Measuring the Importance of Facets of Cyclic Group Polyhedra Using Solid Angles

Yuan Zhou

University of Kentucky, Department of Mathematics

April 24, 2023

Joint work with Allison Fitisone
Overview

1. Cyclic group relaxation of IP
2. Measure relative sizes of the facets
3. Compute solid angle measure in \mathbb{R}^n
General purpose cutting planes

Many widely used general-purpose cuts are derived from a single row of the optimal simplex tableau:

\[x_B = A_B^{-1} b + (-A_B^{-1} A_N) x_N, \quad x_B \in \mathbb{Z}_+^B, \ x_N \in \mathbb{Z}_+^N. \]

Gomory Mixed Integer Cut Example:

- **Tableau row:**
 \[x = -\left(\frac{-4}{5}\right) + \frac{2}{5} x_1 - \frac{1}{5} x_2 + \frac{11}{5} x_3, \]
 where \(x, x_1, x_2, x_3 \in \mathbb{Z}_+. \)

- **Determine the cut:**
 \[?x_1 + ?x_2 + ?x_3 \geq 1. \]

- **Cyclic group order** \(q = 5 \)
- \((-\frac{4}{5}) \equiv \frac{1}{5} \) (mod 1)
- **GMIC function** \(\pi_{\text{mic}} \)

Yuan Zhou (U. Kentucky)
General purpose cutting planes

Many widely used general-purpose cuts are derived from a single row of the optimal simplex tableau:

\[x_B = A_B^{-1}b + (-A_B^{-1}A_N)x_N, \quad x_B \in \mathbb{Z}^B, \ x_N \in \mathbb{Z}^N. \]

Gomory Mixed Integer Cut Example:

- Tableau row:
 \[x = -(\frac{-4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3, \]
 where \(x, x_1, x_2, x_3 \in \mathbb{Z}_+ \).
- Determine the cut:
 \[\frac{3}{4}x_1 + \frac{1}{4}x_2 + x_3 \geq 1. \]
General purpose cutting planes

Many widely used general-purpose cuts are derived from a single row of the optimal simplex tableau:

\[x_B = A_B^{-1}b + (-A_B^{-1}A_N)x_N, \quad x_B \in \mathbb{Z}_+^B, \; x_N \in \mathbb{Z}_+^N. \]

Gomory Mixed Integer Cut Example:

- Tableau row:
 \[x = -(\frac{-4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3, \]
 where \(x, x_1, x_2, x_3 \in \mathbb{Z}_+ \).

- Determine the cut:
 \[\frac{3}{4}x_1 + \frac{1}{4}x_2 + 1x_3 \geq 1. \]

- Cyclic group order \(q = 5 \)

- \((-\frac{4}{5}) \equiv \frac{1}{5} \) (mod 1)

- GMIC function \(\pi_{\text{mic}} \)
General purpose cutting planes

Many widely used general-purpose cuts are derived from a single row of the optimal simplex tableau:

$$x_B = A_B^{-1}b + (-A_B^{-1}A_N)x_N, \quad x_B \in \mathbb{Z}^B, \ x_N \in \mathbb{Z}^N.$$

Gomory Mixed Integer Cut Example:

- **Tableau row:**

 $$x = -\left(-\frac{4}{5}\right) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3,$$

 where $$x, x_1, x_2, x_3 \in \mathbb{Z}_+.$$

- **Determine the cut:**

 $$\frac{3}{4}x_1 + \frac{1}{4}x_2 + 1x_3 \geq 1.$$

- **Cyclic group order** $$q = 5$$
- $$(-\frac{4}{5}) \equiv \frac{1}{5} \pmod{1}$$
- **GMIC function** $$\pi_{\text{mic}}$$
Cyclic group relaxation

- Tableau row: \(x = -(\frac{4}{5}) + \frac{2}{5}x_1 - \frac{1}{5}x_2 + \frac{11}{5}x_3, \quad x, x_1, x_2, x_3 \in \mathbb{Z}_+ \)
 - Relax \(x \) from \(\mathbb{Z}_+ \) to \(\mathbb{Z} \):
 \[
 0 \equiv -\frac{1}{5} + \frac{2}{5}x_1 + \frac{4}{5}x_2 + \frac{1}{5}x_3 \pmod{1}
 \]
 - Introduce \(z \in \mathbb{Z}_+^{q-1} \):
 \[
 \frac{1}{5} \equiv \frac{1}{5}z_1 + \frac{2}{5}z_2 + \frac{3}{5}z_3 + \frac{4}{5}z_4 \pmod{1}
 \]
 - \(q = 5 \) and \(f = 1 \)

- Master cyclic group polyhedron
 \[
 P(q, f) := \text{conv} \left\{ z \in \mathbb{Z}_+^{q-1} \mid \sum_{i=1}^{q-1} \left(\frac{i}{q} \right) z_i \equiv \frac{f}{q} \pmod{1} \right\}
 \]

- We are interested in \(\pi \in \mathbb{R}_+^{q-1} \) s.t. \(\pi \cdot z \geq 1 \) for all \(z \in P(q, f) \), and in particular, the facet-defining ones.
Master cyclic group polyhedron and Group-facet polytope

- **Blocker** \(\mathcal{B}(P(q, f)) = \{ \pi \in \mathbb{R}^{q-1}_+ \mid \pi \cdot z \geq 1 \ \forall \ z \in P(q, f) \} \)

- \(P(q, f) \subseteq \mathbb{R}^{q-1}_+ \) is full-dimensional, and has \(\mathbb{R}^{q-1}_+ \) as recession cone.

 \[\implies \mathcal{B}(P(q, f)) = \Pi(q, f) + \mathbb{R}^{q-1}_+ \]

- **Group-facet polytope** \(\Pi(q, f) \) consists of \(\pi = (\pi_1, \ldots, \pi_{q-1}) \) with \(\pi_0 = 0, \pi_f = 1 \) and satisfies
 - (nonnegativity) \(\pi_i \geq 0 \) for \(i = 1, \ldots, q - 1 \)
 - (symmetry) \(\pi_i + \pi_j = 1, \ i + j \equiv f \ (\text{mod } q) \)
 - (subadditivity) \(\pi_i + \pi_j \geq \pi_k, \ i + j \equiv k \ (\text{mod } q) \)

- Non-trivial facet of \(P(q, f) \iff \) vertex of \(\Pi(q, f) \)

- Number of facets / vertices \(\pi \) grows exponentially with \(q \).

- Which \(\pi \)'s are more important?
Choose random direction $\mathbf{v} \in \mathbb{R}^{q-1}$.

Move from the origin along the ray $\lambda \mathbf{v}$ ($\lambda > 0$) until hitting $P(q, f)$.

Record which facet π^* is hit: $\pi^* = \arg \min_\pi \{ \pi \cdot \mathbf{v} \mid \pi \in \Pi(q, f) \}$.

Facets that receive more hits are deemed more important.
Relative sizes of facets — Shooting experiment

Proportion of hits received by facets of $P(7, 6)$ according to [Hunsaker, 2003] (out of 1000 shots) and [Shim, 2009] (geometry)

<table>
<thead>
<tr>
<th>Facets of $P(7, 6)$</th>
<th>Hunsaker</th>
<th>Shim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
<td>0.332</td>
<td>0.3238</td>
</tr>
<tr>
<td>9 4 6 8 3 12</td>
<td>0.253</td>
<td>0.2500</td>
</tr>
<tr>
<td>4 8 5 2 6 10</td>
<td>0.245</td>
<td>0.2500</td>
</tr>
<tr>
<td>6 5 4 3 2 8</td>
<td>0.170</td>
<td>0.1762</td>
</tr>
</tbody>
</table>

Discrepancies?
Relative sizes of facets — Shooting experiment

Proportion of hits received by facets of $P(11, 10)$ according to [Hunsaker, 2003] (out of 1000 shots) and [Shim, 2009] (out of 10000 shots)

<table>
<thead>
<tr>
<th>Facets of $P(11, 10)$</th>
<th>Hunsaker</th>
<th>Shim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>0.134</td>
<td>0.1354</td>
</tr>
<tr>
<td>4 8 12 16 9 2 6 10 14 18</td>
<td>0.140</td>
<td>0.1291</td>
</tr>
<tr>
<td>9 18 16 3 12 21 8 6 15 24</td>
<td>0.089</td>
<td>0.0935</td>
</tr>
<tr>
<td>10 9 8 7 6 5 4 3 2 12</td>
<td>0.092</td>
<td>0.0872</td>
</tr>
<tr>
<td>16 21 4 20 14 8 24 7 12 28</td>
<td>0.080</td>
<td>0.0816</td>
</tr>
<tr>
<td>25 6 20 12 15 18 10 24 5 30</td>
<td>0.083</td>
<td>0.0813</td>
</tr>
<tr>
<td>8 5 2 10 7 4 12 9 6 14</td>
<td>0.070</td>
<td>0.0579</td>
</tr>
<tr>
<td>6 12 7 2 8 14 9 4 10 16</td>
<td>0.069</td>
<td>0.0646</td>
</tr>
<tr>
<td>20 7 16 14 12 10 8 17 4 24</td>
<td>0.033</td>
<td>0.0403</td>
</tr>
<tr>
<td>15 8 12 5 9 13 6 10 3 18</td>
<td>0.030</td>
<td>0.0404</td>
</tr>
<tr>
<td>13 4 6 8 10 12 14 16 7 20</td>
<td>0.037</td>
<td>0.0402</td>
</tr>
<tr>
<td>6 12 7 13 8 3 9 4 10 16</td>
<td>0.038</td>
<td>0.0297</td>
</tr>
<tr>
<td>4 8 12 5 9 13 6 10 14 18</td>
<td>0.022</td>
<td>0.0276</td>
</tr>
<tr>
<td>9 18 5 14 12 10 19 6 15 24</td>
<td>0.026</td>
<td>0.0250</td>
</tr>
<tr>
<td>14 6 20 12 15 18 10 24 16 30</td>
<td>0.013</td>
<td>0.0187</td>
</tr>
<tr>
<td>18 14 10 6 13 20 16 12 8 26</td>
<td>0.015</td>
<td>0.0173</td>
</tr>
<tr>
<td>13 15 6 8 10 12 14 5 7 20</td>
<td>0.012</td>
<td>0.0162</td>
</tr>
<tr>
<td>9 18 16 14 12 10 8 6 15 24</td>
<td>0.017</td>
<td>0.0140</td>
</tr>
</tbody>
</table>
Proposition

Shooting experiment size of a facet $\pi \cdot \mathbf{z} \geq 1$ of $P(q, f)$

\simeq solid angle subtended by the facet of $P(q, f)$ at the origin

$=$ solid angle of the normal cone at the vertex π of $\mathcal{B}(P(q, f))$

$=$ (normalized) solid angle of the normal cone at the vertex π of $\Pi(q, f)$
Relative sizes of facets — Solid angle

<table>
<thead>
<tr>
<th>Facets of $P(7, 6)$</th>
<th>Solid angle</th>
<th>Hunsaker</th>
<th>Shim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
<td>0.3238</td>
<td>0.332</td>
<td>0.3238</td>
</tr>
<tr>
<td>9 4 6 8 3 12</td>
<td>0.2500</td>
<td>0.253</td>
<td>0.2500</td>
</tr>
<tr>
<td>4 8 5 2 6 10</td>
<td>0.2500</td>
<td>0.245</td>
<td>0.2500</td>
</tr>
<tr>
<td>6 5 4 3 2 8</td>
<td>0.1762</td>
<td>0.170</td>
<td>0.1762</td>
</tr>
</tbody>
</table>
Relative sizes of facets — Solid angle

<table>
<thead>
<tr>
<th>Facets of $P(11, 10)$</th>
<th>Solid angle</th>
<th>Hunsaker</th>
<th>Shim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>0.1331</td>
<td>0.134</td>
<td>0.1354</td>
</tr>
<tr>
<td>4 8 12 16</td>
<td>0.1272</td>
<td>0.140</td>
<td>0.1291</td>
</tr>
<tr>
<td>9 18 16 3 12 21 8 6 15 24</td>
<td>0.0908</td>
<td>0.089</td>
<td>0.0935</td>
</tr>
<tr>
<td>10 9 8 7 6 5 4 3 2 12</td>
<td>0.0895</td>
<td>0.092</td>
<td>0.0872</td>
</tr>
<tr>
<td>16 21 4 20 14 8 24 7 12 28</td>
<td>0.0831</td>
<td>0.080</td>
<td>0.0816</td>
</tr>
<tr>
<td>25 6 20 12 15 18 10 24 5 30</td>
<td>0.0809</td>
<td>0.083</td>
<td>0.0813</td>
</tr>
<tr>
<td>8 5 2 10 7 4 12 9 6 14</td>
<td>0.0627</td>
<td>0.070</td>
<td>0.0579</td>
</tr>
<tr>
<td>6 12 7 2 8 14 9 4 10 16</td>
<td>0.0605</td>
<td>0.069</td>
<td>0.0646</td>
</tr>
<tr>
<td>20 7 16 14 12 10 8 17 4 24</td>
<td>0.0411</td>
<td>0.033</td>
<td>0.0403</td>
</tr>
<tr>
<td>15 8 12 5 9 13 6 10 3 18</td>
<td>0.0400</td>
<td>0.030</td>
<td>0.0404</td>
</tr>
<tr>
<td>13 4 6 8 10 12 14 16 7 20</td>
<td>0.0370</td>
<td>0.037</td>
<td>0.0402</td>
</tr>
<tr>
<td>6 12 7 13 8 3 9 4 10 16</td>
<td>0.0353</td>
<td>0.038</td>
<td>0.0297</td>
</tr>
<tr>
<td>4 8 12 5 9 13 6 10 14 18</td>
<td>0.0286</td>
<td>0.022</td>
<td>0.0276</td>
</tr>
<tr>
<td>9 18 5 14 12 10 19 6 15 24</td>
<td>0.0236</td>
<td>0.026</td>
<td>0.0250</td>
</tr>
<tr>
<td>14 6 20 12 15 18 10 24 16 30</td>
<td>0.0190</td>
<td>0.013</td>
<td>0.0187</td>
</tr>
<tr>
<td>18 14 10 6 13 20 16 12 8 26</td>
<td>0.0175</td>
<td>0.015</td>
<td>0.0173</td>
</tr>
<tr>
<td>13 15 6 8 10 12 14 5 7 20</td>
<td>0.0158</td>
<td>0.012</td>
<td>0.0162</td>
</tr>
<tr>
<td>9 18 16 14 12 10 8 6 15 24</td>
<td>0.0130</td>
<td>0.017</td>
<td>0.0140</td>
</tr>
</tbody>
</table>
Motivations for studying solid angles

- Draw more accurate conclusions regarding the importance of facets of master cyclic group polyhedra
- Estimate the number of simplices in a triangulation of an n-cube
- Solid angle sum over rational polytope:
 - Ehrhart polynomial and lattice counting
- Approximate the relative volume in many applications:
 - Pixel purity index (PPI) scores
 - Feasibility domain of an ecological community
 -
Normalized solid angle measure

Definition (Property)

The normalized solid angle measure of a cone $C \subseteq \mathbb{R}^n$ with respect to \mathbb{R}^n is defined as

$$\tilde{\Omega}_n(C) = \frac{\text{vol}_{n-1}(C \cap S_{n-1})}{\text{vol}_{n-1}(S_{n-1})} \left(= \frac{\text{vol}_n(C \cap B_n)}{\text{vol}_n(B_n)} = \frac{\int_C f(x) \, dx}{\int_{\mathbb{R}^n} f(x) \, dx} \right),$$

where

- vol_n is the usual volume form in \mathbb{R}^n,
- S_{n-1} is the unit $(n-1)$-sphere (residing in \mathbb{R}^n) centered at 0,
- B_n is the unit ball in \mathbb{R}^n centered at 0,
- $f : \mathbb{R}^n \to \mathbb{R}$ is any function that is invariant under rotations around 0, e.g. $f = e^{-\|x\|^2}$

In the following, we consider simplicial cones $C = c(v_1, v_2, \ldots, v_n)$.
Solid angles in \mathbb{R}^2

In \mathbb{R}^2, the normalized solid (or plane) angle measure can be computed via the standard inner product.

$$\tilde{\Omega}_2(c(v_1, v_2)) = \frac{1}{2\pi} \cos^{-1} \left(\frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|} \right)$$

$$\tilde{\Omega}_2(c(v_1, v_2)) = \frac{1}{2\pi} \cos^{-1} \left(\frac{\sqrt{2}}{2} \right) = \frac{1}{8}$$
Solid angles in \mathbb{R}^3

The normalized solid angle measure is the ratio of the area of the spherical triangle formed by the unit vectors to the surface area of the unit sphere.

$$\tilde{\Omega}_3(c(v_1, v_2, v_3)) = \frac{1}{4\pi} \left(2 \tan^{-1} \left(\frac{|v_1 \cdot (v_2 \times v_3)|}{1 + v_2 \cdot v_3 + v_2 \cdot v_1 + v_1 \cdot v_3} \right) \right).$$
Solid angles in \mathbb{R}^n

$$\tilde{\Omega}_n(C) = \frac{\text{vol}_{n-1}(C \cap S_{n-1})}{\text{vol}_{n-1}(S_{n-1})} = \frac{\text{vol}_n(C \cap B_n)}{\text{vol}_n(B_n)} = \frac{\int_C f(x)dx}{\int_{\mathbb{R}^n} f(x)dx}$$

- Computing $\tilde{\Omega}_n(c(v_1, \ldots, v_n))$ amounts to computing the volume of a “spherically faced simplex”
- Closed formula not known
- Probabilistic methods — require large samples
- Numerical integration methods — high in computational cost
- We consider the multivariate power series method independently discovered by [Aomoto, 1977] and [Ribando, 2006]
Theorem (Ribando, 2006)

Let $C \subseteq \mathbb{R}^n$ be the simplicial cone generated by the unit vectors v_1, \ldots, v_n. Let $V \in \mathbb{R}^{n \times n}$ be the matrix whose i^{th} column is v_i. Let $\alpha_{ij} = v_i \cdot v_j$ for $1 \leq i, j \leq n$. Define

$$
T_\alpha = \frac{|\det V|}{(4\pi)^{n/2}} \sum_{\mathbf{a} \in \mathbb{N}^{\binom{n}{2}}} \left[\frac{(-2)^{\sum_{i<j} a_{ij}}}{\prod_{i<j} a_{ij}!} \prod_{i=1}^{n} \Gamma \left(\frac{1 + \sum_{m \neq i} a_{im}}{2} \right) \right] \alpha^\mathbf{a}.
$$

Then, T_α converges absolutely to $\tilde{\Omega}_n(C)$, if and only if its associated matrix $M_n(C)$ is positive definite.

$$
M_n(C) =
\begin{bmatrix}
1 & -|v_1 \cdot v_2| & \cdots & -|v_1 \cdot v_n| \\
-|v_2 \cdot v_1| & 1 & \cdots & -|v_2 \cdot v_n| \\
\vdots & \vdots & \ddots & \vdots \\
-|v_n \cdot v_1| & -|v_n \cdot v_2| & \cdots & 1 \\
\end{bmatrix}
$$
Ribando’s hypergeometric series

\[
T_\alpha = \frac{|\det V|}{(4\pi)^{n/2}} \sum_{\mathbf{a} \in \mathbb{N}^{(n/2)}} \left[\frac{(-2)^{\sum_{i<j} a_{ij}}}{\prod_{i<j} a_{ij}!} \prod_{i=1}^{n} \Gamma \left(\frac{1 + \sum_{m \neq i} a_{im}}{2} \right) \right] \alpha^\mathbf{a}.
\]

- \(\alpha = (\alpha_{12}, \alpha_{13}, \ldots , \alpha_{n-1,n}) \) is a multivariable in \(\binom{n}{2} \) variables;
- \(\mathbf{a} = (a_{12}, a_{13}, \ldots , a_{n-1,n}) \) is a multiexponent;
- \(\alpha^\mathbf{a} := \prod_{i<j} \alpha_{ij} \);
- \(\sum_{m \neq i} a_{im} = \sum_{j<i} a_{ji} + \sum_{j>i} a_{ij} \);
- \(\Gamma \) is the Euler-Gamma function.
- \(T_\alpha \) is a hypergeometric series as the ratio of the neighboring coefficients is a rational function of the index.
Issue with T_α: convergence condition not met

Let $v_1 = [1, 1, 0]$, $v_2 = [1, 0, 1]$, $v_3 = [1, 0, 0]$, and $C = c(v_1, v_2, v_3)$.

- Scale to unit vectors;
- $V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$

$\implies V^tV = \begin{bmatrix} 1 & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ \frac{1}{2} & 1 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \end{bmatrix}$

- $M_3(C) = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} & 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \end{bmatrix}$ is NOT positive-definite
Remedy: Cone decomposition

Let $\mathbf{v}_1 = [1, 1, 0]$, $\mathbf{v}_2 = [1, 0, 1]$, $\mathbf{v}_3 = [1, 0, 0]$, $\mathbf{v}_4 = [0, -1, 1]$.

\[
\begin{align*}
[\mathcal{C}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)] &= [\mathcal{C}(\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4)] - [\mathcal{C}(\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)] + [\mathcal{C}(\mathbf{v}_3, \mathbf{v}_4)] \\
\tilde{\Omega}_3 (\mathcal{C}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)) &= \tilde{\Omega}_3 (\mathcal{C}(\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4)) - \tilde{\Omega}_3 (\mathcal{C}(\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)) + 0
\end{align*}
\]

where $[\mathcal{C}]$ denotes the indicator function of the cone \mathcal{C}, and $\mathcal{C}(\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4), \mathcal{C}(\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ have positive-definite associated matrices.
Theorem (Fitisone–Zhou, 2023)

Given linearly independent unit vectors $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n \in \mathbb{R}^n$, the cone $c(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n)$ can be decomposed into a finite family of cones, each of which is either:

- a cone of affine dimension less than n, or
- a full-dimensional cone $c(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n)$ such that
 - $\|\mathbf{v}_i\| = 1$ for $i = 1, 2, \ldots, n$
 - $\mathbf{v}_n = \mathbf{w}_n$
 - $\langle \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{n-1} \rangle = \langle \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_{n-1} \rangle$
 - $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for all $1 \leq i, j \leq n$ such that $j \neq i, j \neq i \pm 1$.

Remarks:

- A cone in 1 has solid angle 0.
- Properties b and c ensure induction works.
- Property d ensures V^TV is tridiagonal, so $M_n(c)$ is positive-definite.
Decomposition Theorem

Proof idea. Use induction on dimension. Apply Brion–Vergne decomposition with respect to a line carefully chosen, to the dual cone. Then take the dual again.

![Diagram showing decomposition process]

Corollary (Fitisone–Zhou, 2023)

The decomposition theorem gives explicitly $N \leq (n - 1)!$ cones C_i whose $\tilde{\Omega}_n(C_i)$ can be computed via the power series formula T_α and the signs $s_i \in \{\pm 1\}$, such that

$$\tilde{\Omega}_n(C) = \sum_{i=1}^{N} s_i \tilde{\Omega}_n(C_i).$$

We can make the cones C_i to have tridiagonal associated matrices.
Issue with T_α: too many terms $a \in \mathbb{N}^{\binom{n}{2}}$

$$T_\alpha = \frac{|\det V|}{(4\pi)^{\frac{n}{2}}} \sum_{a \in \mathbb{N}^{\binom{n}{2}}} \left[\frac{(-2)^{\sum_{i<j} a_{ij}}}{\prod_{i<j} a_{ij}!} \prod_{i=1}^{n} \Gamma \left(\frac{1 + \sum_{m \neq i} a_{im}}{2} \right) \right] \alpha^{\mathbf{a}}.$$

Recall property ⚫ from the theorem: tridiagonal $V^T V$!

$$V^T V = \begin{bmatrix}
1 & \beta_1 & 0 & \ldots & 0 \\
\beta_1 & 1 & \beta_2 & \ldots & \vdots \\
0 & \ldots & \beta_{n-2} & 1 & \beta_{n-1} \\
\vdots & \ldots & 0 & \beta_{n-1} & 1 \\
0 & \ldots & \ldots & \ldots & 1
\end{bmatrix}$$

Remedy: series T_α in $\binom{n}{2}$ variables simplifies to series in $(n - 1)$ variables

$$T_\beta = \frac{|\det V|}{(4\pi)^{\frac{n}{2}}} \sum_{\mathbf{b} \in \mathbb{N}^{n-1}} A_{\mathbf{b}} \beta^{\mathbf{b}},$$

where for any multiexponent $\mathbf{b} = (b_1, \ldots, b_{n-1})$ in \mathbb{N}^{n-1},

$$A_{\mathbf{b}} := \frac{(-2)^{\sum b_i}}{\prod_{i=1}^{n-1} b_i!} \Gamma \left(\frac{1 + b_1}{2} \right) \Gamma \left(\frac{1 + b_1 + b_2}{2} \right) \cdots \Gamma \left(\frac{1 + b_{n-2} + b_{n-1}}{2} \right) \Gamma \left(\frac{1 + b_{n-1}}{2} \right).$$
Eigenvalue and domain of convergence

Suppose $V^T V$ is tridiagonal.
Suppose the v_i's are not all pairwise orthogonal (otherwise $\tilde{\Omega}_n(C) = \frac{1}{2^n}$).

Proposition

- $M_n(C)$ has the same eigenvalues as $V^T V$.
- The smallest eigenvalue λ_{min} satisfies $0 < \lambda_{\text{min}} < 1$.

When does the hypergeometric series converge / diverge?

$$ T(x) = \sum_{b \in \mathbb{N}^{n-1}} A_b \, x_1^{b_1} x_2^{b_2} \cdots x_{n-1}^{b_{n-1}} $$

Proposition

- $(\beta_1, \ldots, \beta_{n-1})$ lies in the domain of convergence of $T(x)$.
- $\left(\frac{\beta_1}{1-\lambda_{\text{min}}}, \ldots, \frac{\beta_{n-1}}{1-\lambda_{\text{min}}} \right)$ lies on the boundary of convergence domain.
Asymptotic truncation error of the series

Truncating the series in partial degrees \((N_1, \ldots, N_{n-1})\),
the error term is bounded by

\[
E(N_1, \ldots, N_{n-1}) = \sum_{b \in B} \left| A_b \beta^b \right|,
\]

where \(B = \{ b \in \mathbb{N}^{n-1} \mid b_i \geq N_i \text{ for at least one } i \}\).

We show the asymptotic decay of \(E(N_1, \ldots, N_{n-1})\) in relation to \(1 - \lambda_{\text{min}}\).

Theorem (Fitisone–Zhou, 2023)

For any \(\rho\) such that \(1 - \lambda_{\text{min}} < \rho < 1\), there exist partial degrees \(N_1, \ldots, N_{n-1}\) such that for any integer \(\ell \geq 1\), we have

\[
E(N_1 + \ell, \ldots, N_{n-1} + \ell) \leq \rho^\ell E(N_1, \ldots, N_{n-1}).
\]
Asymptotic truncation error proof

Proof idea (for case $n = 3$).

- Since $\left(\frac{\beta_1}{1-\lambda_{\min}}, \frac{\beta_2}{1-\lambda_{\min}}\right)$ lies on the boundary of convergence domain, there exist $x_1, x_2 \in \mathbb{R}^+$ such that $\frac{|\beta_i|}{1-\lambda_{\min}} = \frac{1}{|\Psi_i(x_1, x_2)|}$ for $i = 1, 2$.

- $\Psi_i(b) = \lim_{t \to \infty} \frac{A_{tb} + e_i}{A_{tb}}$ rational and homogeneous of degree zero.

- $\frac{|A_{b_1+1, b_2} \beta_1^{b_1+1} \beta_2^{b_2}|}{|A_{b_1, b_2} \beta_1^{b_1} \beta_2^{b_2}|}, \frac{|A_{b_1+1, b_2+1} \beta_1^{b_1} \beta_2^{b_2+1}|}{|A_{b_1, b_2} \beta_1^{b_1} \beta_2^{b_2}|} \leq (1 - \lambda_{\min})(1 + \epsilon) =: \mu$

- $E(N_1 + \ell, N_2 + \ell) \leq S_1' + \cdots + S_4' \leq \mu^\ell (1 + \epsilon)^\ell (S_1 + S_2 + S_3) \leq \rho^\ell E(N_1, N_2)$
Thank you!

- **Manuscript:**
 A. Fitisone and Y. Zhou.
 Solid angle measure of polyhedral cones
 eprint arXiv:2304.11102 [math.MG], 2023

- **SageMath code:**
 https://github.com/yuan-zhou/solid-angle-code