Measuring the Importance of Facets of Cyclic Group Polyhedra Using Solid Angles

Yuan Zhou

University of Kentucky, Department of Mathematics

April 24, 2023

Joint work with Allison Fitisone

Overview

① Cyclic group relaxation of IP

2 Measure relative sizes of the facets

3 Compute solid angle measure in \mathbb{R}^n

Many widely used general-purpose cuts are derived from a **single row** of the optimal simplex tableau:

$$\mathbf{x}_B = A_B^{-1}\mathbf{b} + (-A_B^{-1}A_N)\mathbf{x}_N, \quad \mathbf{x}_B \in \mathbb{Z}_+^B, \ \mathbf{x}_N \in \mathbb{Z}_+^N.$$

Gomory Mixed Integer Cut Example:

• Tableau row:

$$x = -(-\frac{4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3,$$

where $x, x_1, x_2, x_3 \in \mathbb{Z}_+$.

$$?x_1 + ?x_2 + ?x_3 \ge 1.$$

- Cyclic group order q = 5
- $\left(-\frac{4}{5}\right) \equiv \frac{1}{5} \pmod{1}$
- GMIC function $\pi_{\rm mic}$

Many widely used general-purpose cuts are derived from a **single row** of the optimal simplex tableau:

$$\mathbf{x}_B = A_B^{-1}\mathbf{b} + (-A_B^{-1}A_N)\mathbf{x}_N, \quad \mathbf{x}_B \in \mathbb{Z}_+^B, \ \mathbf{x}_N \in \mathbb{Z}_+^N.$$

Gomory Mixed Integer Cut Example:

• Tableau row:

$$x = -\left(-\frac{4}{5}\right) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3,$$

where $x, x_1, x_2, x_3 \in \mathbb{Z}_+$.

$$\frac{3}{4}x_1 + \frac{1}{4}x_2 + 1x_3 \ge 1.$$

- Cyclic group order q = 5
- $\left(-\frac{4}{5}\right) \equiv \frac{1}{5} \pmod{1}$
- GMIC function $\pi_{\rm mic}$

Many widely used general-purpose cuts are derived from a **single row** of the optimal simplex tableau:

$$\mathbf{x}_B = A_B^{-1}\mathbf{b} + (-A_B^{-1}A_N)\mathbf{x}_N, \quad \mathbf{x}_B \in \mathbb{Z}_+^B, \ \mathbf{x}_N \in \mathbb{Z}_+^N.$$

Gomory Mixed Integer Cut Example:

• Tableau row:

$$x = -(-\frac{4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3,$$

where $x, x_1, x_2, x_3 \in \mathbb{Z}_+$.

$$\frac{3}{4}x_1 + \frac{1}{4}x_2 + 1x_3 \ge 1.$$

- Cyclic group order q = 5
- $\left(-\frac{4}{5}\right) \equiv \frac{1}{5} \pmod{1}$
- GMIC function $\pi_{\rm mic}$

Many widely used general-purpose cuts are derived from a **single row** of the optimal simplex tableau:

$$\mathbf{x}_B = A_B^{-1}\mathbf{b} + (-A_B^{-1}A_N)\mathbf{x}_N, \quad \mathbf{x}_B \in \mathbb{Z}_+^B, \ \mathbf{x}_N \in \mathbb{Z}_+^N.$$

Gomory Mixed Integer Cut Example:

• Tableau row:

$$x = -(-\frac{4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3,$$

where $x, x_1, x_2, x_3 \in \mathbb{Z}_+$.

$$\frac{3}{4}x_1 + \frac{1}{4}x_2 + \mathbf{1}x_3 \ge 1.$$

- Cyclic group order q = 5
- $\left(-\frac{4}{5}\right) \equiv \frac{1}{5} \pmod{1}$
- GMIC function $\pi_{\rm mic}$

Cyclic group relaxation

• Tableau row: $x = -(-\frac{4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3$, $x, x_1, x_2, x_3 \in \mathbb{Z}_+$. • Relax *x* from \mathbb{Z}_+ to \mathbb{Z} :

$$0 \equiv -\frac{1}{5} + \frac{2}{5}x_1 + \frac{4}{5}x_2 + \frac{1}{5}x_3 \pmod{1}$$

• Introduce $\mathbf{z} \in \mathbb{Z}_{+}^{q-1}$:

$$\frac{1}{5} \equiv \frac{1}{5}z_1 + \frac{2}{5}z_2 + \frac{3}{5}z_3 + \frac{4}{5}z_4 \pmod{1}$$

•
$$q = 5$$
 and $f = 1$

Master cyclic group polyhedron

$$P(q, f) := \operatorname{conv} \left\{ \mathbf{z} \in \mathbb{Z}_+^{q-1} \mid \sum_{i=1}^{q-1} \left(\frac{i}{q}\right) z_i \equiv \frac{f}{q} \pmod{1} \right\}$$

• We are interested in $\pi \in \mathbb{R}^{q-1}_+$ s.t. $\pi \cdot \mathbf{z} \ge 1$ for all $\mathbf{z} \in P(q, f)$, and in particular, the facet-defining ones.

Master cyclic group polyhedron and Group-facet polytope

- Blocker $\mathfrak{B}\left(P(q,f)\right) = \left\{\pi \in \mathbb{R}^{q-1}_+ \mid \pi \cdot \mathbf{z} \ge 1 \; \forall \; \mathbf{z} \in P(q,f)\right\}$
- $P(q, f) \subseteq \mathbb{R}^{q-1}_+$ is full-dimensional, and has \mathbb{R}^{q-1}_+ as recession cone.

$$\implies \mathfrak{B}\left(P(q,f)\right) = \Pi(q,f) + \mathbb{R}^{q-1}_+$$

• Group-facet polytope $\Pi(q, f)$ consists of $\pi = (\pi_1, \dots, \pi_{q-1})$ with $\pi_0 = 0, \pi_f = 1$ and satisfies

- (nonnegativity) $\pi_i \ge 0$ for $i = 1, \dots, q-1$
- (symmetry) $\pi_i + \pi_j = 1, i + j \equiv f \pmod{q}$
- (subadditivity) $\pi_i + \pi_j \ge \pi_k$, $i + j \equiv k \pmod{q}$
- Non-trivial facet of $P(q, f) \Leftrightarrow$ vertex of $\Pi(q, f)$
- Number of facets / vertices π grows exponentially with q.
- Which π 's are more important?

Relative sizes of facets — Shooting experiment

[Kuhn, 1991], [Evans, 2002], [Gomory–Johnson–Evans, 2003], [Hunsaker, 2003], [Dash–Günlük, 2006], [Shim, 2009], [Shim–Johnson, 2013], [Chopra–Shim–Steffy, 2015]

- Choose random direction $\mathbf{v} \in \mathbb{R}^{q-1}_+$.
- Move from the origin along the ray $\lambda \mathbf{v}$ ($\lambda > 0$) until hitting P(q, f).
- Record which facet π^* is hit: $\pi^* = \arg \min_{\pi} \{ \pi \cdot \mathbf{v} \mid \pi \in \Pi(q, f) \}.$
- Facets that receive more hits are deemed more important.

Relative sizes of facets — Shooting experiment

Proportion of hits received by facets of P(7,6) according to [Hunsaker, 2003] (out of 1000 shots) and [Shim, 2009] (geometry)

	Face	ets c	of P	(7, 6)	Hunsaker	Shim	
1	2	3	4	5	6	0.332	0.3238
9	4	6	8	3	12	0.253	0.2500
4	8	5	2	6	10	0.245	0.2500
6	5	4	3	2	8	0.170	0.1762

Discrepancies?

Relative sizes of facets — Shooting experiment

Proportion of hits received by facets of P(11, 10) according to [Hunsaker, 2003] (out of 1000 shots) and [Shim, 2009] (out of 10000 shots)

			Face	ets of	Hunsaker	Shim					
1	2	3	4	5	6	7	8	9	10	0.134	0.1354
4	8	12	16	9	2	6	10	14	18	0.140	0.1291
9	18	16	3	12	21	8	6	15	24	0.089	0.0935
10	9	8	7	6	5	4	3	2	12	0.092	0.0872
16	21	4	20	14	8	24	7	12	28	0.080	0.0816
25	6	20	12	15	18	10	24	5	30	0.083	0.0813
8	5	2	10	7	4	12	9	6	14	0.070	0.0579
6	12	7	2	8	14	9	4	10	16	0.069	0.0646
20	7	16	14	12	10	8	17	4	24	0.033	0.0403
15	8	12	5	9	13	6	10	3	18	0.030	0.0404
13	4	6	8	10	12	14	16	7	20	0.037	0.0402
6	12	7	13	8	3	9	4	10	16	0.038	0.0297
4	8	12	5	9	13	6	10	14	18	0.022	0.0276
9	18	5	14	12	10	19	6	15	24	0.026	0.0250
14	6	20	12	15	18	10	24	16	30	0.013	0.0187
18	14	10	6	13	20	16	12	8	26	0.015	0.0173
13	15	6	8	10	12	14	5	7	20	0.012	0.0162
9	18	16	14	12	10	8	6	15	24	0.017	0.0140

Shooting experiment size estimates solid angle

Proposition

- Shooting experiment size of a facet $\pi \cdot \mathbf{z} \ge 1$ of P(q, f)
- \simeq solid angle subtended by the facet of P(q,f) at the origin
- = solid angle of the normal cone at the vertex π of $\mathfrak{B}\left(P(q,f)\right)$
- = (normalized) solid angle of the normal cone at the vertex π of $\Pi(q, f)$

Relative sizes of facets — Solid angle

Facets of $P(7,6)$						Solid angle	Hunsaker	Shim
1	2	3	4	5	6	0.3238	0.332	0.3238
9	4	6	8	3	12	0.2500	0.253	0.2500
4	8	5	2	6	10	0.2500	0.245	0.2500
6	5	4	3	2	8	0.1762	0.170	0.1762

Relative sizes of facets — Solid angle

			Facets of $P(11, 10)$							Solid angle	Hunsaker	Shim
1	2	3	4	5	6	7	8	9	10	0.1331	0.134	0.1354
4	8	12	16	9	2	6	10	14	18	0.1272	0.140	0.1291
9	18	16	3	12	21	8	6	15	24	0.0908	0.089	0.0935
10	9	8	7	6	5	4	3	2	12	0.0895	0.092	0.0872
16	21	4	20	14	8	24	7	12	28	0.0831	0.080	0.0816
25	6	20	12	15	18	10	24	5	30	0.0809	0.083	0.0813
8	5	2	10	7	4	12	9	6	14	0.0627	0.070	0.0579
6	12	7	2	8	14	9	4	10	16	0.0605	0.069	0.0646
20	7	16	14	12	10	8	17	4	24	0.0411	0.033	0.0403
15	8	12	5	9	13	6	10	3	18	0.0400	0.030	0.0404
13	4	6	8	10	12	14	16	7	20	0.0370	0.037	0.0402
6	12	7	13	8	3	9	4	10	16	0.0353	0.038	0.0297
4	8	12	5	9	13	6	10	14	18	0.0286	0.022	0.0276
9	18	5	14	12	10	19	6	15	24	0.0236	0.026	0.0250
14	6	20	12	15	18	10	24	16	30	0.0190	0.013	0.0187
18	14	10	6	13	20	16	12	8	26	0.0175	0.015	0.0173
13	15	6	8	10	12	14	5	7	20	0.0158	0.012	0.0162
9	18	16	14	12	10	8	6	15	24	0.0130	0.017	0.0140

Motivations for studying solid angles

- Draw more accurate conclusions regarding the importance of facets of master cyclic group polyhedra
- Estimate the number of simplices in a triangulation of an *n*-cube
- Solid angle sum over rational polytope: Ehrhart polynomial and lattice counting
- Approximate the relative volume in many applications:
 - pixel purity index (PPI) scores
 - feasibility domain of an ecological community
 - ▶

Normalized solid angle measure

Definition (Property)

The normalized solid angle measure of a cone $C\subseteq \mathbb{R}^n$ with respect to \mathbb{R}^n is defined as

$$\tilde{\Omega}_n(C) = \frac{\operatorname{vol}_{n-1}(C \cap S_{n-1})}{\operatorname{vol}_{n-1}(S_{n-1})} \left(= \frac{\operatorname{vol}_n(C \cap B_n)}{\operatorname{vol}_n(B_n)} = \frac{\int_C f(\mathbf{x}) d\mathbf{x}}{\int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x}} \right) \ ,$$

where

- vol_n is the usual volume form in \mathbb{R}^n ,
- S_{n-1} is the unit (n-1)-sphere (residing in \mathbb{R}^n) centered at 0,
- B_n is the unit ball in \mathbb{R}^n centered at $\mathbf{0}$
- $f\colon \mathbb{R}^n\to\mathbb{R}$ is any function that is invariant under rotations around 0, e.g. $f=e^{-\|\mathbf{x}\|^2}$

In the following, we consider simplicial cones $C = \mathfrak{c}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$.

Solid angles in \mathbb{R}^2

In \mathbb{R}^2 , the normalized solid (or plane) angle measure can be computed via the standard inner product.

Solid angles in \mathbb{R}^3

The normalized solid angle measure is the ratio of the area of the spherical triangle formed by the unit vectors to the surface area of the unit sphere.

$$\tilde{\Omega}_3(\mathfrak{c}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)) = \frac{1}{4\pi} \left(2 \tan^{-1} \left(\frac{|\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)|}{1 + \mathbf{v}_2 \cdot \mathbf{v}_3 + \mathbf{v}_2 \cdot \mathbf{v}_1 + \mathbf{v}_1 \cdot \mathbf{v}_3} \right) \right).$$

Solid angles in \mathbb{R}^n

$$\tilde{\Omega}_n(C) = \frac{\operatorname{vol}_{n-1}(C \cap S_{n-1})}{\operatorname{vol}_{n-1}(S_{n-1})} = \frac{\operatorname{vol}_n(C \cap B_n)}{\operatorname{vol}_n(B_n)} = \frac{\int_C f(\mathbf{x}) d\mathbf{x}}{\int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x}}$$

- Computing $\tilde{\Omega}_n(\mathfrak{c}(\mathbf{v}_1,\ldots,\mathbf{v}_n))$ amounts to computing the volume of a "spherically faced simplex"
- Closed formula not known
- Probabilistic methods require large samples
- Numerical integration methods high in computational cost
- We consider the multivariate power series method independently discovered by [Aomoto, 1977] and [Ribando, 2006]

Solid angle formula — Ribando's hypergeometric series

Theorem (Ribando, 2006)

Let $C \subseteq \mathbb{R}^n$ be the simplicial cone generated by the unit vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Let $V \in \mathbb{R}^{n \times n}$ be the matrix whose i^{th} column is \mathbf{v}_i . Let $\alpha_{ij} = \mathbf{v}_i \cdot \mathbf{v}_j$ for $1 \le i, j \le n$. Define

$$T_{\alpha} = \frac{|\det V|}{(4\pi)^{\frac{n}{2}}} \sum_{\mathbf{a} \in \mathbb{N}^{\binom{n}{2}}} \left[\frac{(-2)^{\sum_{i < j} a_{ij}}}{\prod_{i < j} a_{ij}!} \prod_{i=1}^{n} \Gamma\left(\frac{1 + \sum_{m \neq i} a_{im}}{2}\right) \right] \alpha^{\mathbf{a}}.$$

Then, T_{α} converges absolutely to $\tilde{\Omega}_n(C)$, if and only if its associated matrix $M_n(C)$ is positive definite.

$$M_n(C) = \begin{bmatrix} 1 & -|\mathbf{v}_1 \cdot \mathbf{v}_2| & \cdots & -|\mathbf{v}_1 \cdot \mathbf{v}_n| \\ -|\mathbf{v}_2 \cdot \mathbf{v}_1| & 1 & \cdots & -|\mathbf{v}_2 \cdot \mathbf{v}_n| \\ \vdots & \vdots & \ddots & \vdots \\ -|\mathbf{v}_n \cdot \mathbf{v}_1| & -|\mathbf{v}_n \cdot \mathbf{v}_2| & \cdots & 1 \end{bmatrix}$$

Yuan Zhou (U. Kentucky)

Ribando's hypergeometric series

$$T_{\alpha} = \frac{|\det V|}{(4\pi)^{\frac{n}{2}}} \sum_{\mathbf{a} \in \mathbb{N}^{\binom{n}{2}}} \left[\frac{(-2)^{\sum_{i < j} a_{ij}}}{\prod_{i < j} a_{ij}!} \prod_{i=1}^{n} \Gamma\left(\frac{1 + \sum_{m \neq i} a_{im}}{2}\right) \right] \alpha^{\mathbf{a}}.$$

• $\alpha = (\alpha_{12}, \alpha_{13}, \dots, \alpha_{n-1,n})$ is a multivariable in $\binom{n}{2}$ variables; • $\mathbf{a} = (a_{12}, a_{13}, \dots, a_{n-1,n})$ is a multiexponent;

• $\alpha^{\mathbf{a}} := \prod_{i < j}^{n} \alpha_{ij}^{a_{ij}};$

•
$$\sum_{m \neq i} a_{im} = \sum_{j < i} a_{ji} + \sum_{j > i} a_{ij};$$

- Γ is the Euler-Gamma function.
- T_{α} is a hypergeometric series as the ratio of the neighboring coefficients is a rational function of the index.

Issue with T_{α} : convergence condition not met

Let $v_1 = [1, 1, 0]$, $v_2 = [1, 0, 1]$, $v_3 = [1, 0, 0]$, and $C = \mathfrak{c}(v_1, v_2, v_3)$.

Remedy: Cone decomposition

and $c(v_1, v_3, v_4), c(v_2, v_3, v_4)$ have positive-definite associated matrices.

Decomposition Theorem

Theorem (Fitisone-Zhou, 2023)

Given linearly independent unit vectors $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n \in \mathbb{R}^n$, the cone $c(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n)$ can be decomposed into a finite family of cones, each of which is either:

- a cone of affine dimension less than n, or
- 0 a full-dimensional cone $\mathfrak{c}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)$ such that

)
$$\|\mathbf{v}_i\| = 1$$
 for $i = 1, 2, ..., n$

$$\mathbf{v}_n = \mathbf{w}_n$$

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1} \rangle = \langle \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{n-1} \rangle$$

v_i ·
$$\mathbf{v}_j = 0$$
 for all $1 \le i, j \le n$ such that $j \ne i, j \ne i \pm 1$.

Remarks:

- A cone in **()** has solid angle 0.
- Properties and ensure induction works.
- Property **1** ensures $V^T V$ is tridiagonal, so $M_n(\mathfrak{c})$ is positive-definite.

Decomposition Theorem

Proof idea. Use induction on dimension. Apply Brion–Vergne decomposition with respect to a line carefully chosen, to the dual cone. Then take the dual again.

Corollary (Fitisone–Zhou, 2023)

The decomposition theorem gives explicitly $N \leq (n-1)!$ cones C_i whose $\tilde{\Omega}_n(C_i)$ can be computed via the power series formula T_α and the signs $s_i \in \{\pm 1\}$, such that

$$\tilde{\Omega}_n(C) = \sum_{i=1}^N s_i \tilde{\Omega}_n(C_i).$$

We can make the cones C_i to have tridiagonal associated matrices.

Issue with T_{α} : too many terms $\mathbf{a} \in \mathbb{N}^{\binom{n}{2}}$

$$T_{\alpha} = \frac{|\det V|}{(4\pi)^{\frac{n}{2}}} \sum_{\mathbf{a} \in \mathbb{N}^{\binom{n}{2}}} \left[\frac{(-2)^{\sum_{i < j} a_{ij}}}{\prod_{i < j} a_{ij}!} \prod_{i=1}^{n} \Gamma\left(\frac{1 + \sum_{m \neq i} a_{im}}{2}\right) \right] \alpha^{\mathbf{a}}.$$

Recall property \bigcirc from the theorem: tridiagonal $V^T V!$

$$V^{T}V = \begin{bmatrix} 1 & \beta_{1} & 0 & \dots & 0 \\ \beta_{1} & 1 & \beta_{2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \beta_{n-2} & 1 & \beta_{n-1} \\ 0 & \dots & 0 & & \beta_{n-1} & 1 \end{bmatrix}$$

Remedy: series T_{α} in $\binom{n}{2}$ variables simplifies to series in (n-1) variables

$$T_{\beta} = \frac{|\det V|}{(4\pi)^{\frac{n}{2}}} \sum_{\mathbf{b} \in \mathbb{N}^{n-1}} A_{\mathbf{b}} \beta^{\mathbf{b}},$$

where for any multiexponent $\mathbf{b}=(b_1,\ldots,b_{n-1})$ in \mathbb{N}^{n-1} ,

$$A_{\mathbf{b}} := \frac{(-2)\sum b_i}{\prod_{i=1}^{n-1} b_i!} \, \Gamma\left(\frac{1+b_1}{2}\right) \Gamma\left(\frac{1+b_1+b_2}{2}\right) \cdots \Gamma\left(\frac{1+b_{n-2}+b_{n-1}}{2}\right) \Gamma\left(\frac{1+b_{n-1}}{2}\right).$$

Eigenvalue and domain of convergence

Suppose $V^T V$ is tridiagonal.

Suppose the \mathbf{v}_i 's are **not** all pairwise orthogonal (otherwise $\tilde{\Omega}_n(C) = \frac{1}{2^n}$).

Proposition

- $M_n(C)$ has the same eigenvalues as $V^T V$.
- The smallest eigenvalue λ_{\min} satisfies $0 < \lambda_{\min} < 1$.

When does the hypergeometric series converge / diverge?

$$T(\mathbf{x}) = \sum_{\mathbf{b} \in \mathbb{N}^{n-1}} A_{\mathbf{b}} x_1^{b_1} x_2^{b_2} \cdots x_{n-1}^{b_{n-1}}$$

Proposition

(β₁,...,β_{n-1}) lies in the domain of convergence of T(**x**).
 (^{β₁}/_{1-λ_{min}},...,^{β_{n-1}}/_{1-λ_{min}}) lies on the boundary of convergence domain.

Asymptotic truncation error of the series

Truncating the series in partial degrees (N_1, \ldots, N_{n-1}) , the error term is bounded by

$$E(N_1,\ldots,N_{n-1}) = \sum_{\mathbf{b}\in B} \left| A_{\mathbf{b}} \beta^{\mathbf{b}} \right|,$$

where $B = {\mathbf{b} \in \mathbb{N}^{n-1} \mid b_i \ge N_i \text{ for at least one } i}.$

We show the asymptotic decay of $E(N_1, \ldots, N_{n-1})$ in relation to $1 - \lambda_{\min}$.

Theorem (Fitisone–Zhou, 2023)

For any ρ such that $1 - \lambda_{\min} < \rho < 1$, there exist partial degrees N_1, \ldots, N_{n-1} such that for any integer $\ell \ge 1$, we have

$$E(N_1 + \ell, \dots, N_{n-1} + \ell) \le \rho^{\ell} E(N_1, \dots, N_{n-1}).$$

Asymptotic truncation error proof

• $E(N_1+\ell, N_2+\ell) \le S'_1 + \dots + S'_4 \le \mu^\ell (1+\epsilon)^\ell (S_1+S_2+S_3) \le \rho^\ell E(N_1, N_2)$

Thank you!

 Manuscript: A. Fitisone and Y. Zhou. Solid angle measure of polyhedral cones eprint arXiv:2304.11102 [math.MG], 2023

• SageMath code:

https://github.com/yuan-zhou/solid-angle-code