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Scheduling problem in Airline Management

: flight leg, e.g.,

: `2 can follow `1 in a pairing
`1 `2

: pairing

April 23, Paris 6:30pm
→ Frankfurt 7:40pm

• The scheduling problem aims at building the schedules of the pilots for a
given month.

• It comes after a few preliminary steps.

• Input. Digraph with pairings.

• Output. Feasible schedules for the pilots.

Schedule = sequence of pairings
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Scheduling problem in Airline Management

: flight leg, e.g.,

: `2 can follow `1 in a pairing
`1 `2

: pairing

April 23, Paris 6:30pm
→ Frankfurt 7:40pm

: schedule

Schedule is feasible (at Air France):

• No two pairings overlap in time.

• Number of days on 6 17.

• Days off must include at least 7 consecutive days.

• Number of flight hours 6 85.

• Number of working hours 6 55 for every sequence of 7 consecutive days.
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Preferential Bidding System in Airline
Management

Preferential Bidding System: used by some airlines to build and assign
schedules to their pilots.

Pilots “bid”: they give scores to the pairings.

Then:

• Assign to the most senior pilot the best possible schedule according
to his scores, with the constraint that the remaining instance is still
feasible.

• Assign to the second most senior pilots the best possible schedule
according to his scores, with the constraint that the remaining
instance is still feasible.

• Etc.

Not used at Air France.
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A lexicographic optimization problem

Input.

• Collection of pairings

• Pilots numbered from 1 (most senior) to m (less senior)

• Scores gip (given by pilot i to pairing p).

Task. Find an assignment σ : {pilots} → {feasible schedules} so that

• σ(pilots) forms a partition of the pairings.

• the score of the pilots is lexicographically maximal, i.e.,

(c1σ(1), . . . , cmσ(m)) is lexicographically maximal.

cis = score of schedule s for pilot i :=
∑
p∈s

gip .
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Lexicographic order

Lexicographic order on Rm:

x >lex y if there is j with xj > yj and xk = yk for all k < j .

(2, 1, 3) >lex (2, 0, 5) and (2, 1, 3) 6>lex (2, 2, 0) .
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A lexicographic problem

Modeling via an ILP:

lexmax Cx

s.t.
∑

s∈{schedules}

xis = 1 i ∈ {pilots}

∑
i∈{pilots}

∑
s∈{schedules} : s3p

xis = 1 p ∈ {pairings}

xis ∈ {0, 1} i ∈ {pilots}, s ∈ {schedules}

• C = (cis)i ,s
• “lexmax Cx”: we want to maximize lexicographically the

vector (
∑

s c1sx1s ,
∑

s c2sx2s , . . . ,
∑

s cmsxms).
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A lexicographic problem

Modeling via an ILP:

lexmax Cx

s.t.
∑

s∈{schedules}

xis = 1 i ∈ {pilots}

∑
i∈{pilots}

∑
s∈{schedules} : s3p

xis = 1 p ∈ {pairings}

xis ∈ {0, 1} i ∈ {pilots}, s ∈ {schedules}

Challenges:

• The number of schedules is huge: column generation.

• The objective is lexicographic.

• It is an integer program.
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Approaches in the literature

Sequential approach (Gamache et al. (1998, 2007)):

• Solve the problem with objective function restricted to the most
senior pilot.

• Solve the problem with objective function restricted to the second
most senior pilot, with extra constraint fixing the score of the most
senior.

• And so on.

(The sequential approach is also used by standard ILP solvers.)

Weighting approach:

• Single objective function where the score of each pilot gets a weight.

• Require weights increasing exponentially with the number of pilots.

• Prevents any use of this approach for realistic instances.
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Proposed approach

If there were just a standard one-dimensional objective function, a
standard approach would use

• an algorithm for the linear relaxation ⇒ upper bound u.

• use the upper bound u to solve the original problem (e.g.,
branch-and-bound).

We keep the same approach:

• an algorithm for the linear relaxation ⇒ upper bound u ∈ Rm.

• use the upper bound u to solve the original problem.

For the linear relaxation, we propose a column generation method:

• master problem: linear lexicographic programming

• slave problem: resource-constrained shortest paths with
lexicographic costs
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Basics in linear programming

max c · x
s.t. Ax = b

x > 0

A is an k × n matrix with
independent rows.

A feasible basis is a subset B of [n] such that

• AB is non-singular. (AB is the submatrix with columns indexed by B.)

• A−1
B b > 0.

Solution associated with B: yB = A−1
B b and y [n]\B = 0

A basis B is primal-dual feasible if cj − c>BA
−1
B aj 6 0 for all j ∈ [n].

(aj is the j-th column of A.)
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Primal-dual feasible bases

If B is primal-dual feasible, then the solution associated with B is
optimal. Moreover, when the program is bounded, such a basis
B always exists.

Theorem Dantzig 1947

This theorem is the key result one which column generation is built.

If a new column a is added to a linear program, with a cost c , any
idea on how it might improve the objective value? (column
generation)

Answer given by reduced cost = c − c>BA
−1
B a when B is

primal-dual feasible.
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Basics in linear lexicographic programming

Setting proposed by Isermann 1982

lexmax Cx
s.t. Ax = b

x > 0

A is an k × n matrix with
independent rows.
C is an m × n matrix.

A feasible basis is a subset B of [n] such that

• AB is non-singular. (AB is the submatrix with columns indexed by B.)

• A−1
B b > 0.

Solution associated with B: yB = A−1
B b and y [n]\B = 0

A basis B is primal-dual feasible if c j − C>B A−1
B aj 6lex 0 for all

j ∈ [n].
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Primal-dual feasible bases (lexicographic
programming)

Any solution associated with a primal-dual feasible basis is opti-
mal.

Lemma Isermann 1982

When the program is bounded, there always exists a primal-dual
feasible basis.

Lemma Tellache, M., Parmentier 2023

It paves the way for column generation in linear lexicographic
programming.
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Solving a linear lexicographic program

We want to solve
lexmax Cx

s.t. Ax = b
x > 0

Solve = find a primal-dual feasible basis.

Isermann (1982) proposed a simplex method to solve linear
lexicographic program.

We use an alternative standard method, which can rely on
standard solvers.
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Solving a linear lexicographic program

Standard way to solve a linear lexicographic program (e.g., Akgül 1984):

S (1) := [n];
for ` = 1, . . . ,m do

Solve with any off-the-shelf solver

max c`
S(`) · x

s.t. AS(`)x = b
x > 0 ;

(P`)

B(`) := any primal-dual feasible basis of (P`);
S (`+1) := {j ∈ S (`) : c`j = c`>

B(`)A
−1
B(`)aj};

return B(m);

c` is the `-th row of C (= `-th objective function).
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Solving a linear lexicographic program

The basis B(m) is a primal-dual feasible basis of the linear lexi-
cographic program.

Proposition Tellache, M., Parmentier 2023

The proof uses the following (easy) lemma from standard linear programming.

Let B be a feasible basis. Let S be the components with zero reduced cost and B′

a feasible basis included in S. Then the reduced costs computed with respect to
B′ are equal to those computed with respect to B.

Lemma
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Column generation (lexicographic setting)

We want to solve

lexmax Cx
s.t. Ax = b

x > 0 ,
(P)

where A has a huge number of
columns.

We solve instead

lexmax C ′x ′

s.t. A′x ′ = b
x ′ > 0 ,

(P’)

where A′ and C ′ are the
matrices A and C limited to a
subset J of columns.

While there is j̄ /∈ J such that c j̄ − CB
>AB

−1a j̄ >lex 0 (Slave

problem):

• Add j̄ to J.

• Solve (P’). (Master problem)
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Original problem (reminder)

lexmax Cx

s.t.
∑

s∈{schedules}

xis = 1 i ∈ {pilots}

∑
i∈{pilots}

∑
s∈{schedules} : s3p

xis = 1 p ∈ {pairings}

xis ∈ {0, 1} i ∈ {pilots}, s ∈ {schedules}
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Integer part

lexmax Cx
s.t. Ax = b

x ∈ Zn
+ .

Let `,u ∈ Rk be respectively lower and upper bounds of the linear
relaxation.

Consider a primal-dual feasible basis B, and a non-basic variable
xj . If c j − C>B A−1

B aj <lex `− u, then xj = 0 in all optimal solu-
tions.

Lemma Tellache, M., Parmentier 2021+

It is the extension of a classical trick (Dantzig, Fulkerson, and
Johnson (1954)) to the lexicographic setting.
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Overall method

1 Solve the linear relaxation to optimality via column generation
−→ upper bound = u:
master and slave problems

2 Solve the integer version (restricted to the previous columns)
−→ lower bound = `:
with an off-the-shelf solver

3 Add columns with reduced cost >lex `− u.
previous lemma, and slave problem, again

4 Solve this new integer version −→ optimal solution.
with an off-the-shelf solver, again
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Slave problem

In our context, columns are pairs (i , s) with i ∈ {pilots} and
s ∈ {schedules}.

The slave problem can be treated for each pilot i separately and
modeled as

lexmax
s∈{schedules}

c is − c>BA
−1
B ais .

The slave problem becomes a resource constrained shortest path
problem, with lexicographic costs.
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Lex-Resource constrained shortest path
problem

Input.

• Directed graph D = (V ,A) with two special vertices o and d

• Partial ordered set (R,4) of resources with a unique maximal
element 1̂

• Cost function c : R → Rm

Task. Compute a feasible o-d path P (i.e., with rP 6= 1̂), with minimal
c(rP).

The resource rP of a path P is defined with an extra function ⊕ “summing”
the resources along P. The function is also given in input.
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Graph

We are not working with this graph:

: flight leg, e.g.,

: `2 can follow `1 in a pairing
`1 `2

: pairing

April 23, Paris 6:30pm
→ Frankfurt 7:40pm
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Graph
...but with that graph:

o

d

: pairing

: pairings do not overlap

Resource r ∈ R on each arc:

• number of days on of head pairing

• number of flight hours of head pairing

• 7 days off between tail and head pairings? (Boolean)

• etc.

• cost of head pairing
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Bounds to discard paths

Suppose (R,4) is a lattice and D is acyclic. Then the bv ∈ R solutions
of 

bd = 0̂

bv =
∧

(v ,w)∈δ+(v)

(r(v ,w) ⊕ bw ) .

are such that bv 4 rQ for all feasible v -d-path Q. Moreover, such bv
can be computed in polynomial time.

Theorem Parmentier 2019

When c is non-decreasing, such bounds can be used to discard
paths. Given an o-v path P:

if c(rP ⊕ bv ) > best cost so far, then P can be discarded.

(!!!Problem formulated as a shortest path problem!!!)
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Experimental results

Server with 192 GB of RAM and 32 cores at 3.30 GHz
Gurobi 9.02

Results of the overall method.

Average

Total Master Pricing ILLPs Most Gap
#pilots #inst. #opt. (s) pb. pbs. (s) sen. (%)

(s) (s) w/gap

I1 17 5 5 12.0 0.7 1.1 10.1 - -
I2 25 5 5 57.0 3.1 42.7 11.2 - -
I3 50 5 5 250.4 21.0 121.8 107.6 - -
I4 70 5 2 1,118.4 61.3 224.7 832.5 39.3 62.8
I5 80 5 4 1,967.8 105.1 975.7 887.0 54.0 8.3
I6 90 5 3 3,576.5 151.1 1,594.3 1,830.2 42.0 22.9
I7 100 5 2 3,223.4 262.4 606.4 2,354.6 51.3 25.6
I8 150 1 1 79,556.0 3,011.7 28,657.9 47,886.4 - -
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Thank you

33/33


	Scheduling for airlines
	Resolution methods
	Linear (lexicographic) programming
	Overall method
	Lexicographic shortest path problem
	Experimental results

