Linear Lexicographic Optimization and Preferential Bidding System

Nour ElHouda Tellache, Frédéric Meunier, Axel Parmentier

April 24, 2023

Supported by the "chaire Air France-École des Ponts"

Trends in Computational Discrete Optimization, ICERM

Plan

1 Scheduling for airlines

- 2 Resolution methods
- **3** Linear (lexicographic) programming
- 4 Overall method
- **5** Lexicographic shortest path problem
- 6 Experimental results

Scheduling problem in Airline Management

- The scheduling problem aims at building the schedules of the pilots for a given month.
- It comes after a few preliminary steps.
- Input. Digraph with pairings.
- **Output.** Feasible schedules for the pilots.

Schedule = sequence of pairings

Scheduling problem in Airline Management

Schedule is feasible (at Air France):

- No two pairings overlap in time.
- Number of days on ≤ 17 .
- Days off must include at least 7 consecutive days.
- Number of flight hours \leq 85.
- Number of working hours \leq 55 for every sequence of 7 consecutive days.

Preferential Bidding System in Airline Management

Preferential Bidding System: used by some airlines to build and assign schedules to their pilots.

Pilots "bid": they give scores to the pairings.

Then:

- Assign to the most senior pilot the best possible schedule according to his scores, with the constraint that the remaining instance is still feasible.
- Assign to the second most senior pilots the best possible schedule according to his scores, with the constraint that the remaining instance is still feasible.

• Etc.

Not used at Air France.

A lexicographic optimization problem

Input.

- Collection of pairings
- Pilots numbered from 1 (most senior) to *m* (less senior)
- Scores g_{ip} (given by pilot *i* to pairing *p*).

Task. Find an assignment σ : {pilots} \rightarrow {feasible schedules} so that

- $\sigma(\text{pilots})$ forms a partition of the pairings.
- the score of the pilots is lexicographically maximal, i.e.,

 $(c_{1\sigma(1)},\ldots,c_{m\sigma(m)})$ is lexicographically maximal.

$$c_{is} = ext{score of schedule } s ext{ for pilot } i := \sum_{p \in s} g_{ip} \, .$$

Lexicographic order

Lexicographic order on \mathbb{R}^m :

 $\boldsymbol{x} >_{\text{lex}} \boldsymbol{y}$ if there is j with $x_j > y_j$ and $x_k = y_k$ for all k < j.

 $(2,1,3) >_{\mathsf{lex}} (2,0,5)$ and $(2,1,3) \not>_{\mathsf{lex}} (2,2,0)$.

A lexicographic problem

Modeling via an ILP:

- $C = (c_{is})_{i,s}$
- "lexmax Cx": we want to maximize lexicographically the vector $(\sum_{s} c_{1s}x_{1s}, \sum_{s} c_{2s}x_{2s}, \dots, \sum_{s} c_{ms}x_{ms})$.

A lexicographic problem

Modeling via an ILP:

Challenges:

- The number of schedules is huge: column generation.
- The objective is lexicographic.
- It is an integer program.

Plan

1 Scheduling for airlines

2 Resolution methods

3 Linear (lexicographic) programming

4 Overall method

5 Lexicographic shortest path problem

6 Experimental results

Approaches in the literature

Sequential approach (Gamache et al. (1998, 2007)):

- Solve the problem with objective function restricted to the most senior pilot.
- Solve the problem with objective function restricted to the second most senior pilot, with extra constraint fixing the score of the most senior.
- And so on.

(The sequential approach is also used by standard ILP solvers.)

Weighting approach:

- Single objective function where the score of each pilot gets a weight.
- Require weights increasing exponentially with the number of pilots.
- Prevents any use of this approach for realistic instances.

Proposed approach

If there were just a standard one-dimensional objective function, a standard approach would use

- an algorithm for the linear relaxation \Rightarrow upper bound u.
- use the upper bound *u* to solve the original problem (e.g., branch-and-bound).

We keep the same approach:

- an algorithm for the linear relaxation \Rightarrow upper bound $\boldsymbol{u} \in \mathbb{R}^m$.
- use the upper bound **u** to solve the original problem.

For the linear relaxation, we propose a column generation method:

- master problem: linear lexicographic programming
- slave problem: resource-constrained shortest paths with lexicographic costs

Plan

1 Scheduling for airlines

- 2 Resolution methods
- 3 Linear (lexicographic) programming
- 4 Overall method
- **5** Lexicographic shortest path problem
- 6 Experimental results

Basics in linear programming

 $\begin{array}{ll} \max & \boldsymbol{c} \cdot \boldsymbol{x} & & A \text{ is an } k \times n \text{ matrix with} \\ \text{s.t.} & A \boldsymbol{x} = \boldsymbol{b} & & \text{independent rows.} \\ & \boldsymbol{x} \geqslant \boldsymbol{0} \end{array}$

A feasible basis is a subset B of [n] such that

A_B is non-singular. (A_B is the submatrix with columns indexed by B.)
A_B⁻¹b ≥ 0.

Solution associated with *B*: $\mathbf{y}_B = A_B^{-1} \mathbf{b}$ and $\mathbf{y}_{[n]\setminus B} = \mathbf{0}$

A basis *B* is primal-dual feasible if $c_j - \boldsymbol{c}_B^\top A_B^{-1} \boldsymbol{a}_j \leq 0$ for all $j \in [n]$. (\boldsymbol{a}_j is the *j*-th column of *A*.)

Primal-dual feasible bases

Theorem Dantzig 1947

If B is primal-dual feasible, then the solution associated with B is optimal. Moreover, when the program is bounded, such a basis B always exists.

This theorem is the key result one which column generation is built.

If a new column a is added to a linear program, with a cost c, any idea on how it might improve the objective value? (column generation)

Answer given by reduced cost $= c - \boldsymbol{c}_B^\top A_B^{-1} \boldsymbol{a}$ when *B* is primal-dual feasible.

Basics in linear lexicographic programming

Setting proposed by Isermann 1982

 $\begin{array}{ll} \mathsf{lexmax} & \mathbf{C}\mathbf{x} \\ \mathsf{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{array}$

A is an $k \times n$ matrix with independent rows. C is an $m \times n$ matrix.

A feasible basis is a subset B of [n] such that

• A_B is non-singular. (A_B is the submatrix with columns indexed by B.) • $A_B^{-1} \boldsymbol{b} \ge \boldsymbol{0}$.

Solution associated with *B*: $\mathbf{y}_B = A_B^{-1} \mathbf{b}$ and $\mathbf{y}_{[n]\setminus B} = \mathbf{0}$

A basis *B* is primal-dual feasible if $c_j - C_B^\top A_B^{-1} a_j \leq_{\text{lex}} 0$ for all $j \in [n]$.

Primal-dual feasible bases (lexicographic programming)

Lemma Isermann 1982

Any solution associated with a primal-dual feasible basis is optimal.

Lemma Tellache, M., Parmentier 2023

When the program is bounded, there always exists a primal-dual feasible basis.

It paves the way for column generation in linear lexicographic programming.

Solving a linear lexicographic program

We want to solve

Solve = find a primal-dual feasible basis.

lsermann (1982) proposed a simplex method to solve linear lexicographic program.

We use an alternative standard method, which can rely on standard solvers.

Solving a linear lexicographic program

Standard way to solve a linear lexicographic program (e.g., Akgül 1984):

$$\begin{split} S^{(1)} &:= [n]; \\ \text{for } \ell = 1, \dots, m \text{ do} \\ \text{Solve with any off-the-shelf solver} \\ & \max \quad \boldsymbol{c}_{S^{(\ell)}}^{\ell} \cdot \boldsymbol{x} \\ \text{s.t.} \quad A_{S^{(\ell)}} \boldsymbol{x} = \boldsymbol{b} \qquad (\mathsf{P}_{\ell}) \\ & \boldsymbol{x} \geq \boldsymbol{0}; \\ B^{(\ell)} &:= \text{ any primal-dual feasible basis of } (\mathsf{P}_{\ell}); \\ S^{(\ell+1)} &:= \{j \in S^{(\ell)} : c_{j}^{\ell} = \boldsymbol{c}_{B^{(\ell)}}^{\ell \top} A_{B^{(\ell)}}^{-1} \boldsymbol{a}_{j}\}; \\ \text{return } B^{(m)}; \end{split}$$

 c^{ℓ} is the ℓ -th row of C (= ℓ -th objective function).

Solving a linear lexicographic program

Proposition Tellache, M., Parmentier 2023

The basis $B^{(m)}$ is a primal-dual feasible basis of the linear lexicographic program.

The proof uses the following (easy) lemma from standard linear programming.

Lemma

Let *B* be a feasible basis. Let *S* be the components with zero reduced cost and *B'* a feasible basis included in *S*. Then the reduced costs computed with respect to *B'* are equal to those computed with respect to *B*.

Column generation (lexicographic setting)

We want to solve

$$\begin{array}{ll} \mathsf{lexmax} & C \boldsymbol{x} \\ \mathsf{s.t.} & A \boldsymbol{x} = \boldsymbol{b} & (\mathsf{P}) \\ & \boldsymbol{x} \geqslant \boldsymbol{0} \,, \end{array}$$

where A has a huge number of columns.

 $\begin{array}{ll} \mathsf{lexmax} & C' \pmb{x}' \\ \mathsf{s.t.} & A' \pmb{x}' = \pmb{b} \quad (\mathsf{P}') \\ & \pmb{x}' \geqslant \pmb{0} \,, \end{array}$

where A' and C' are the matrices A and C limited to a subset J of columns.

We solve instead

While there is $\overline{j} \notin J$ such that $\boldsymbol{c}_{\overline{j}} - C_B^{\top} A_B^{-1} \boldsymbol{a}_{\overline{j}} >_{\text{lex}} \boldsymbol{0}$ (Slave problem):

- Add \overline{j} to J.
- Solve (P'). (Master problem)

Plan

1 Scheduling for airlines

- 2 Resolution methods
- **3** Linear (lexicographic) programming
- 4 Overall method
- **5** Lexicographic shortest path problem
- 6 Experimental results

Original problem (reminder)

Integer part

Let $\ell, \boldsymbol{u} \in \mathbb{R}^k$ be respectively lower and upper bounds of the linear relaxation.

Lemma Tellache, M., Parmentier 2021+ Consider a primal-dual feasible basis *B*, and a non-basic variable x_j . If $c_j - C_B^{\top} A_B^{-1} a_j <_{\text{lex}} \ell - u$, then $x_j = 0$ in all optimal solutions.

It is the extension of a classical trick (Dantzig, Fulkerson, and Johnson (1954)) to the lexicographic setting.

Overall method

• Solve the linear relaxation to optimality via column generation \longrightarrow upper bound = u:

master and slave problems

2 Solve the integer version (restricted to the previous columns) \rightarrow lower bound = ℓ :

with an off-the-shelf solver

- 3 Add columns with reduced cost $\ge_{\text{lex}} \ell u$. previous lemma, and slave problem, again
- ④ Solve this new integer version → optimal solution. with an off-the-shelf solver, again

Plan

- 1 Scheduling for airlines
- 2 Resolution methods
- **3** Linear (lexicographic) programming
- 4 Overall method
- **5** Lexicographic shortest path problem
- 6 Experimental results

Slave problem

In our context, columns are pairs (i, s) with $i \in \{\text{pilots}\}$ and $s \in \{\text{schedules}\}$.

The slave problem can be treated for each pilot i separately and modeled as

$$\operatorname{lexmax}_{s \in \{\text{schedules}\}} \boldsymbol{c}_{is} - \boldsymbol{c}_B^\top \boldsymbol{A}_B^{-1} \boldsymbol{a}_{is} \, .$$

The slave problem becomes a resource constrained shortest path problem, with lexicographic costs.

Lex-Resource constrained shortest path problem

Input.

- Directed graph D = (V, A) with two special vertices o and d
- Partial ordered set (R,\preccurlyeq) of resources with a unique maximal element $\hat{1}$
- Cost function $c \colon R \to \overline{\mathbb{R}}^m$

Task. Compute a feasible *o*-*d* path *P* (i.e., with $r_P \neq \hat{1}$), with minimal $c(r_P)$.

The resource r_P of a path P is defined with an extra function \oplus "summing" the resources along P. The function is also given in input.

Graph

We are not working with this graph:

Graph

...but with that graph:

: pairing

: pairings do not overlap

Resource $r \in R$ on each arc:

- number of days on of head pairing
- number of flight hours of head pairing
- 7 days off between tail and head pairings? (Boolean)
- etc.
- cost of head pairing

Bounds to discard paths

Theorem Parmentier 2019

Suppose (R, \preccurlyeq) is a lattice and D is acyclic. Then the $b_v \in R$ solutions of

$$b_d = \mathbf{0}$$

$$b_v = \bigwedge_{(v,w) \in \delta^+(v)} (r_{(v,w)} \oplus b_w).$$

are such that $b_v \preccurlyeq r_Q$ for all feasible *v*-*d*-path *Q*. Moreover, such b_v can be computed in polynomial time.

When c is non-decreasing, such bounds can be used to discard paths. Given an o-v path P:

if $c(r_P \oplus b_v) \ge$ best cost so far, then P can be discarded.

(!!!Problem formulated as a shortest path problem!!!)

Plan

1 Scheduling for airlines

- 2 Resolution methods
- **3** Linear (lexicographic) programming
- 4 Overall method
- **5** Lexicographic shortest path problem

6 Experimental results

Experimental results

Server with 192 GB of RAM and 32 cores at 3.30 GHz Gurobi 9.02

Results of the overall method.

				Average					
	#pilots	#inst.	#opt.	Total (s)	Master pb. (s)	Pricing pbs. (s)	ILLPs (s)	Most sen. w/gap	Gap (%)
I_1	17	5	5	12.0	0.7	1.1	10.1	-	-
I_2	25	5	5	57.0	3.1	42.7	11.2	-	-
I_3	50	5	5	250.4	21.0	121.8	107.6	-	-
I_4	70	5	2	1,118.4	61.3	224.7	832.5	39.3	62.8
I_5	80	5	4	1,967.8	105.1	975.7	887.0	54.0	8.3
I_6	90	5	3	3,576.5	151.1	1,594.3	1,830.2	42.0	22.9
I_7	100	5	2	3,223.4	262.4	606.4	2,354.6	51.3	25.6
<i>I</i> 8	150	1	1	79,556.0	3,011.7	28,657.9	47,886.4	-	-

THANK YOU