Unit and distinct distances in typical norms

Lisa Sauermann
Massachusetts Institute of Technology

March 29, 2023

Joint work with Noga Alon and Matija Bucić.

Unit distances

Erdős' Unit Distance Problem from 1946 is one of the most famous problems in discrete geometry.

Unit distances

Erdős' Unit Distance Problem from 1946 is one of the most famous problems in discrete geometry.

Erdős' Unit Distance Problem (1946)

For n points in the plane, what is the maximum possible number of pairs of points with distance equal to 1 ?

Unit distances

Erdős' Unit Distance Problem from 1946 is one of the most famous problems in discrete geometry.

Erdős' Unit Distance Problem (1946)

For n points in the plane, what is the maximum possible number of pairs of points with distance equal to 1 ?

Clearly, the number of such pairs is at most $\binom{n}{2}$.

Unit distances

Erdős' Unit Distance Problem from 1946 is one of the most famous problems in discrete geometry.

Erdős' Unit Distance Problem (1946)

For n points in the plane, what is the maximum possible number of pairs of points with distance equal to 1 ?

Clearly, the number of such pairs is at most $\binom{n}{2}$.
The problem of estimating the answer to this problem for large n is still widely open (despite of a lot of attention for 70 years).

Denoting the maximum possible number of pairs of points with unit distance as $U_{\|\cdot\|_{2}}(n)$, the best known bounds for large n are

$$
n^{1+\Omega(1 / \log \log n)} \leq U_{\|\cdot\|_{2}}(n) \leq O\left(n^{4 / 3}\right)
$$

Instead the usual Euclidean norm, one can consider any norm $\|\cdot\|$ on \mathbb{R}^{2} and ask the same question. This was first suggested by Ulam and later also studied by Erdős (1982).

Instead the usual Euclidean norm, one can consider any norm $\|$.$\| on \mathbb{R}^{2}$ and ask the same question. This was first suggested by Ulam and later also studied by Erdős (1982).

Erdős' Unit Distance Problem for general norms

Given a norm $\|$.$\| on \mathbb{R}^{2}$, what is the maximum possible number of pairs of points at unit distance according to $\|$.$\| among a set of n$ points in \mathbb{R}^{2} ?

Instead the usual Euclidean norm, one can consider any norm $\|$.$\| on \mathbb{R}^{2}$ and ask the same question. This was first suggested by Ulam and later also studied by Erdős (1982).

Erdős' Unit Distance Problem for general norms

Given a norm $\|$.$\| on \mathbb{R}^{2}$, what is the maximum possible number of pairs of points at unit distance according to $\|$.$\| among a set of n$ points in \mathbb{R}^{2} ?

Let us denote this maximum possible number of unit distances among n points as $U_{\|\mid\|}(n)$. Again, we have $U_{\|\cdot\|}(n) \leq\binom{ n}{2}$.

Instead the usual Euclidean norm, one can consider any norm $\|$.$\| on \mathbb{R}^{2}$ and ask the same question. This was first suggested by Ulam and later also studied by Erdős (1982).

Erdős' Unit Distance Problem for general norms

Given a norm $\|$.$\| on \mathbb{R}^{2}$, what is the maximum possible number of pairs of points at unit distance according to $\|$.$\| among a set of n$ points in \mathbb{R}^{2} ?

Let us denote this maximum possible number of unit distances among n points as $U_{\|\cdot\|}(n)$. Again, we have $U_{\|\cdot\|}(n) \leq\binom{ n}{2}$.
The norm $\|$.$\| can be characterized by its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ (this is a compact convex body, symmetric around the origin).

Instead the usual Euclidean norm, one can consider any norm $\|$.$\| on \mathbb{R}^{2}$ and ask the same question. This was first suggested by Ulam and later also studied by Erdős (1982).

Erdős' Unit Distance Problem for general norms

Given a norm $\|$.$\| on \mathbb{R}^{2}$, what is the maximum possible number of pairs of points at unit distance according to $\|$.$\| among a set of n$ points in \mathbb{R}^{2} ?

Let us denote this maximum possible number of unit distances among n points as $U_{\|\cdot\|}(n)$. Again, we have $U_{\|\cdot\|}(n) \leq\binom{ n}{2}$.
The norm $\|$.$\| can be characterized by its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ (this is a compact convex body, symmetric around the origin).
If the boundary of the unit ball of $\|$.$\| contains a straight line segment,$ then it is not hard to show that $U_{\|\cdot\|}(n) \geq \Omega\left(n^{2}\right)$.

Instead the usual Euclidean norm, one can consider any norm $\|$.$\| on \mathbb{R}^{2}$ and ask the same question. This was first suggested by Ulam and later also studied by Erdős (1982).

Erdős' Unit Distance Problem for general norms

Given a norm $\|$.$\| on \mathbb{R}^{2}$, what is the maximum possible number of pairs of points at unit distance according to $\|$.$\| among a set of n$ points in \mathbb{R}^{2} ?

Let us denote this maximum possible number of unit distances among n points as $U_{\|\cdot\|}(n)$. Again, we have $U_{\|\cdot\|}(n) \leq\binom{ n}{2}$.
The norm $\|$.$\| can be characterized by its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ (this is a compact convex body, symmetric around the origin).
If the boundary of the unit ball of $\|$.$\| contains a straight line segment,$ then it is not hard to show that $U_{\|\cdot\|}(n) \geq \Omega\left(n^{2}\right)$.
On the other hand, if the norm $\|$.$\| is strictly convex (i.e. the unit ball of$ $\|$.$\| is strictly convex), then like in the Euclidean case one has$

$$
U_{\|\cdot\|}(n) \leq O\left(n^{4 / 3}\right)
$$

Definition

$U_{\||.| |}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

If the norm $\|$.$\| is strictly convex (i.e. if its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ is strictly convex), then

$$
U_{\|\cdot\|}(n) \leq O\left(n^{4 / 3}\right)
$$

Definition

$U_{\||.| |}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

If the norm $\|$.$\| is strictly convex (i.e. if its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ is strictly convex), then

$$
U_{\|\cdot\|}(n) \leq O\left(n^{4 / 3}\right)
$$

Valtr (2005) constructed a strictly convex norm $\|$.$\| on \mathbb{R}^{2}$ such that $U_{\|\cdot\|}(n) \geq \Omega\left(n^{4 / 3}\right)$.

Definition

$U_{\|\mid .\|}(n)$ is the maximum possible number of unit distances according to \|.\| among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

If the norm $\|$.$\| is strictly convex (i.e. if its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ is strictly convex), then

$$
U_{\|\cdot\|}(n) \leq O\left(n^{4 / 3}\right)
$$

Valtr (2005) constructed a strictly convex norm $\|$.$\| on \mathbb{R}^{2}$ such that $U_{\|\cdot\|}(n) \geq \Omega\left(n^{4 / 3}\right)$.
But how does $U_{\||| |}(n)$ grow for a typical norm $\|$.$\| on \mathbb{R}^{2}$?

Definition

$U_{\|\cdot\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

If the norm $\|$.$\| is strictly convex (i.e. if its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ is strictly convex), then

$$
U_{\|\cdot\|}(n) \leq O\left(n^{4 / 3}\right)
$$

Valtr (2005) constructed a strictly convex norm $\|$.$\| on \mathbb{R}^{2}$ such that $U_{\|\cdot\|}(n) \geq \Omega\left(n^{4 / 3}\right)$.
But how does $U_{\|.\|}(n)$ grow for a typical norm $\|$.$\| on \mathbb{R}^{2}$?
For every norm $\|$.$\| on \mathbb{R}^{2}$, one has the lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n .
$$

Definition

$U_{\|\cdot\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

If the norm $\|$.$\| is strictly convex (i.e. if its unit ball \left\{x \in \mathbb{R}^{2} \mid\|x\| \leq 1\right\}$ is strictly convex), then

$$
U_{\|\cdot\|}(n) \leq O\left(n^{4 / 3}\right)
$$

Valtr (2005) constructed a strictly convex norm $\|$.$\| on \mathbb{R}^{2}$ such that $U_{\|\cdot\|}(n) \geq \Omega\left(n^{4 / 3}\right)$.
But how does $U_{\|\mid\|}(n)$ grow for a typical norm $\|$.$\| on \mathbb{R}^{2}$? For every norm $\|$.$\| on \mathbb{R}^{2}$, one has the lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n .
$$

This can be shown by considering affine-linear images of hypercubes in \mathbb{R}^{2}, where every edge is mapped to a unit vector according to $\|$.$\| .$

Definition

$U_{\|.\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

For every norm $\|$.$\| on \mathbb{R}^{2}$, we have the lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n .
$$

Definition

$U_{\|\cdot\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

For every norm $\|$.$\| on \mathbb{R}^{2}$, we have the lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n .
$$

Matoušek showed the following upper bound for most norms $\|$.$\| on \mathbb{R}^{2}$:

Theorem (Matoušek, 2011)

For most norms $\|$.$\| on \mathbb{R}^{2}$, we have

$$
U_{\|\cdot\|}(n) \leq O\left(n \cdot \log _{2} n \cdot \log _{2} \log _{2} n\right)
$$

Definition

$U_{\|.\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

For every norm $\|$.$\| on \mathbb{R}^{2}$, we have the lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n .
$$

Matoušek showed the following upper bound for most norms $\|$.$\| on \mathbb{R}^{2}$:

Theorem (Matoušek, 2011)

For most norms $\|$.$\| on \mathbb{R}^{2}$, we have

$$
U_{\|\cdot\|}(n) \leq O\left(n \cdot \log _{2} n \cdot \log _{2} \log _{2} n\right) .
$$

Here, "most" is meant in a Baire Categoric sense (i.e. it means for all norms outside some meagre set).

Definition

$U_{\|.\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{2} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{2}).

For every norm $\|$.$\| on \mathbb{R}^{2}$, we have the lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n
$$

Matoušek showed the following upper bound for most norms $\|$.$\| on \mathbb{R}^{2}$:

Theorem (Matoušek, 2011)

For most norms $\|$.$\| on \mathbb{R}^{2}$, we have

$$
U_{\|\cdot\|}(n) \leq O\left(n \cdot \log _{2} n \cdot \log _{2} \log _{2} n\right)
$$

Here, "most" is meant in a Baire Categoric sense (i.e. it means for all norms outside some meagre set). There is still a $\log _{2} \log _{2} n$ factor gap:

Problem

How big is $U_{\|.\|}(n)$ for most norms $\|$.$\| on \mathbb{R}^{2}$ (for large n)?

Definition

$U_{\|\mid\|}(n)$ is the maximum possible number of unit distances according to \|.\| among a set of n points in \mathbb{R}^{2} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{2}).

Problem

How big is $U_{\|.\|}(n)$ for most norms $\|$.$\| on \mathbb{R}^{2}$ (for large n)?

Definition

$U_{\|\mid\|}(n)$ is the maximum possible number of unit distances according to \|.\| among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

Problem

How big is $U_{\|.\|}(n)$ for most norms $\|$.$\| on \mathbb{R}^{2}$ (for large n)?
We improve Matoušek's upper bound for $U_{\|.\|}(n)$ for most norms $\|$.$\| on \mathbb{R}^{2}$ by removing the $\log _{2} \log _{2} n$ factor.

Theorem (Alon, Bucić, S., 2023+)

For most norms $\|$.$\| on \mathbb{R}^{2}$, we have

$$
U_{\|\cdot\|}(n) \leq n \cdot \log _{2} n .
$$

Definition

$U_{\|\mid\|}(n)$ is the maximum possible number of unit distances according to \|.\| among a set of n points in \mathbb{R}^{2} (where $\|$.$\| is a given norm on \mathbb{R}^{2}$).

Problem

How big is $U_{\|.\|}(n)$ for most norms $\|$.$\| on \mathbb{R}^{2}$ (for large n)?
We improve Matoušek's upper bound for $U_{\|.\|}(n)$ for most norms $\|$.$\| on \mathbb{R}^{2}$ by removing the $\log _{2} \log _{2} n$ factor.

Theorem (Alon, Bucić, S., 2023+)

For most norms $\|$.$\| on \mathbb{R}^{2}$, we have

$$
U_{\|\cdot\|}(n) \leq n \cdot \log _{2} n .
$$

This shows that the general lower bound

$$
U_{\|\cdot\|}(n) \geq(1 / 2-o(1)) \cdot n \cdot \log _{2} n
$$

is tight up to constant factors for most norms on \mathbb{R}^{2}.

One can also study this problem higher dimension, i.e. in \mathbb{R}^{d} for any $d \geq 2$.

Definition

$U_{\||.|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

One can also study this problem higher dimension, i.e. in \mathbb{R}^{d} for any $d \geq 2$.

Definition

$U_{\||.|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

One still has

$$
(1 / 2-o(1)) \cdot n \cdot \log _{2} n \leq U_{\|\cdot\|}(n) \leq\binom{ n}{2}
$$

for every norm $\|\cdot\|$ on \mathbb{R}^{d}.

One can also study this problem higher dimension, i.e. in \mathbb{R}^{d} for any $d \geq 2$.

Definition

$U_{\||.| |}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

One still has

$$
(1 / 2-o(1)) \cdot n \cdot \log _{2} n \leq U_{\|\cdot\|}(n) \leq\binom{ n}{2}
$$

for every norm $\|$.$\| on \mathbb{R}^{d}$.
For the Euclidean norm $\|\cdot\|_{2}$ on \mathbb{R}^{d} with $d \geq 4$, one has $U_{\|\cdot\|_{2}}(n) \geq \Omega\left(n^{2}\right)$.

One can also study this problem higher dimension, i.e. in \mathbb{R}^{d} for any $d \geq 2$.

Definition

$U_{\||.| |}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

One still has

$$
(1 / 2-o(1)) \cdot n \cdot \log _{2} n \leq U_{\|\cdot\|}(n) \leq\binom{ n}{2}
$$

for every norm $\|$.$\| on \mathbb{R}^{d}$.
For the Euclidean norm $\|.\|_{2}$ on \mathbb{R}^{d} with $d \geq 4$, one has $U_{\|\cdot\|_{2}}(n) \geq \Omega\left(n^{2}\right)$.
Brass, Moser and Pach conjectured that for every $d \geq 3$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}, the function $U_{\|\cdot\|}(n)$ grows faster than $n \cdot \log _{2} n$.

One can also study this problem higher dimension, i.e. in \mathbb{R}^{d} for any $d \geq 2$.

Definition

$U_{\|\mid\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

One still has

$$
(1 / 2-o(1)) \cdot n \cdot \log _{2} n \leq U_{\|\cdot\|}(n) \leq\binom{ n}{2}
$$

for every norm $\|$.$\| on \mathbb{R}^{d}$.
For the Euclidean norm $\|.\|_{2}$ on \mathbb{R}^{d} with $d \geq 4$, one has $U_{\|\cdot\|_{2}}(n) \geq \Omega\left(n^{2}\right)$.
Brass, Moser and Pach conjectured that for every $d \geq 3$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}, the function $U_{\|\cdot\|}(n)$ grows faster than $n \cdot \log _{2} n$.
They also asked whether for $d \geq 4$ and every norm $\|$.$\| on \mathbb{R}^{d}$, one even has $U_{\|\cdot\|}(n) \geq \Omega\left(n^{2}\right)$.

One can also study this problem higher dimension, i.e. in \mathbb{R}^{d} for any $d \geq 2$.

Definition

$U_{\|\cdot\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

One still has

$$
(1 / 2-o(1)) \cdot n \cdot \log _{2} n \leq U_{\|\cdot\|}(n) \leq\binom{ n}{2}
$$

for every norm $\|$.$\| on \mathbb{R}^{d}$.
For the Euclidean norm $\|.\|_{2}$ on \mathbb{R}^{d} with $d \geq 4$, one has $U_{\|\cdot\|_{2}}(n) \geq \Omega\left(n^{2}\right)$.
Brass, Moser and Pach conjectured that for every $d \geq 3$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}, the function $U_{\|\cdot\|}(n)$ grows faster than $n \cdot \log _{2} n$.
They also asked whether for $d \geq 4$ and every norm $\|$.$\| on \mathbb{R}^{d}$, one even has $U_{\|\cdot\|}(n) \geq \Omega\left(n^{2}\right)$.
We disprove this conjecture in every dimension $d \geq 3$ (which also answers the second question).

Definition

$U_{\|\mid\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

We show that for most norms $\|$.$\| on \mathbb{R}^{d}$, the function $U_{\|.\|}(n)$ is only on the order of $n \cdot \log _{2} n$.

Definition

$U_{\||.| |}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

We show that for most norms $\|$.$\| on \mathbb{R}^{d}$, the function $U_{\|.\|}(n)$ is only on the order of $n \cdot \log _{2} n$.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Definition

$U_{\|\mid\|}(n)$ is the maximum possible number of unit distances according to $\|$. among a set of n points in \mathbb{R}^{d} (where $\|\cdot\|$ is a given norm on \mathbb{R}^{d}).

We show that for most norms $\|$.$\| on \mathbb{R}^{d}$, the function $U_{\|\cdot\|}(n)$ is only on the order of $n \cdot \log _{2} n$.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

We also improve the lower bound $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) \cdot n \cdot \log _{2} n$ for $d \geq 3$:

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for every norm $\|$.$\| on \mathbb{R}^{d}$, we have (for large n)

$$
U_{\|.\|}(n) \geq \frac{d-1-o(1)}{2} \cdot n \cdot \log _{2} n .
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for every norm $\|\cdot\|$ on \mathbb{R}^{d}, we have (for large n)

$$
U_{\|\cdot\|}(n) \geq \frac{d-1-o(1)}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for every norm $\|\cdot\|$ on \mathbb{R}^{d}, we have (for large n)

$$
U_{\|\cdot\|}(n) \geq \frac{d-1-o(1)}{2} \cdot n \cdot \log _{2} n
$$

For any fixed $d \geq 2$, this estimates $U_{\|\mid .\|}(n)$ up to constant factors for for most norms $\|$.$\| on \mathbb{R}^{d}$.

The constant-factor gap becomes smaller as for larger d (and actually converges to 1 as d grows).

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for every norm $\|\cdot\|$ on \mathbb{R}^{d}, we have (for large n)

$$
U_{\|\cdot\|}(n) \geq \frac{d-1-o(1)}{2} \cdot n \cdot \log _{2} n
$$

For any fixed $d \geq 2$, this estimates $U_{\||.|}(n)$ up to constant factors for for most norms $\|$.$\| on \mathbb{R}^{d}$.

The constant-factor gap becomes smaller as for larger d (and actually converges to 1 as d grows).

Unfortunately, the first theorem does not give explicit examples of norms $\|$.$\| on \mathbb{R}^{d}$ satisfying the upper bound for $U_{\|\mid\|}(n)$.

Distinct distances

Erdős' Distinct Distance Problem (also from 1946) is another famous problems in discrete geometry.

Erdős' Distinct Distance Problem (1946)

For n points in \mathbb{R}^{2}, what is the minimum possible number of distinct distances occurring among the pairs of points? What about for n points in \mathbb{R}^{d} ?

Distinct distances

Erdős' Distinct Distance Problem (also from 1946) is another famous problems in discrete geometry.

Erdős' Distinct Distance Problem (1946)

For n points in \mathbb{R}^{2}, what is the minimum possible number of distinct distances occurring among the pairs of points? What about for n points in \mathbb{R}^{d} ?

For n points in the plane \mathbb{R}^{2}, the best known bounds for this problem are an upper bound of $O(n / \sqrt{\log n})$ (Erdős, 1946) and a lower bound of $\Omega(n / \log n)(G u t h, K a t z, 2015)$.

In dimension $d \geq 3$, even the correct exponent of n is a wide-open problem.

Distinct distances

Erdős' Distinct Distance Problem (also from 1946) is another famous problems in discrete geometry.

Erdős' Distinct Distance Problem (1946)

For n points in \mathbb{R}^{2}, what is the minimum possible number of distinct distances occurring among the pairs of points? What about for n points in \mathbb{R}^{d} ?

For n points in the plane \mathbb{R}^{2}, the best known bounds for this problem are an upper bound of $O(n / \sqrt{\log n})$ (Erdős, 1946) and a lower bound of $\Omega(n / \log n)(G u t h, K a t z, 2015)$.

In dimension $d \geq 3$, even the correct exponent of n is a wide-open problem.

Problem

What happens for other norms $\|\cdot\|$ on \mathbb{R}^{d} ?

Definition

$D_{\|\cdot\|}(n)$ is the minimum possible number of distinct distances according to $\|\cdot\|$ among a set of n points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

Definition

$D_{\|\cdot\|}(n)$ is the minimum possible number of distinct distances according to $\|\cdot\|$ among a set of n points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

It is easy to see that $D_{\|\cdot\|}(n) \leq n-1$ for every $d \geq 1$ and every norm $\|$. on \mathbb{R}^{d}.

Definition

$D_{\|\cdot\|}(n)$ is the minimum possible number of distinct distances according to $\|$.$\| among a set of n$ points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

It is easy to see that $D_{\|\cdot\|}(n) \leq n-1$ for every $d \geq 1$ and every norm $\|$. on \mathbb{R}^{d}.

Brass conjectured that this can be improved to $D_{\|\cdot\|}(n) \leq o(n)$ for every $d \geq 2$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}.

Definition

$D_{\||| |}(n)$ is the minimum possible number of distinct distances according to $\|\cdot\|$ among a set of n points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

It is easy to see that $D_{\|\cdot\|}(n) \leq n-1$ for every $d \geq 1$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}.

Brass conjectured that this can be improved to $D_{\|\cdot\|}(n) \leq o(n)$ for every $d \geq 2$ and every norm $\|$.$\| on \mathbb{R}^{d}$.

We disprove this conjecture in a strong form, showing that for most norms $\|$.$\| on \mathbb{R}^{d}$, the function $D_{\|.\|}(n)$ is not only linear in n but in fact asymptotically equals n.

Definition

$D_{\|.\|}(n)$ is the minimum possible number of distinct distances according to $\|\cdot\|$ among a set of n points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

It is easy to see that $D_{\|\cdot\|}(n) \leq n-1$ for every $d \geq 1$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}.

Brass conjectured that this can be improved to $D_{\|.\|}(n) \leq o(n)$ for every $d \geq 2$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}.

We disprove this conjecture in a strong form, showing that for most norms $\|$.$\| on \mathbb{R}^{d}$, the function $D_{\|.\|}(n)$ is not only linear in n but in fact asymptotically equals n.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have (for large n)

$$
D_{\|\cdot\|}(n) \geq(1-o(1)) \cdot n
$$

Definition

$D_{\|.\|}(n)$ is the minimum possible number of distinct distances according to $\|\cdot\|$ among a set of n points in \mathbb{R}^{d} (where $\|$.$\| is a given norm on \mathbb{R}^{d}$).

It is easy to see that $D_{\|\cdot\|}(n) \leq n-1$ for every $d \geq 1$ and every norm $\|$. on \mathbb{R}^{d}.

Brass conjectured that this can be improved to $D_{\|.\|}(n) \leq o(n)$ for every $d \geq 2$ and every norm $\|\cdot\|$ on \mathbb{R}^{d}.

We disprove this conjecture in a strong form, showing that for most norms $\|\cdot\|$ on \mathbb{R}^{d}, the function $D_{\|\cdot\|}(n)$ is not only linear in n but in fact asymptotically equals n.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have (for large n)

$$
D_{\|\cdot\|}(n) \geq(1-o(1)) \cdot n .
$$

Again, we unfortunately do not get explicit examples of such norms.

What does "most norms" mean?

A norm $\|$.$\| on \mathbb{R}^{d}$ is characterized by its unit ball

$$
B_{\|\cdot\|}=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq 1\right\},
$$

which is a compact convex body in \mathbb{R}^{d}, symmetric around the origin (with the origin in its interior).

What does "most norms" mean?

A norm $\|$.$\| on \mathbb{R}^{d}$ is characterized by its unit ball

$$
B_{\|\cdot\|}=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq 1\right\}
$$

which is a compact convex body in \mathbb{R}^{d}, symmetric around the origin (with the origin in its interior).

There is a one-to-one correspondence between norms $\|$.$\| on \mathbb{R}^{d}$ and such convex bodies.

What does "most norms" mean?

A norm $\|$.$\| on \mathbb{R}^{d}$ is characterized by its unit ball

$$
B_{\|\cdot\|}=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq 1\right\}
$$

which is a compact convex body in \mathbb{R}^{d}, symmetric around the origin (with the origin in its interior).

There is a one-to-one correspondence between norms $\|$.$\| on \mathbb{R}^{d}$ and such convex bodies.

The set of such convex bodies can be endowed with the Hausdorff metric, where the distance of B and B^{\prime} is given by

$$
d_{H}\left(B, B^{\prime}\right)=\max \left\{\sup _{b \in B^{\prime}} \inf _{b^{\prime} \in B^{\prime}}\left\|b-b^{\prime}\right\|_{2}, \sup _{b^{\prime} \in B^{\prime}} \inf _{b \in B}\left\|b-b^{\prime}\right\|_{2}\right\}
$$

(i.e. it is the maximum distance of a point in B from the set B^{\prime} or of a point in B^{\prime} from the set B).

What does "most norms" mean?

A norm $\|$.$\| on \mathbb{R}^{d}$ is characterized by its unit ball

$$
B_{\|\cdot\|}=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq 1\right\}
$$

which is a compact convex body in \mathbb{R}^{d}, symmetric around the origin (with the origin in its interior).
There is a one-to-one correspondence between norms $\|$.$\| on \mathbb{R}^{d}$ and such convex bodies.

The set of such convex bodies can be endowed with the Hausdorff metric, where the distance of B and B^{\prime} is given by

$$
d_{H}\left(B, B^{\prime}\right)=\max \left\{\sup _{b \in B^{\prime}} \inf _{b^{\prime} \in B^{\prime}}\left\|b-b^{\prime}\right\|_{2}, \sup _{b^{\prime} \in B^{\prime}} \inf _{b \in B}\left\|b-b^{\prime}\right\|_{2}\right\}
$$

(i.e. it is the maximum distance of a point in B from the set B^{\prime} or of a point in B^{\prime} from the set B).
This gives a metric (and hence a topology) on the set of all norms on \mathbb{R}^{d}

We have a natural topology on the set of all norms $\|$.$\| on \mathbb{R}^{d}$, given by the Hausdorff metric on the corresponding unit balls of the norms.

We have a natural topology on the set of all norms $\|$.$\| on \mathbb{R}^{d}$, given by the Hausdorff metric on the corresponding unit balls of the norms.

A subset of a topological space is nowhere dense if it is not dense in any non-empty open subset. A countable union of nowhere dense subsets is called a meagre set.

We have a natural topology on the set of all norms $\|$.$\| on \mathbb{R}^{d}$, given by the Hausdorff metric on the corresponding unit balls of the norms.

A subset of a topological space is nowhere dense if it is not dense in any non-empty open subset. A countable union of nowhere dense subsets is called a meagre set.

The set of all norms $\|\cdot\|$ on \mathbb{R}^{d} with this topology forms a so-called Baire space (meaning that the complement of every meagre set is dense).

We have a natural topology on the set of all norms $\|$.$\| on \mathbb{R}^{d}$, given by the Hausdorff metric on the corresponding unit balls of the norms.

A subset of a topological space is nowhere dense if it is not dense in any non-empty open subset. A countable union of nowhere dense subsets is called a meagre set.
The set of all norms $\|\cdot\|$ on \mathbb{R}^{d} with this topology forms a so-called Baire space (meaning that the complement of every meagre set is dense).
With "most norms on $\mathbb{R}^{d "}$ we mean "all norms outside some meagre set".

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|\cdot\|$ on \mathbb{R}^{d}, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Proof Approach

The proofs of our theorems use arguments from combinatorics, polyhedral and discrete geometry, topology and algebra.

Proof Approach

The proofs of our theorems use arguments from combinatorics, polyhedral and discrete geometry, topology and algebra.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|\cdot\|$ on \mathbb{R}^{d}, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|\cdot\|$ on \mathbb{R}^{d}, we have (for large n)

$$
D_{\|\cdot\|}(n) \geq(1-o(1)) \cdot n
$$

Proof Approach

The proofs of our theorems use arguments from combinatorics, polyhedral and discrete geometry, topology and algebra.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|\cdot\|$ on \mathbb{R}^{d}, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have (for large n)

$$
D_{\|\cdot\|}(n) \geq(1-o(1)) \cdot n
$$

The overall approach for the proof is very similar for both of the theorems above, so we focus on the first theorem (whose proof is a bit simpler).

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

We need to show that for most norms $\|$.$\| on \mathbb{R}^{d}$, among a set of n points in \mathbb{R}^{d} there can be at most $(d / 2) \cdot n \cdot \log _{2} n$ unit distances.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

We need to show that for most norms $\|$.$\| on \mathbb{R}^{d}$, among a set of n points in \mathbb{R}^{d} there can be at most $(d / 2) \cdot n \cdot \log _{2} n$ unit distances.
Consider a set $S \subseteq \mathbb{R}^{d}$ of n points with more than $(d / 2) \cdot n \cdot \log _{2} n$ unit distances according to $\|$.$\| .$

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

We need to show that for most norms $\|$.$\| on \mathbb{R}^{d}$, among a set of n points in \mathbb{R}^{d} there can be at most $(d / 2) \cdot n \cdot \log _{2} n$ unit distances.
Consider a set $S \subseteq \mathbb{R}^{d}$ of n points with more than $(d / 2) \cdot n \cdot \log _{2} n$ unit distances according to $\|$.$\| .$

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be the vectors with $\left\|u_{1}\right\|=\cdots=\left\|u_{k}\right\|=1$ occurring as unit distance vectors among pairs of points in S.

Theorem (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, we have

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \cdot \log _{2} n
$$

We need to show that for most norms $\|$.$\| on \mathbb{R}^{d}$, among a set of n points in \mathbb{R}^{d} there can be at most $(d / 2) \cdot n \cdot \log _{2} n$ unit distances.
Consider a set $S \subseteq \mathbb{R}^{d}$ of n points with more than $(d / 2) \cdot n \cdot \log _{2} n$ unit distances according to $\|$.$\| .$

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be the vectors with $\left\|u_{1}\right\|=\cdots=\left\|u_{k}\right\|=1$ occurring as unit distance vectors among pairs of points in S.
We show that there must be some subset of the vectors u_{1}, \ldots, u_{k} with many linear dependencies.

Consider a set $S \subseteq \mathbb{R}^{d}$ of n points with more than $(d / 2) \cdot n \cdot \log _{2} n$ unit distances according to the norm $\|$.$\| .$

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be the vectors with $\left\|u_{1}\right\|=\cdots=\left\|u_{k}\right\|=1$ occurring as unit distance vectors among pairs of points in S.

Consider a set $S \subseteq \mathbb{R}^{d}$ of n points with more than $(d / 2) \cdot n \cdot \log _{2} n$ unit distances according to the norm $\|$.$\| .$

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be the vectors with $\left\|u_{1}\right\|=\cdots=\left\|u_{k}\right\|=1$ occurring as unit distance vectors among pairs of points in S.

We show that there is a subset $I \subseteq\{1, \ldots, k\}$ such that we have $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{i} \mid i \in I\right\}$ for at least $d \cdot|I|+1$ indices $j \in\{1, \ldots, k\}$.

Consider a set $S \subseteq \mathbb{R}^{d}$ of n points with more than $(d / 2) \cdot n \cdot \log _{2} n$ unit distances according to the norm $\|$.$\| .$

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be the vectors with $\left\|u_{1}\right\|=\cdots=\left\|u_{k}\right\|=1$ occurring as unit distance vectors among pairs of points in S.

We show that there is a subset $I \subseteq\{1, \ldots, k\}$ such that we have $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{i} \mid i \in I\right\}$ for at least $d \cdot|I|+1$ indices $j \in\{1, \ldots, k\}$.
This is a special property of the norm $\|$.$\| , and we show that most norms$ cannot have this property (the norms with this property are a meagre set).

Lemma (Alon, Bucić, S., 2023+)

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be non-zero vectors and let $S \subseteq \mathbb{R}^{d}$ be a set of n points such that there are more than $(d / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.

Lemma (Alon, Bucić, S., 2023+)

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be non-zero vectors and let $S \subseteq \mathbb{R}^{d}$ be a set of n points such that there are more than $(d / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.
Then there is a subset $I \subseteq\{1, \ldots, k\}$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{i} \mid i \in I\right\}$ for at least $d \cdot|I|+1$ indices $j \in\{1, \ldots, k\}$

Lemma (Alon, Bucić, S., 2023+)

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be non-zero vectors and let $S \subseteq \mathbb{R}^{d}$ be a set of n points such that there are more than $(d / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.
Then there is a subset $I \subseteq\{1, \ldots, k\}$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{i} \mid i \in I\right\}$ for at least $d \cdot|I|+1$ indices $j \in\{1, \ldots, k\}$

Proof sketch:

Suppose that there is no such subset $I \subseteq\{1, \ldots, k\}$.

Lemma (Alon, Bucić, S., 2023+)

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be non-zero vectors and let $S \subseteq \mathbb{R}^{d}$ be a set of n points such that there are more than $(d / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.
Then there is a subset $I \subseteq\{1, \ldots, k\}$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{i} \mid i \in I\right\}$ for at least $d \cdot|I|+1$ indices $j \in\{1, \ldots, k\}$

Proof sketch:

Suppose that there is no such subset $I \subseteq\{1, \ldots, k\}$. Then by Edmonds' Matroid Partitioning Theorem we can partition $\left\{u_{1}, \ldots, u_{k}\right\}$ into d linearly independent subsets over \mathbb{Q}.

Lemma (Alon, Bucić, S., 2023+)

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be non-zero vectors and let $S \subseteq \mathbb{R}^{d}$ be a set of n points such that there are more than $(d / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.
Then there is a subset $I \subseteq\{1, \ldots, k\}$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{i} \mid i \in I\right\}$ for at least $d \cdot|I|+1$ indices $j \in\{1, \ldots, k\}$

Proof sketch:

Suppose that there is no such subset $I \subseteq\{1, \ldots, k\}$. Then by Edmonds' Matroid Partitioning Theorem we can partition $\left\{u_{1}, \ldots, u_{k}\right\}$ into d linearly independent subsets over \mathbb{Q}.

Now consider one of these linearly independent subsets accounting for more than $(1 / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.

We now obtain a contradiction to the following fact.

Fact

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be vectors that are linearly independent over \mathbb{Q}. Then for any subset $S \subseteq \mathbb{R}^{d}$ of n points there can be at most $(1 / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.

We now obtain a contradiction to the following fact.

Fact

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be vectors that are linearly independent over \mathbb{Q}. Then for any subset $S \subseteq \mathbb{R}^{d}$ of n points there can be at most $(1 / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.

Proof Sketch:

The graph with vertex set S and edges for $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$ can be viewed as a subgraph of the k-dimensional grid graph \mathbb{Z}^{k}.

We now obtain a contradiction to the following fact.

Fact

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be vectors that are linearly independent over \mathbb{Q}. Then for any subset $S \subseteq \mathbb{R}^{d}$ of n points there can be at most $(1 / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.

Proof Sketch:

The graph with vertex set S and edges for $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$ can be viewed as a subgraph of the k-dimensional grid graph \mathbb{Z}^{k}.

By the edge-isoperimetric inequality of Bollobás-Leader such a subgraph can have at most (1/2) $n \cdot \log _{2} n$ edges.

We now obtain a contradiction to the following fact.

Fact

Let $u_{1}, \ldots, u_{k} \in \mathbb{R}^{d}$ be vectors that are linearly independent over \mathbb{Q}. Then for any subset $S \subseteq \mathbb{R}^{d}$ of n points there can be at most $(1 / 2) \cdot n \cdot \log _{2} n$ pairs $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$.

Proof Sketch:

The graph with vertex set S and edges for $\{x, y\} \subseteq S$ with $x-y \in\left\{ \pm u_{1}, \ldots, \pm u_{k}\right\}$ can be viewed as a subgraph of the k-dimensional grid graph \mathbb{Z}^{k}.

By the edge-isoperimetric inequality of Bollobás-Leader such a subgraph can have at most $(1 / 2) \cdot n \cdot \log _{2} n$ edges.

Alternatively, one can also just prove this fact with an inductive argument.

How do the polyhedra appear?

It remains to prove the following:

Lemma (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, there do not exist distinct vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ for any $\ell \geq 1$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{1}, \ldots, u_{\ell}\right\}$ for $j=1, \ldots, d \ell+1$.

How do the polyhedra appear?

It remains to prove the following:

Lemma (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|$.$\| on \mathbb{R}^{d}$, there do not exist distinct vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ for any $\ell \geq 1$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{1}, \ldots, u_{\ell}\right\}$ for $j=1, \ldots, d \ell+1$.

We need to show that the set of norms $\|$.$\| for which such vectors$ $u_{1}, \ldots, u_{d \ell+1}$ exist, is a meagre set (i.e. it is a countable union of nowhere dense subsets).

How do the polyhedra appear?

It remains to prove the following:

Lemma (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|\cdot\|$ on \mathbb{R}^{d}, there do not exist distinct vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ for any $\ell \geq 1$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{1}, \ldots, u_{\ell}\right\}$ for $j=1, \ldots, d \ell+1$.

We need to show that the set of norms $\|$.$\| for which such vectors$ $u_{1}, \ldots, u_{d \ell+1}$ exist, is a meagre set (i.e. it is a countable union of nowhere dense subsets).

For any $\ell \geq 1$, any rational $\eta>0$, and any coefficients $a_{j i} \in \mathbb{Q}$, we consider the set of norms $\|$.$\| on \mathbb{R}^{d}$ for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η.

How do the polyhedra appear?

It remains to prove the following:

Lemma (Alon, Bucić, S., 2023+)

For any fixed $d \geq 2$, for most norms $\|\cdot\|$ on \mathbb{R}^{d}, there do not exist distinct vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ for any $\ell \geq 1$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ such that $u_{j} \in \operatorname{span}_{\mathbb{Q}}\left\{u_{1}, \ldots, u_{\ell}\right\}$ for $j=1, \ldots, d \ell+1$.

We need to show that the set of norms $\|$.$\| for which such vectors$ $u_{1}, \ldots, u_{d \ell+1}$ exist, is a meagre set (i.e. it is a countable union of nowhere dense subsets).

For any $\ell \geq 1$, any rational $\eta>0$, and any coefficients $a_{j i} \in \mathbb{Q}$, we consider the set of norms $\|$.$\| on \mathbb{R}^{d}$ for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η.
We want to show that this set of norms is always nowhere dense.

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|$.$\| on \mathbb{R}^{d}$ for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|$.$\| on \mathbb{R}^{d}$ for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.
Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and consider an open ball around B_{0} in the Hausdorff metric.

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|$.$\| on \mathbb{R}^{d}$ for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.
Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and consider an open ball around B_{0} in the Hausdorff metric.

We can approximate B_{0} by a polytope B_{1} with small facets.

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|$.$\| on \mathbb{R}^{d}$ for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and consider an open ball around B_{0} in the Hausdorff metric.

We can approximate B_{0} by a polytope B_{1} with small facets. Let B be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|\cdot\|$ on \mathbb{R}^{d} for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.
Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and consider an open ball around B_{0} in the Hausdorff metric.

We can approximate B_{0} by a polytope B_{1} with small facets. Let B be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

Now, suppose $\|$.$\| is a norm for which there are vectors u_{1}, \ldots, u_{d \ell+1}$ as above such that the unit ball of $\|$.$\| is very close to B$ (in Hausdorff metric).

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|\cdot\|$ on \mathbb{R}^{d} for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and consider an open ball around B_{0} in the Hausdorff metric.

We can approximate B_{0} by a polytope B_{1} with small facets. Let B be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

Now, suppose $\|$.$\| is a norm for which there are vectors u_{1}, \ldots, u_{d \ell+1}$ as above such that the unit ball of $\|$.$\| is very close to B$ (in Hausdorff metric).

We find points $u_{1}^{\prime}, \ldots, u_{d \ell+1}^{\prime}$ on the boundary of B close to $u_{1}, \ldots, u_{d \ell+1}$. Then $u_{1}^{\prime}, \ldots, u_{d \ell+1}^{\prime}$ lie on distinct facets of B (since the facets are small).

We are given $\ell \geq 1$, a rational $\eta>0$, and coefficients $a_{j i} \in \mathbb{Q}$.
We consider the set of norms $\|\cdot\|$ on \mathbb{R}^{d} for which there are vectors $u_{1}, \ldots, u_{d \ell+1} \in \mathbb{R}^{d}$ with $\left\|u_{1}\right\|=\cdots=\left\|u_{d \ell+1}\right\|=1$ and $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, such that the angles between the lines $\operatorname{span}\left(u_{j}\right)$ are all at least η. Our goal is showing that this set is nowhere dense.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and consider an open ball around B_{0} in the Hausdorff metric.

We can approximate B_{0} by a polytope B_{1} with small facets. Let B be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

Now, suppose $\|$.$\| is a norm for which there are vectors u_{1}, \ldots, u_{d \ell+1}$ as above such that the unit ball of $\|$.$\| is very close to B$ (in Hausdorff metric). We find points $u_{1}^{\prime}, \ldots, u_{d \ell+1}^{\prime}$ on the boundary of B close to $u_{1}, \ldots, u_{d \ell+1}$. Then $u_{1}^{\prime}, \ldots, u_{d \ell+1}^{\prime}$ lie on distinct facets of B (since the facets are small).

Since $u_{j}=\sum_{i=1}^{\ell} a_{j i} u_{i}$ for $j=1, \ldots, d \ell+1$, we get a linear equation which is very close to satisfied for the constant terms for the constraints of B.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and take an open ball around B_{0} in the Hausdorff metric. We approximated B_{0} by a polytope B_{1}. We then defined B to be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and take an open ball around B_{0} in the Hausdorff metric. We approximated B_{0} by a polytope B_{1}. We then defined B to be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

We considered a certain set of norms $\|$.$\| on \mathbb{R}^{d}$ with the goal of showing that it is nowhere dense.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and take an open ball around B_{0} in the Hausdorff metric. We approximated B_{0} by a polytope B_{1}. We then defined B to be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

We considered a certain set of norms $\|$.$\| on \mathbb{R}^{d}$ with the goal of showing that it is nowhere dense.

If $\|$.$\| is a norm in this set, and the unit ball of \|$.$\| is very close to B$ (in Hausdorff metric), there must be points $u_{1}^{\prime}, \ldots, u_{d \ell+1}^{\prime}$ on distinct facets of B such that a certain linear equation is very close to being satisfied for the constant terms for the constraints of B.

Let B_{0} be a unit ball of some norm on \mathbb{R}^{d}, and take an open ball around B_{0} in the Hausdorff metric. We approximated B_{0} by a polytope B_{1}. We then defined B to be a polytope obtained from B_{1} by shifting the facets slightly in a suitable way.

We considered a certain set of norms $\|$.$\| on \mathbb{R}^{d}$ with the goal of showing that it is nowhere dense.

If $\|$.$\| is a norm in this set, and the unit ball of \|$.$\| is very close to B$ (in Hausdorff metric), there must be points $u_{1}^{\prime}, \ldots, u_{d \ell+1}^{\prime}$ on distinct facets of B such that a certain linear equation is very close to being satisfied for the constant terms for the constraints of B.

But we can choose the polytope B so that this cannot happen.

Thank you very much for your attention!

