Mathematical Optimization for Traffic Management in Urban Air Mobility

Claudia D'Ambrosio joint work with R. Delmas, Y. Hamadi, M. Pelegrín

LIX, CNRS & École Polytechnique Institut Polytechnique de Paris

Chair "Integrated Urban Mobility"

Trends in Computational Discrete Optimization ICERM – 24/04/23-28/04/23

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Introduction

Mathematical Optimization for Air Traffic Management

- Urban Air Mobility

- Flights share the same resources, i.e., the airport parking, the runway, the air space, ...
- How to affect the resources so as to guarantee safety ?
- Air space management:
 - Planning \rightarrow Strategic Deconfliction
 - $\bullet \ \ Online \rightarrow Tactical \ \ Deconfliction$
 - Last minute \rightarrow Conflict Avoidance

Separation constraint in classic ATM :

$$\forall i < j \in A, t \in T \quad \|x_i(t) - x_j(t)\| \ge D$$

where

- A is the set of aircraft,
- T is the considered time horizon,
- $x_i(t)$ the position in the sky of aircraft *i* at time *t*,
- *D* is the safety distance to guarantee between pairs of aircraft.

Classic Air Traffic Management

C. D'Ambrosio (CNRS & X)

ATM in UAM

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility

Problem Definition

- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Urban Air Mobility – eVTOLs

Urban Air Mobility

Source https://www.objetconnecte.com/

- Urban Air Mobility (UAM)
- Electric vertical take-off and landing (eVTOLs) aircraft
- Decision-makers tool to guarantee safety and efficiency

Urban Air Mobility

Our focus: UAM tactical deconfliction

Differences w.r.t. classic ATM?

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility

Problem Definition

- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Problem Definition

Well defined skylane network :

 connecting vertiports

- virtual 3D corridors
- corridors can intersect at exclusive junctions

Notation

Network infrastructure:

C. D'Ambrosio (CNRS & X)

ATM in UAM

Notation

Flights and schedule:

 $(x_h, x_m) \in A$ belong to $path_{f_i}$ if x_h and x_m are consecutive nodes in $path_{f_i}$

 \hat{t}_{im} time at which f_i arrives at/traverses x_m

 v_{im} speed at which f_i traverses x_m (constant through the arc)

Given a nominal planning, consider the following uncertainties.

Disruption

- For strategically deconflicted scheduled traffic
- It accommodate a new, priority, operation
- In reaction to some unexpected traffic e.g., intruder crossing a UAM corridor.

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition

3 Mathematical Optimization formulation

- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

- Degrees of freedom: speed changes manoeuvres at junctions (implicitly) + departure time reschedule
- **Output** : new schedule of the flights with safe arrival times at the waypoints of their paths
- Nominal and the deconflicted schedules are made of safe time intervals at which the flights can traverse each waypoint without incurring in conflicts
- Minimum width of the time intervals

Decision Variables:

• $t_{im}^{ear}, t_{im}^{lat}$ new scheduled times

Safe time interval $[t_{im}^{ear}, t_{im}^{lat}]$ for every $f_i \in \mathcal{F}$ to traverse each $x_m \in path_{f_i}$.

$$t_{im}^{lat} = t_{im}^{ear} + (\hat{t}_{im}^{lat} - \hat{t}_{im}^{ear})$$

• $\underline{t}_{im}, \overline{t}_{im}$ bounding times

Bounding interval $[\underline{t}_{im}, \overline{t}_{im}]$ for every $f_i \in \mathcal{F}$ to traverse each $x_m \in path_{f_i}$ without violating speed and/or operating limits.

$$\underline{t}_{\textit{im}} \leq t_{\textit{im}}^{\textit{ear}} \leq \overline{t}_{\textit{im}}$$

Mathematical optimization formulation

For each arc (h, m), \underline{t}_{im} depends on t_{ih}^{ear} , dist (x_h, x_m) , and \underline{v}_{im} For each arc (h, m), \overline{t}_{im} depends on t_{ih}^{ear} , dist (x_h, x_m) , and \overline{v}_{im}

Objective function:

$$\min \sum_{f_i \in \mathcal{F}} \sum_{x_m \in path_{f_i}} |t_{im}^{ear} - \hat{t}_{im}^{ear}| + \sum_{f_i \in \mathcal{F}^{prior}} M \cdot (t_{i,x_{i1}}^{ear} - \hat{t}_{i,x_{i1}}^{ear})$$

M large number (to prioritize minimization of deviation of priority flights)

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Given a conflict $(i, j, m) \in Conf$, UAM separation constraints:

 $|t_{im} - t_{jm}| \ge$ "safety time lapse".

Time lapse depends on a **minimum safety distance** *D*, see classic ATM.

Two main families of conflicts:

- Trailing
- Intersection

Two flights $f_i, f_j \in \mathcal{F}$ travel through the same arc (x_h, x_m) at the same time

- overtaking is forbiden
- hp: constant speed on each arc
- sufficient to impose separation at x_h and x_m

Trailing conflicts: MP formulation

$$v_{ih}(t_{jh} - t_{ih}) \ge D$$
 $\forall (i, j, h, m) \in Trail$
 $v_{jm}(t_{jm} - t_{im}) \ge D$ $\forall (i, j, h, m) \in Trail.$

Trail := {(i, j, h, m) : (i, j, m) ∈ Conf, (x_h, x_m) ∈ path_{fi} ∩ path_{fj}}, set of potential trailing conflicts.

Constraints:

$$t_{jh}^{ear} - t_{ih}^{lat} \ge \frac{D}{\underline{v}_{ih}}$$
 $\forall (i, j, h, m) \in Trail$
 $t_{jm}^{ear} - t_{im}^{lat} \ge \frac{D}{\underline{v}_{jm}}$ $\forall (i, j, h, m) \in Trail$

Given a conflict $(i, j, m) \in Conf$, three types of intersection conflicts

- **Safety disks** of radius *D* around both *f_i* and *f_j* along their trajectories
- **Conflict zones** : when one trajectory is tangent to the safety disk of the other flight
- Time separation of passage through conflict zones
- Link **ATM strategies** : ensures a minimum distance of *D* between the flights all their way throughout their paths.
- Arbitrating rule (hp. $t_{im} < t_{jm}$):

" f_j does not enter its conflict zone until f_i does not leave its own"

Intersection conflicts

 Case in/in: t_{im} ≤ time(j, tan⁻_{ijm}), where time(i, x) = the arrival time of f_i at the point x.

• Case out/in: $time(i, tan_{ijm}^{+-}) \le time(j, tan_{ijm}^{-+})$

• Case out/out: $time(i, tan_{ijm}^+) \le t_{jm}$.

Intersection conflicts: MP formulation

Constraints:

$$\begin{split} t_{jm}^{ear} - t_{im}^{lat} &\geq S(\alpha_{ijm}^{-}) \frac{D}{\underline{V}_{jm}} & \forall (i, j, m, h_i, h_j) \in Cross^{-} \\ t_{jm}^{ear} - t_{im}^{lat} &\geq S(\alpha_{ijm}^{+-}) \left(\frac{D}{\underline{V}_{jm}} + \frac{D}{\underline{V}_{i\ell_i}} \right) & \forall (i, j, m, \ell_i, h_j) \in Cross^{+-} \\ t_{jm}^{ear} - t_{im}^{lat} &\geq S(\alpha_{ijm}^{+}) \frac{D}{\underline{V}_{i\ell_i}} & \forall (i, j, m, \ell_i, \ell_j) \in Cross^{+} \end{split}$$

- $Cross^-/Cross^{+-}/Cross^+ := \{(i, j, m, h_i, h_j) : (i, j, m) \in Conf, (x_{h_i}, x_m) \in path_{f_i}, (x_{h_j}, x_m) \in path_{f_j}\}$, set of potential in/in /out/in/out/out intersection conflicts.
- α_{xyz} := ∠(x, y), (y, z) is the angle made by the arcs (x, y) and (y, z) at the junction y, x, y, x ∈ X.
 S(α) := 1/sin α if α < π/2, 1 otherwise.

Further modeling details:

- When allow a change in passing order at a node: binary variables needed
- Departure times: integer values \rightarrow general integer variables
- Climbing arcs: additional conditions
- etc.

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Introduction

- Mathematical Optimization for Air Traffic Management
 Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Computational experience

Intel Core i9-9880H CPU, 2.30GHz \times 16, Ubuntu 18.04.4 LTS CPLEX v. 12.10 (AMPL environment)

- Scenario 1 (pre-tactical): 20 instances per topology (60 instances)
- Scenario 2 (priority flight): 20 instances per topology (60 instances)
- Scenario 3 (intruder): 180 instances (*r* ∈ {1,5,10})

Computational experience: Scenario 1

		Grid	Airport	Metroplex	Overall
	mean	0.18	0.35	0.29	0.27
cpu (s.)	max	0.73	1.65	1.06	1.65
	num. infeasible	0	0	1	1
doviation	total	137.24	225.10	151.82	171.72
uevialion	mean (per f_i, x)	0.16	0.31	0.19	0.22
	% trips	5.35	19.88	7.02	10.81
delay at O	total	10.20	13.55	13.26	12.32
uelay at O	mean (per f _i)	0.14	0.33	0.16	0.21
	max (per f_i)	5.50	2.85	5.68	4.66
delay at D	% trips	5.75	27.37	7.89	13.77
	total	7.56	11.67	10.00	9.74
	mean (per f _i)	0.10	0.28	0.13	0.17
	max (per f_i)	5.26	2.14	5.30	4.22
speed changes	% trips	11.34	33.71	12.56	19.32
	% waypoints	9.97	29.53	11.83	17.20
	max (per f_i)	15.10	18.10	14.32	15.86
% obi_improv	mean	43.71	51.77	41.81	45.90
% obj. improv.	max	75.23	75.23	75.23	75.23

Computational experience: Scenario 2

		Grid	Airport	Metroplex	Overall
	mean	0.29	0.31	0.36	0.32
cpu (s.)	max	0.46	0.47	1.81	1.81
	num. infeasible	0	0	0	0
doviation	total	157.66	763.94	775.54	565.71
ueviation	mean (per f_i, x)	0.11	0.93	0.54	0.53
	% instances	60	45	60	55
delay prior.	total	3.95	0.70	2.70	2.45
	max (among instances)	14	5	8	14
	% trips	9.79	56.40	18.59	28.26
dolov at O	total	12.55	38.95	66.00	39.17
delay at O	mean (per f_i)	0.13	0.89	0.57	0.53
	max (per f_i)	2.00	2.20	1.55	1.92
	% trips	11.26	56.46	19.60	29.11
dolay at D	total	7.83	43.24	56.71	35.93
uelay at D	mean (per f_i)	0.08	0.98	0.49	0.52
	max (per f_i)	1.50	1.92	1.30	1.57
speed changes	% trips	15.13	61.95	20.99	32.69
	% waypoints	12.92	63.77	19.70	32.13
	max (per f_i)	19.30	21.85	8.70	16.62
% obi improv	mean	48.15	18.64	7.29	24.70
% obj. improv.	max	99.82	99.43	32.73	99.82

Computational experience: Scenario 3

		Grid	Airport	Metroplex	Overall
	mean	0.60	0.05	0.28	0.17
	max	0.20	0.08	0.37	0.37
	num. infeasible	41	46	41	128
opu (3.)	inf. <i>r</i> = 1	16	20	19	55
	inf. <i>r</i> = 5	15	16	14	45
	inf. <i>r</i> = 10	10	10	8	28
doviation	total	303.83	83.11	1162.59	558.19
ueviation	mean (per f_i, x)	0.21	0.14	0.79	0.40
	% trips	12.75	7.80	44.65	23.08
dolay at O	total	21.89	4.57	101.68	46.38
uelay at O	mean (per f_i)	0.22	0.12	0.88	0.44
	max (per f_i)	2.74	1.57	3.63	2.75
	% trips	17.40	18.75	43.06	27.14
dolay at D	total	16.57	3.95	77.49	35.43
uelay at D	mean (per f_i)	0.17	0.10	0.67	0.33
	max (per f_i)	1.94	0.60	3.21	2.04
speed changes	% trips	20.83	40.44	56.63	39.19
	% waypoints	18.09	17.61	47.47	28.69
	max (per f_i)	21.63	20.07	21.58	21.19
	mean	29.55	49.08	63.31	46.38
% obj. Improv.	max	44.66	71.69	88.93	88.93
	become feas.	3	2	5	10

Computational experience: global vs. local approach

Comparison of performance against the local model for Scenario 1

Computational experience: global vs. local approach

Comparison of performance against the local model for Scenario 2

Scenario 3: only 3 instances solved over 180 for the local approach!

C. D'Ambrosio	CNRS 8	ιX
---------------	--------	----

Introduction

- Mathematical Optimization for Air Traffic Management
- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Mathematical Optimization for Air Traffic Management

- Urban Air Mobility
- Problem Definition
- 3 Mathematical Optimization formulation
- 4 Modeling of aircraft separation
- 5 Computational experience
- 6 Conclusions and future perspectives

Conclusions and future perspectives

- Definition of a new problem in UAM
- Mathematical Optimization formulation
- **Promising** computational results
- Fairness
- Ongoing research:
 - Study robustness approaches at strategic level (with **Tom Portoleau**)

The cost of fairness

Spread equally the delay among flights

The cost of fairness: Mean number of speed adjustments made per trip

C. D'Ambrosio (CNRS & X)

ATM in UAM

Spread equally the delay among flights

		Scena	ario 1	Scenario 2		Scenario 3	
		non-fair fair		non-fair	fair	non-fair	fair
fair o f value	mean	39.36	23.99	36.72	19.02	38.86	19.99
	max	272.62	255.40	795.50	411.60	210.71	127.70
	% gain	-	35.06	-	39.87	-	45.29
delay at D	mean	9.74	37.62	35.93	65.39	35.43	77.50
	max	49.80	191.76	627.15	710.20	221.63	295.53
	% degrad.	-	478.76	-	430.39	-	397.72
min delay at D	mean	0.00	0.07	0.00	0.02	0.00	0.04
	max	0.00	1.11	0.00	0.42	0.00	0.37
max delay at D	mean	4.22	3.30	1.57	1.58	2.04	2.04
	max	15.52	15.52	8.00	8.00	6.76	6.76

Instance	Model	MILP			CP		
	#trips	10	100	500	10	100	500
Grid	avg time(s)	<0.1	0.19	0.82	<0.1	<0.1	<0.1
Airport	avg time(s)	<0.1	0.35	0.79	<0.1	<0.1	<0.1
Metroplex	avg time(s)	<0.1	0.29	0.86	<0.1	<0.1	<0.1

Table: Computation time comparison between MILP and CP formulation