\right)
\end{array}
$$

Max Cut vector relaxation
$\operatorname{Max} \sum_{i j \in E}\left(1-v_{i} \cdot v_{j}\right)$
$\left\|v_{i}\right\|=1$, for all $i \in V$
$\left(v_{i} \in \mathbb{R}^{n}\right)$

Quantum Lasserre Hierachy

Rounding Infeasible Solutions

Approximating Quantum Max Cut

0.498-approximation for Quantum Max Cut

Use hyperplane rounding generalization inspired by [Briët, de Oliveira Filho, Vallentin 2010] to round the vectors x_{i}, y_{i}, z_{i} to scalars $\alpha_{i}, \beta_{i}, \gamma_{i}$ to obtain:

$$
\rho=\frac{1}{2^{n}} \prod_{i}\left(I+\alpha_{i} X_{i}+\beta_{i} Y_{i}+\gamma_{i} Z_{i}\right), \alpha_{i}^{2}+\beta_{i}^{2}+\gamma_{i}^{2}=1
$$

Classical rounding ($\mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$)

$$
\begin{aligned}
& v_{i} \in \mathbb{R}^{n} \rightarrow \alpha_{i}=\frac{r^{T} v_{i}}{\left|r^{T} v_{i}\right|} \\
& r \sim N(0,1)^{n}
\end{aligned}
$$

Product-state rounding $\left(\mathbb{R}^{3 n} \rightarrow \mathbb{R}^{3}\right)$

$$
\begin{gathered}
v_{i} \in \mathbb{R}^{3 n} \rightarrow\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)=\left(\frac{r_{x}^{T} v_{i}}{\left\|r_{x}^{T} v_{i}\right\|}, \frac{r_{y}^{T} v_{i}}{\left\|r_{y}^{T} v_{i}\right\|}, \frac{r_{z}^{T} v_{i}}{\left\|r_{z}^{T} v_{i}\right\|}\right) \\
r_{x}, r_{y}, r_{z} \sim N(0,1)^{3 n}
\end{gathered}
$$

Relaxation (upper bound)

$$
\begin{array}{r}
\operatorname{Max} \sum_{i j \in E}\left(1-v_{i} \cdot v_{j}\right) / 2 \\
\left\|v_{i}\right\|=1, \text { for all } i \in V \\
\left(v_{i} \in \mathbb{R}^{n}\right)
\end{array}
$$

$\operatorname{Max} \sum_{i j \in E}\left(1-3 v_{i} \cdot v_{j}\right) / 4$

$$
\begin{aligned}
& \left\|v_{i}\right\|=1, \text { for all } i \in V \\
& \quad\left(v_{i} \in \mathbb{R}^{n}\right)
\end{aligned}
$$

Rounding

$$
v_{i} \in \mathbb{R}^{n} \rightarrow \alpha_{i}=\frac{r^{T} v_{i}}{\left|r^{T} v_{i}\right|}
$$

$$
v_{i} \in \mathbb{R}^{3 n} \rightarrow\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)=\left(\frac{r_{x}^{T} v_{i}}{\left\|r_{x}^{T} v_{i}\right\|}, \frac{r_{y}^{T} v_{i}}{\left\|r_{y}^{T} v_{i}\right\|}, \frac{r_{z}^{T} v_{i}}{\left\|r_{z}^{T} v_{i}\right\|}\right)
$$

Approximability

$$
0.878 \text { Lasserre } 1
$$

(optimal under unique games conjecture)
0.498 Lasserre 1
0.5 Lasserre 2 (optimal using product states) (0.533 using 1- \& 2-qubit ansatz)

Monogamy of Entanglement

We generalize monogamy of entanglement bounds to edge energies $\mu_{i j}$ coming from Lasserre hierarchy

New nonlinear triangle bound:
Triangle Bound Lasserre ${ }_{2}$ satisfies:

$$
\begin{aligned}
& \mu_{01}=\operatorname{Tr}\left(\tilde{\rho} h_{01}\right) \\
& \mu_{02}=\operatorname{Tr}\left(\tilde{\rho} h_{02}\right) \\
& \mu_{12}=\operatorname{Tr}\left(\tilde{\rho} h_{12}\right)
\end{aligned}
$$

$$
\begin{array}{r}
0 \leq \mu_{01}+\mu_{02}+\mu_{12} \leq 3 / 2 \\
4\left(\mu_{01}^{2}+\mu_{02}^{2}+\mu_{12}^{2}\right)-8\left(\mu_{01} \mu_{02}+\mu_{01} \mu_{12}\right. \\
\left.+\mu_{02} \mu_{12}\right) \leq 0
\end{array}
$$

> These constraints fully capture the allowed values on a triangle!

Rounding Ansatze

Product State Ansatz
$\rho=\prod_{i} \rho_{i}$

Singlets+Product States

Better Rounding Algorithm

> PS rounding algorithm and singlet+PS rounding algorithm follow similar metaalgorithm, with different "building blocks"

$$
\mu_{i j}=\operatorname{Tr}\left(\tilde{\rho} h_{i j}\right)
$$

$0 \leq \mu_{i j} \leq 1$, if $\mu_{i j} \approx 1$ then Lasserre $_{2}$ "thinks" that edge should be a singlet.

Overall idea- Find the edges Lasserre $_{2}$ "thinks" should be a singlet, take care to get good objective value on these edges

Meta-Algorithm

1. Solve Lasserre $_{2}$ to get submatrix of M Threshold
2. Initialize $L=\{ \}$
3. For all ij calculate $\mu_{i j}$. If $\mu_{i j}>\gamma$ add ij to L .
4. Find Maximum matching M on L.
5. Consider two states
\qquad
6. Take optimal state on M, something standard on the rest
7. Take whichever has better objective.

Block 1

> Star/Triangle bounds say that large edges must be adjacent to small edges \Rightarrow set L forms a subgraph of small degree
> Threshold controls degree of subgraph

> Why set them differently? Technical reasons
$>$ Tradeoff in d:
$>\mathrm{d}$ is too small \Rightarrow product state rounding bad
$>\mathrm{d}$ is too large \Rightarrow matching is bad
Block 2/Block 3

To learn more about Quantum Max Cut...

Optimal product-state approximations: Best-known Quantum Max Cut (QMC) approximations:
[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394] [P., Thompson 2021: arXiv 2105.05698]
[Lee 2022: arXiv 2209.00789]
[King 2022: arXiv 2209.02589]
Lasserre hierarchy in 2-LH approximations:
[P., Thompson 2021, 2022 above]

Prospects for unique-games hardness:
[Hwang, Neeman, P., Thompson, Wright 2021: arXiv 2111.01254]

Connections in approximating QMC and 2-LH:
[P., Thompson 2022 above, 2020: arXiv 2012.12347] [Anshu, Gosset, Morenz-Korol, Soleimanifar: arXiv 2105.01193]

Optimal space-bounded QMC approximations:
[Kallaugher, P. 2022: arXiv 2206.00213] (no quantum advantage possible!)

Thanks for reading this!

Fundamental Algorithmic Research for Quantum Computing
Goal: New quantum algorithms and rigorous advantages from the interplay of quantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states
of physically-inspired Hamiltonians

Quantum approaches for differential equations

Quantum circuit optimization

Convex and gradient-based optimization

Convex/semidefinite relaxations

Quantum query complexity
We're looking for interns and postdocs!

Quantum Simulation

Quantum Algorithms for Ideal Abstract Quantum Computers

Models: based on abstract complexity classes (e.g. BQP)
Goal: identification of rigorous asymptotic quantum advantages
Challenge: potentially difficult or impossible to physically realize advantages

Quantum Algorithms for Physically-inspired Abstract Quantum Computers
Models: abstract imbued with physically-inspired features
(e.g. DQC1, using few ancilla, restricted gate sets or topologies)

Goal: rigorous quantum advantages under resource restrictions
Challenge: models and results should help bridge ideal-physical gap

Quantum Algorithms for Physical Quantum Computers

Models: implementation on current and future quantum computers
(e.g. "quantum software engineering" on IBM, Google systems)

Goal: empirical demonstration of quantum "wins"
Challenge: wins may be platform-specific, not sustainable asymptotically, or have no immediate practical applications

[^0]: Image from https://en.wikipedia.org/wiki/Metastability

