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MISDP

We consider solving Mixed-Integer Semidefinite Programs (MISDPs):

inf b>y

s.t.
m∑

k=1

Ak yk − A0 � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m],

yi ∈ Z ∀ i ∈ I,

. symmetric matrices Ak ∈ Rn×n for k ∈ [m]0 := {0, ... , m}, b ∈ Rm

. bounds: `i ∈ R ∪ {−∞}, ui ∈ R ∪ {∞} for all i ∈ [m] := {1, ... , m}.

. integer variables: I ⊆ [m]

Linear constraints can be expressed as SDP blocks with diagonal entries only.
Thus, Mixed Integer Programs (MIPs) are a special case.
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Goals of This Talk

The goals of this talk are:

. Explain how MISDPs can be solved.

. Present several improvement techniques:
I Dual Fixing
I Presolving
I Conflict Analysis
I Symmetry Handling

. Evaluate performance.

. Discuss similarities and differences to mixed-integer programming.

Following the title of the workshop, this talk will focus on computational aspects.
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Applications

MISDPs have many applications:

. Quadratic TSP [Renata Sotirov→ earlier ICERM workshop]

. Cardinality Constrained Least Squares

. Minimum k -Partitioning

. Computing restricted isometry constants in compressed sensing

. Optimal transmission switching problem in AC power flow

. Robustification of physical parameters in gas networks

. Subset selection for eliminating multicollinearity

. . . .
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Application Example:
Robust Truss Topology Design

. n nodes V ⊂ Rd

. nf free nodes Vf ⊂ V

. m possible trusses E

. forces f ∈ Rdf for df = d · nf

. Choose cross-sectional areas for
trusses minimizing volume
while creating a “stable” truss.

. Stability is measured by the
compliance 1

2 f T u with node
displacements u.

ground structure 3x3

optimal structure

. Use uncertainty set {f ∈ Rdf : f = Qg : ‖g‖2 ≤ 1} instead of single force f .

. Restrict cross-sectional areas x ∈ Rm
+ to a discrete set A.
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Application Example:
Robust Truss Topology Design

Elliptic Robust Discrete TTD [Ben-Tal/Nemirovski 1997; Mars 2013]

inf
∑
e∈E

`e

∑
a∈A

a xa
e

s.t.
(

2CmaxI QT

Q S(x)

)
� 0,∑

a∈A
xa

e ≤ 1 ∀e ∈ E ,

xa
e ∈ {0, 1} ∀e ∈ E , a ∈ A,

with truss lengths `e, upper bound Cmax on compliance and stiffness matrix

S(x) =
∑
e∈E

∑
a∈A

Se a xa
e

for positive semidefinite, rank-one single truss stiffness matrices Se.
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Solving Methods for MISDPs

1. SDP-based branch-and-bound: Solve SDP-relaxations
(special case of NLP-based B&B [Dakin 1965])

2. LP-based branch-and-bound: Cutting plane method based on LP-relaxations
[Sherali and Fraticelli 2002]; [Krishnan and Mitchell 2006]

3. Outer approximation: Solve MIP-relaxations
[Duran and Grossmann 1986].

Implementations:

1. YALMIP [Löfberg 2004] and SCIP-SDP

2. YALMIP and SCIP-SDP

3. Pajarito [Coey, Lubin, and Vielma 2020]
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SDP-based Branch-and-Bound

. Relax integrality.

. Branch on integral y -variables.

. Need to solve a continuous SDP in each branch-and-bound node.

. Relaxations can be solved by problem-specific approaches (e.g. conic bundle
or low-rank methods) or interior-point solvers.

. Convergence assumptions of SDP-solvers should be satisfied.

. Usually much slower than solving LPs and no warmstart.
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LP-based Approach

For LP-based approach and outer approximation:

. Usual approach for convex MINLP: gradient cuts

gj (x) +∇gj (x)>(x − x) ≤ 0.

. But function of smallest eigenvalue is not differentiable everywhere.

. Instead use characterization X � 0 ⇔ u>X u ≥ 0 for all u ∈ Rn.

. If Z :=
∑m

k=1 Ak y∗k − A0 6� 0, compute eigenvector v to smallest eigenvalue.
Then

v>Z v =
m∑

k=1

v>Ak v yk − v>A0v ≥ 0

is valid and cuts off y∗ → Eigenvector cut.
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Cutting Planes: MISOCP vs. MISDP

. Cutting planes are often used by solvers for mixed-integer second-order cone
problems (MISOCPs).

. Approximation for SOCPs possible with polynomial number of cuts
[Ben-Tal/Nemirovski 2001].

. Approximation for SDPs needs exponential number of cuts:

Theorem ([Braun, Fiorini, Pokutta, Steurer 2015])

There are SDPs of dimension n × n for which any polyhedral approximation is of
size 2Ω(n).
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SCIP-SDP

Our solver: SCIP-SDP
. Based on SCIP (www.scipopt.org)
. Supports both SDP-based B&B and LP-based branch-and-cut.
. Introduced by [Mars 2013], continued by [Gally 2019] and Matter [2022], . . .
. Apache 2.0 license.
. Current version: 4.1: wwwopt.mathematik.tu-darmstadt.de/scipsdp
. Approximately 50 000 lines of C-code
. SDP-solvers: interfaces to Mosek, DSDP, SDPA
. Matlab-Interface: github.com/scipopt/MatlabSCIPInterface

Computations:
. Use SCIP developer version (8.0.3).
. Use Mosek 9.2.40 for solving SDP-relaxations.
. Linux cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs.
. Nodes and times are shifted geometric means.
. Time limit 1 h.
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Comparison of SDP and LP-based Approach

Testset: 185 instances from different sources.

type # solved # nodes time

SDP 167 1066.1 132.2
LP 109 419.2 336.5

all optimal (106):
SDP 605.0 93.2
LP 507.0 63.2

Conclusions:
. LP-based approach solves significantly less instances.
. On the instances solved by both, it is faster by 32 % and uses less nodes.
. Open question: Predict which method is faster and explain why.
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Dual Fixing

. Extension of reduced-cost fixing to general MINLPs by [Ryoo and Sahinidis
1996] and primal MISDPs by [Helmberg 2000].

. Our approach uses conic duality and only requires feasibility.

Theorem [Gally, P., Ulbrich 2018]

. (X , W , V ): Primal feasible solution, where W , V are primal variables
corresponding to variable bounds `, u in the dual,

. f : Corresponding primal objective value,

. L: Lower bound on the optimal objective value of the MISDP.
Then for every optimal solution y? of the MISDP

y?j ≤ `j +
f − L
Wjj

if `j > −∞ and y?j ≥ uj −
f − L

Vjj
if uj <∞.

. If f − L < Wjj for binary yj , then y?j = 0, if f − L < Vjj , then y?j = 1.

. 9% reduction of B&B-nodes, 23% speedup [Gally et al. 2018].
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Presolving

. Motivated by presolving for mixed-integer (linear) programs (MIPs):
[Bixby and Rothberg 2007]: slow-down of 10.8 when turning off presolving.

. Previous work for MISDPs: [Mars 2013], [Gally 2019], [Gally et al. 2017].

. We introduced several new methods and generalizations from MIP methods.

. Speed-up of presolving depends very strongly on instances.
One reason: Instances are usually “hand-crafted”.
 Cannot expect similar speed-ups as for MIPs.

. We also apply most methods in each node (node presolving).

. Standard presolving is applied as well: linear constraints, aggregations, . . .

. Concentrate here on one particular method: bound tightening.
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Bound Tightening I

For an index k ∈ [m], define

Pk := {i ∈ [m] \ {k} : Ai � 0}, Nk := {i ∈ [m] \ {k} : Ai � 0},

as well as

µ
k

:= inf
{
µ : Ak µ +

∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj `j − A0 � 0
}

,

µk := sup
{
µ : Ak µ +

∑
i∈Pk

Ai ui +
∑
j∈Nk

Aj `j − A0 � 0
}

or ±∞ if ±∞ occurs in bounds (`, u).
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Bound Tightening II

Lemma (Tighten Bounds (TB))

Let all matrices be (positive or negative) semidefinite. Then, µ
k
≤ yk ≤ µk is valid

for all k ∈ [m]. We can round bounds for integral variables.

Proof.
Suppose that yk < µ

k
or yk > µk . Then there exists x ∈ Rn with

0 > x>
(

Ak yk +
∑
i∈Pk

Ai ui +
∑
i∈Nk

Ai `i − A0
)

x

= x>Ak x yk +
∑
i∈Pk

x>Aix︸ ︷︷ ︸
≥0

ui +
∑
i∈Nk

x>Aix︸ ︷︷ ︸
≤0

`i − x>A0x

≥ x>Ak x yk +
∑
i∈Pk

x>Aix yi +
∑
i∈Nk

x>Aix yi − x>A0x .  
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One-Variable SDPs

. For computing bound tightenings, need to solve one-variable SDPs.

inf {µ : µA− B � 0, ` ≤ µ ≤ u}.

for symmetric A, B ∈ Rn×n.
. Can easily see: µ 7→ λmin(µA− B) is concave.
. Let v̂ be a unit eigenvector for λmin(µ̂A− B) for µ̂ ∈ R. Then v̂>Av̂ is a

supergradient, i.e.,

λmin(µA− B) ≤ λmin(µ̂A− B) + (µ− µ̂) v̂>Av̂

for all µ ∈ R.

. Goal: Want increase µ from ` until
λmin(µA− B) = 0.

. Yields semismooth Newton algorithm . . .
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One-Variable SDPs

vk = eigenvector for λk := λmin(Aµk − B)
µk+1 = µk − λk

(vk )>Avk

Handle easy cases, e.g., infeasible if
λmin(A u − B) < 0, supergradient positive.

. Always converges.

. Converges Q-superlinearly to a zero µ? of f (µ) = λmin(µA− B), given that
∂f (µ?) is nonsingular and the starting point lies near µ? [Qi and Sun, 1993].

. Very fast in practice; bottleneck: eigenvector computation . . .
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Condensed Computational Results

Testset with 185 instances, results from [Matter and P. 2023]:

Setting # solved # nodes time

nopresol 168 1405.3 180.23
bound tightening 167 1297.6 152.43
MIX 167 1085.2 139.52

. Bound tightening applied in every node produces a speed-up of about 7 %.

. MIX includes bound tightening and several other methods.
It produces a speed-up of about 22 %.

. Some techniques do not do anything on some instances.

. The methods are effective if they can be applied and induce a small time
overhead.
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Conflict Analysis I

. The original idea is to learn from infeasible nodes in a branch-and-bound-tree.

. Idea transferred from SAT-solving to MIPs by [Achterberg 2007].

. More generally, can be seen as a way to learn cuts from solutions of the duals
→ similar to “dual ray/solution analysis” [Witzig et al. 2017, Witzig 2021]
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Conflict Analysis II

Consider

inf {b>y : A(y ) :=
m∑

k=1

Ak yk − A0 � 0, Dy ≥ d , ` ≤ y ≤ u}

and X̂ � 0, ẑ, r̂ `, r̂u ≥ 0. Aggregation yields:

〈A(y ), X̂〉 + ẑ>Dy + (r̂ `)>y − (r̂u)>y ≥ ẑ>d + (r̂ `)>`− (r̂u)>u.

Idea: Do not add this (redundant) inequality, but perform bound propagation, taking
integrality conditions into account.

Could also use CMIR on generated inequality as alternative to generalization of
Gomory cuts [Sotirov and de Meijer 2022]. This seems not to be effective.
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Conflict Analysis III

The dual can provide (X̂ , ẑ, r̂ `, r̂u):

sup 〈A0, X〉 + z>d + `>r ` − u>ru

s.t. 〈Aj , X〉 + (D>z)j + r `j − ru
j = bj ∀ j ∈ [m],

X � 0, z, r `, ru ≥ 0.

Similarly for a primal ray satisfying:

〈Aj , X〉 + (D>z)j + r `j − ru
j = 0 ∀ j ∈ [m],

〈A0, X〉 + d>z + `>r ` − u>ru > 0,

X � 0, z, r `, ru ≥ 0.

Lemma
Let (X̂ , ẑ, r̂ `, r̂u) be a primal ray. Then the aggregated inequality is infeasible with
respect to the local bounds ` and u.
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Conflict Analysis – Computations

Generate a conflict constraint for each feasible or infeasible node. Store them as
constraints and perform bound propagation.

type # solved # nodes time

default 167 1066.1 132.2
conflicts 168 989.6 122.2

all optimal (167):
default 788.7 94.2
conflicts 726.3 86.4

. Using conflicts provides a speed-up and node-reduction of about 8 %.

. On average 12792.0 conflict constraints are generated per instance.

. Average number of conflict constraints per node: 1.25.
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Symmetry Detection

Goal: apply known symmetry handling methods.

For a permutation σ of [n]:

σ(A)ij = Aσ−1(i),σ−1(j) ∀i , j ∈ [n].

Definition
A permutation π ∈ Sm of variables is a formulation symmetry if there exists a
permutation σ ∈ Sn such that

1. π(I) = I, π(`) = `, π(u) = u, and π(b) = b
(π leaves integer variables, variable bounds, and the objective coefficients
invariant),

2. σ(A0) = A0 and, for all i ∈ [m], σ(Ai ) = Aπ
−1(i).

Such symmetries can be detected by using graph automorphism algorithms.
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Symmetry: Computed Symmetries

instance symmetry group

0+-115305C_MISDPld000010 S2
0+-115305C_MISDPrd000010 S2
band60605D_MISDPld000010 S2 × S2 × S2 × S2 × S2 × S2 × S10 × S3 × S4
band60605D_MISDPrd000010 S2 × S2 × S2 × S2 × S2 × S2 × S10 × S3 × S4
band70704A_MISDPld000010 S2 × S2 × S2 × S3 × S3
band70704A_MISDPrd000010 S2 × S2 × S2 × S3 × S3
clique_60_k10_6_6, clique_60_k15_4_4,
clique_60_k20_3_3, clique_60_k4_15_15,
clique_60_k5_12_12, clique_60_k6_10_10,
clique_60_k7_8_9, clique_60_k8_7_8,
clique_60_k9_6_7, clique_70_k3_23_24

S2

diw_34 S2 × S2 × S2 × S2 ×D4 × S4 × S4
diw_37 S2 × S4 × S3 × S4
diw_38 S2 × S2 × S2 × S3
diw_43 S3
diw_44 S3

Sk = full symmetric group on k elements; Dk = dihedral group.
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Symmetry: Computational Results

Results from [Hojny and P. 2023]:

all (184) all optimal (168) only symmetric (21)

time (s) symtime (s) # gens time (s) #nodes time (s)

without 130.6 – – 95.0 778.3 45.07
with 125.3 0.44 99 90.8 760.6 29.84

. Speed-up of about 4 % for all instances;

. Speed-up of about 34 % for the 21 instances that contain symmetry.

. Number of generators is quite small.

. Note that we do not exploit symmetries in the solutions of the SDPs (yet).
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Conclusions and Outlook

Take away messages:
. Several methods help to improve performance.
. Most of the methods are effective only on certain instances, but do not incur a

significant overhead.
. Solving LP-relaxations is only helpful for certain instance types.
. Solving SDPs is still one bottleneck, but often yields strong bounds.
. Generic MISDP-solver SCIP-SDP is available.

Future work:
. More methods are likely to be helpful – probably motivated by particular

structures.
. Investigate SOCP relaxations for propagation.
. We are always interested in new instances.

Thank you for your attention!

ICERM, April 24, 2023 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 34



Conclusions and Outlook

Take away messages:
. Several methods help to improve performance.
. Most of the methods are effective only on certain instances, but do not incur a

significant overhead.
. Solving LP-relaxations is only helpful for certain instance types.
. Solving SDPs is still one bottleneck, but often yields strong bounds.
. Generic MISDP-solver SCIP-SDP is available.

Future work:
. More methods are likely to be helpful – probably motivated by particular

structures.
. Investigate SOCP relaxations for propagation.
. We are always interested in new instances.

Thank you for your attention!

ICERM, April 24, 2023 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 34



References

• T. Gally.
Computational Mixed-Integer Semidefinite Programming.
PhD thesis, TU Darmstadt, 2019.

• T. Gally, M. E. Pfetsch, and S. Ulbrich.
A framework for solving mixed-integer semidefinite programs.
Optimization Methods and Software, 33(3):594–632, 2018.

• C. Hojny and M. E. Pfetsch.
Handling Symmetries in Mixed-Integer Semidefinite Programs.
Technical report, Optimization Online, CPAIOR 2023, 2023.

• F. Matter and M. E. Pfetsch.
Presolving for mixed-integer semidefinite optimization.
INFORMS Journal on Optimization, 2023, to appear.

ICERM, April 24, 2023 | Solving Mixed-Integer Semidefinite Programs | Marc Pfetsch | 35

https://optimization-online.org/2022/12/handling-symmetries-in-mixed-integer-semidefinite-programs/

	Applications
	Solution Methods
	Dual Fixing
	Presolving MISDPs
	Bound Tightening
	Computational Results

	Conflict Analysis
	Symmetry
	Conclusions

