Understanding graphs locally

Annie Raymond
(different parts joint with Greg Blekherman, James Saunderson, Mohit Singh, Rekha Thomas and Fan Wei)

University of Massachusetts, Amherst

March 30, 2023

Large graphs are everywhere!

Large graphs are everywhere!

Large graphs are everywhere!

Facebook graph

Google Maps

Google Maps

Alfred Pasieka/Science Photo Library/Getty Images

Problem

How can we understand such large graphs?

Problem

How can we understand such large graphs?

Idea: understand the graph locally

Problem

How can we understand such large graphs?

Idea: understand the graph locally

This raises immediately two questions:

Problem

How can we understand such large graphs?

Idea: understand the graph locally

This raises immediately two questions:
(1) How do global and local properties relate?

Problem

How can we understand such large graphs?

Idea: understand the graph locally

This raises immediately two questions:
(1) How do global and local properties relate?
(2) What is even possible locally?

Problem

How can we understand such large graphs?

Idea: understand the graph locally

This raises immediately two questions:
(1) How do global and local properties relate?
(2) What is even possible locally? \rightarrow graph profiles!

How shall we count today?

The number of homomorphisms from a graph H to a graph G is hom $(H ; G)=$ number of maps from $V(H)$ to $V(G)$ that yield a graph homomorphism, i.e., that map every edge of H to an edge of G.

How shall we count today?

The number of homomorphisms from a graph H to a graph G is hom $(H ; G)=$ number of maps from $V(H)$ to $V(G)$ that yield a graph homomorphism, i.e., that map every edge of H to an edge of G.

The homomorphism density $t(H ; G):=\frac{h o m(H ; G)}{|V(G)|^{V(H) \mid}}$ is the probability that a random map from $V(H)$ to $V(G)$ yields a graph homomorphism.

How shall we count today?

The number of homomorphisms from a graph H to a graph G is hom $(H ; G)=$ number of maps from $V(H)$ to $V(G)$ that yield a graph homomorphism, i.e., that map every edge of H to an edge of G.

The homomorphism density $t(H ; G):=\frac{\text { hom }(H ; G)}{|V(G)|^{V(H) \mid}}$ is the probability that a random map from $V(H)$ to $V(G)$ yields a graph homomorphism.

Example

Let $G=!$

How shall we count today?

The number of homomorphisms from a graph H to a graph G is hom $(H ; G)=$ number of maps from $V(H)$ to $V(G)$ that yield a graph homomorphism, i.e., that map every edge of H to an edge of G.

The homomorphism density $t(H ; G):=\frac{\text { hom }(H ; G)}{|V(G)|^{V(H) \mid}}$ is the probability that a random map from $V(H)$ to $V(G)$ yields a graph homomorphism.

Example

Let $G=\emptyset$

- the number of homomorphisms hom $(, \quad, G)=26$,

How shall we count today?

The number of homomorphisms from a graph H to a graph G is hom $(H ; G)=$ number of maps from $V(H)$ to $V(G)$ that yield a graph homomorphism, i.e., that map every edge of H to an edge of G.

The homomorphism density $t(H ; G):=\frac{\text { hom }(H ; G)}{|V(G)|^{V(H) \mid}}$ is the probability that a random map from $V(H)$ to $V(G)$ yields a graph homomorphism.

Example

Let $G=\emptyset$

- the number of homomorphisms hom $(\Omega ; G)=26$,

- the homomorphism density $t(. \because ; G)=\frac{26}{64}$

Graph profiles

Let $\mathcal{U}=\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$. The (homomorphism) density profile of \mathcal{U} is

$$
\mathcal{D}_{\mathcal{U}}:=\mathrm{cl}\left(\left\{\left(t\left(H_{1} ; G\right), \ldots, t\left(H_{l} ; G\right)\right) \mid G \text { is a graph }\right\}\right)
$$

and the (homomorphism) number profile of \mathcal{U} is

$$
\mathcal{N}_{\mathcal{U}}:=\left\{\left(\operatorname{hom}\left(H_{1} ; G\right), \ldots, \operatorname{hom}\left(H_{l} ; G\right)\right) \mid G \text { is a graph }\right\}
$$

Graph profiles

Let $\mathcal{U}=\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$. The (homomorphism) density profile of \mathcal{U} is

$$
\mathcal{D}_{\mathcal{U}}:=\mathrm{cl}\left(\left\{\left(t\left(H_{1} ; G\right), \ldots, t\left(H_{l} ; G\right)\right) \mid G \text { is a graph }\right\}\right)
$$

and the (homomorphism) number profile of \mathcal{U} is

$$
\mathcal{N}_{\mathcal{U}}:=\left\{\left(\operatorname{hom}\left(H_{1} ; G\right), \ldots, \operatorname{hom}\left(H_{l} ; G\right)\right) \mid G \text { is a graph }\right\}
$$

$\mathcal{D}_{\mathcal{U}}$ for $\mathcal{U}=\{\bullet, \varrho($ Razborov 2008)

Graph profiles

Let $\mathcal{U}=\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$. The (homomorphism) density profile of \mathcal{U} is

$$
\mathcal{D}_{\mathcal{U}}:=\mathrm{cl}\left(\left\{\left(t\left(H_{1} ; G\right), \ldots, t\left(H_{l} ; G\right)\right) \mid G \text { is a graph }\right\}\right)
$$

and the (homomorphism) number profile of \mathcal{U} is

$$
\mathcal{N}_{\mathcal{U}}:=\left\{\left(\operatorname{hom}\left(H_{1} ; G\right), \ldots, \operatorname{hom}\left(H_{l} ; G\right)\right) \mid G \text { is a graph }\right\}
$$

$\mathcal{D} u$ for $\mathcal{U}=\{0 . \varrho($ Razborov 2008)

Different techniques to certify graph inequalities

- Integer programming
- Hölder's inequality
- Entropy method
- Lagrangian method
- Cauchy-Schwarz/sums of squares

Integer programming example

Theorem (R., 2014)
The Turán inequality $t(\mathbb{\varrho} ; G) \leq 1-\frac{1}{r-1}$ for all graphs G such that $t\left(K_{r} ; G\right)=0$ can be proven by studying

$$
\max \sum_{e \in E\left(K_{n}\right)} x_{e}
$$

such that $\sum_{e \in E(Q)} x_{e} \leq\binom{ r}{2}-1$ for all cliques Q of size r in K_{n}, $x_{e} \in\{0,1\}$ for all $e \in E\left(K_{n}\right)$.

Tools to certify graph inequalities with sos

- Restrict to maps that send labelled vertices to specific vertices of G

Tools to certify graph inequalities with sos

- Restrict to maps that send labelled vertices to specific vertices of G

$$
t\left(2 \cdot \sum_{4} \cdot{ }_{4}^{3} \cdot \mathbf{1} \cdot \boldsymbol{2} \cdot 6\right)=\frac{3}{6}
$$

- Symmetrization=unlabeling

$$
\begin{aligned}
{[[t(2 \cdot 1 ; G)]]: } & =\frac{1}{|V(G)|^{2}} \sum_{1 \leq i, j \leq|V(G)|} t(j \cdot \Omega \cdot G) \\
& =t(\Omega ; G)
\end{aligned}
$$

Tools to certify graph inequalities with sos

- Restrict to maps that send labelled vertices to specific vertices of G

$$
t\left(2 \cdot \sum_{4} \cdot{ }_{4}^{3} \cdot \mathbf{1} \cdot \boldsymbol{2} \cdot 6\right)=\frac{3}{6}
$$

- Symmetrization=unlabeling

$$
\begin{aligned}
{\left[\left[t\left(2 \cdot \complement_{0} ; G\right)\right]\right] } & =\frac{1}{|V(G)|^{2}} \sum_{1 \leq i, j \leq|V(G)|} t(j \cdot \Omega ; G) \\
& =t(\curvearrowleft, G)
\end{aligned}
$$

- Multiplication=gluing along vertices that have the same labels

$$
t\left(3 \stackrel{\bullet}{2}^{2} 1 ; G\right) \cdot t\left(3 \cdot \bullet^{2} 1 ; G\right)=t\left(3 \cdot \varrho^{2} 1 ; G\right)
$$

Sums of square example

From now on, when it's clear, we let $H:=t(H ; G)$.

Sums of square example

From now on, when it's clear, we let $H:=t(H ; G)$.
Claim: $. \Omega-2!+!\geq 0$. (Goodman bound)
Proof:

$$
\begin{aligned}
& {\left[\left[\left(2 \cdot 3-{ }_{1} \cdot{ }^{2} \cdot 3-{ }_{1} \cdot{ }^{3} \cdot 2+!_{3}^{2}\right)^{2}\right]\right]+2\left[\left[\left(\bullet^{1}-!\right)^{2}\right]\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =. \quad-2!+!
\end{aligned}
$$

Some sos successes

- Density profile for $\mathcal{U}=\{$, $\}$ (Razborov, 2008)
- The best bound for the Turán $K_{4}^{(3)}$ problem (Razborov, 2014) and a solution to the problem in the ℓ_{2}-norm (Balogh, Clemen, Lidický 2021)
- Every n-vertex triangle-free graph has at most $\left(\frac{n}{5}\right)^{5}$ cycles of length 5, i.e., ind (.) $G) \leq\left(\frac{n}{5}\right)^{5}$ whenever ind $(. \quad G)=0$ (Grzesik 2012; Hatami, Hladký, Král', Norine, Razborov 2013)
- Ramsey multiplicity bounds and results (e.g., Parczyk, Pokutta, Spiegel, Szabó 2022)
- $t_{\text {ind }}(. \stackrel{C}{\bullet} ; G)+t_{\text {ind }}(. \circ ; G) \geq \frac{1}{9}-o_{n}(1)$ (Gilboa, Glebov, Hefetz, Linial, Morgenstern 2022)
- The smallest eigenvalue of the signless Laplacian matrix of an n-vertex graph G is at most $\frac{15 n}{94}$ (Balogh, Clemen, Lidický, Norin, Volec, 2022)

Certifying polynomial inequalities with sos

A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=: \mathbb{R}[\mathbf{x}]$
is nonnegative if $p\left(x_{1}, \ldots, x_{n}\right) \geq 0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=: \mathbb{R}[\mathbf{x}]$
is nonnegative if $p\left(x_{1}, \ldots, x_{n}\right) \geq 0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
p sum of squares (sos), i.e., $p=\sum_{i=1}^{l} f_{i}^{2}$ where $f_{i} \in \mathbb{R}[\mathbf{x}] \Rightarrow p \geq 0$
Hilbert (1888): Not all nonnegative polynomials are sos.
Artin (1927): Every nonnegative polynomial can be written as a (finite) sum of squares of rational functions.

Motzkin (1967, with Taussky-Todd): $M(x, y)=x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2}$ is a nonnegative polynomial but is not a sos.

How do sums of squares fare with graph densities?

How do sums of squares fare with graph densities?

Hatami-Norine (2011): Not every valid inequality involving graph densities can be written as a sum of squares of graph densities

How do sums of squares fare with graph densities?

Hatami-Norine (2011): Not every valid inequality involving graph densities can be written as a sum of squares of graph densities or even as a rational sum of squares of graph densities.

How do sums of squares fare with graph densities?

Hatami-Norine (2011): Not every valid inequality involving graph densities can be written as a sum of squares of graph densities or even as a rational sum of squares of graph densities.

Lovász-Szegedy (2006) + Netzer-Thom (2015): Every valid inequality involving graph densities plus any $\epsilon>0$ can be written as a sum of squares of graph densities.

How do sums of squares fare with graph densities?

Hatami-Norine (2011): Not every valid inequality involving graph densities can be written as a sum of squares of graph densities or even as a rational sum of squares of graph densities.

Lovász-Szegedy (2006) + Netzer-Thom (2015): Every valid inequality involving graph densities plus any $\epsilon>0$ can be written as a sum of squares of graph densities.

BRST $(2018,2020): \varrho .0 . \vdots \geq 0$ is not a sum of squares or a rational sos.

How do sums of squares fare with graph densities?

Hatami-Norine (2011): Not every valid inequality involving graph densities can be written as a sum of squares of graph densities or even as a rational sum of squares of graph densities.

Lovász-Szegedy (2006) + Netzer-Thom (2015): Every valid inequality involving graph densities plus any $\epsilon>0$ can be written as a sum of squares of graph densities.

BRST $(2018,2020): \varrho . \emptyset!\vdots \geq 0$ is not a sum of squares or a rational sos.
RSST (2017): Graph sums of squares can be understood by doing symmetry-reduction for real polynomials.

Undecidability results

Theorem (loannidis and Ramakrishnan, 1995)
Determining the validity of a polynomial inequality between (unweighted) homomorphism numbers is undecidable.

Undecidability results

Theorem (loannidis and Ramakrishnan, 1995)
Determining the validity of a polynomial inequality between (unweighted) homomorphism numbers is undecidable.

Theorem (Hatami and Norin, 2011)

Determining the validity of a polynomial inequality between (unweighted) homomorphism densities is undecidable.

Undecidability results

Theorem (loannidis and Ramakrishnan, 1995)
Determining the validity of a polynomial inequality between (unweighted) homomorphism numbers is undecidable.

Theorem (Hatami and Norin, 2011)

Determining the validity of a polynomial inequality between (unweighted) homomorphism densities is undecidable.

Theorem (BRW, 2022)

Determining the validity of a polynomial inequality between weighted homomorphism densities or between weighted homomorphism numbers is undecidable.

Undecidability results - part 2

The number of homomorphisms from a graph H to a graph G with edge weights $\mathbf{w}: E(G) \rightarrow \mathbb{R}$, denoted as $G_{\mathbf{w}}$, is

$$
\operatorname{hom}\left(H ; G_{\mathbf{w}}\right)=\sum_{\substack{\varphi: V(H) \rightarrow V\left(G_{\mathrm{w}}\right): \\ \varphi \text { is a homomorphism }}} \prod_{\{i, j\} \in E(H)} w_{\varphi(i), \varphi(j)} .
$$

We define $t\left(H ; G_{\mathbf{w}}\right)=\operatorname{hom}\left(H ; G_{\mathbf{w}}\right) /\left|V\left(G_{\mathbf{w}}\right)\right|^{|V(H)|}$ analogously.

Undecidability results - part 2

The number of homomorphisms from a graph H to a graph G with edge weights $\mathbf{w}: E(G) \rightarrow \mathbb{R}$, denoted as $G_{\mathbf{w}}$, is

$$
\operatorname{hom}\left(H ; G_{\mathbf{w}}\right)=\sum_{\substack{\varphi: V(H) \rightarrow V\left(G_{\mathbf{w}}\right): \\ \varphi \text { is a homomorphism }}} \prod_{\{i, j\} \in E(H)} w_{\varphi(i), \varphi(j)}
$$

We define $t\left(H ; G_{\mathbf{w}}\right)=\operatorname{hom}\left(H ; G_{\mathbf{w}}\right) /\left|V\left(G_{\mathbf{w}}\right)\right|^{|V(H)|}$ analogously.

Example

Let $G_{w}=-10 \cdot{ }_{1}^{\cdot \overbrace{1}^{\prime}}-5$,

Undecidability results - part 2

The number of homomorphisms from a graph H to a graph G with edge weights $\mathbf{w}: E(G) \rightarrow \mathbb{R}$, denoted as $G_{\mathbf{w}}$, is

$$
\operatorname{hom}\left(H ; G_{\mathbf{w}}\right)=\sum_{\substack{\varphi: V(H) \rightarrow V\left(G_{\mathrm{w}}\right): \\ \varphi \text { is a homomorphism }}} \prod_{\{i, j\} \in E(H)} w_{\varphi(i), \varphi(j)}
$$

We define $t\left(H ; G_{\mathbf{w}}\right)=\operatorname{hom}\left(H ; G_{\mathbf{w}}\right) /\left|V\left(G_{\mathbf{w}}\right)\right|^{|V(H)|}$ analogously.

Example

Let $G_{w}=-10 \cdot \stackrel{5}{*}_{1}^{\sim} \cdot-5$,

- hom $(\Omega ; G)=142$

Undecidability results - part 2

The number of homomorphisms from a graph H to a graph G with edge weights $\mathbf{w}: E(G) \rightarrow \mathbb{R}$, denoted as $G_{\mathbf{w}}$, is

$$
\operatorname{hom}\left(H ; G_{\mathrm{w}}\right)=\sum_{\substack{\varphi: V(H) \rightarrow V\left(G_{\mathrm{w}}\right): \\ \varphi \text { is a homomorphism }}} \prod_{\{i, j\} \in E(H)} w_{\varphi(i), \varphi(j)} .
$$

We define $t\left(H ; G_{\mathrm{w}}\right)=\operatorname{hom}\left(H ; G_{\mathrm{w}}\right) /\left|V\left(G_{\mathrm{w}}\right)\right|^{|V(H)|}$ analogously.

Example

Let $G_{w}=-10 \cdot \stackrel{5}{*}_{1}^{*}-5$,

- hom $(\Omega ; G)=142$

Undecidability results - part 3

All these results build on the following solution to Hilbert's 10th problem:
Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

Undecidability results - part 3

All these results build on the following solution to Hilbert's 10th problem:
Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

> Theorem (Matiyasevich 1970 (Davis, Putnam, Robinson), Tarski 1948)
> Given $k \in \mathbb{N}$ and $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$, the problem of determining whether $p\left(x_{1}, \ldots, x_{k}\right) \geq 0$ for every $x_{1}, \ldots, x_{k} \in \mathbb{Z}$ is undecidable.

Undecidability results - part 3

All these results build on the following solution to Hilbert's 10th problem:
Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970 (Davis, Putnam, Robinson), Tarski 1948)

Given $k \in \mathbb{N}$ and $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$, the problem of determining whether $p\left(x_{1}, \ldots, x_{k}\right) \geq 0$ for every $x_{1}, \ldots, x_{k} \in \mathbb{Z}$ is undecidable.

In contrast, given $k \in \mathbb{N}$ and $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$, the problem of determining whether $p\left(x_{1}, \ldots, x_{k}\right) \geq 0$ for all $x_{1}, \ldots, x_{k} \in \mathbb{R}$ is decidable.

Simplifying graph profiles

Definition

The tropicalization of $\mathcal{S} \subseteq \mathbb{R}_{\geq 0}^{\prime}$ is

$$
\operatorname{trop}(\mathcal{S}):=\lim _{k \rightarrow 0} \log _{\frac{1}{k}}(\mathcal{S})
$$

Theorem (BRST20)
$\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)=\mathrm{cl}\left(\operatorname{conv}\left(\log \left(\mathcal{D}_{\mathcal{U}}\right)\right)\right)$ which is a closed convex cone in $\mathbb{R}_{\leq 0}^{\prime}$ determined by linear inequalities corresponding to the pure binomial inequalities valid on $\mathcal{D}_{\mathcal{U}}$. Similarly for $\mathcal{N}_{\mathcal{U}}\left(\right.$ except $\left.\mathbb{R}_{\geq 0}^{\prime}\right)$.

Simplifying graph profiles

Definition

The tropicalization of $\mathcal{S} \subseteq \mathbb{R}_{\geq 0}^{\prime}$ is

$$
\operatorname{trop}(\mathcal{S}):=\lim _{k \rightarrow 0} \log _{\frac{1}{k}}(\mathcal{S})
$$

Theorem (BRST20)
$\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)=\mathrm{cl}\left(\operatorname{conv}\left(\log \left(\mathcal{D}_{\mathcal{U}}\right)\right)\right)$ which is a closed convex cone in $\mathbb{R}_{\leq 0}^{\prime}$ determined by linear inequalities corresponding to the pure binomial inequalities valid on $\mathcal{D}_{\mathcal{U}}$. Similarly for $\mathcal{N}_{\mathcal{U}}$ (except $\mathbb{R}_{\geq 0}^{\prime}$).

$$
\begin{aligned}
& x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{1}^{\alpha_{1}}-x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \geq 0 \\
& \rightarrow \alpha_{1} y_{1}+\alpha_{2} y_{2}+\ldots+\alpha_{n} y_{n}-\beta_{1} y_{1}-\beta_{2} y_{2}-\ldots-\beta_{n} y_{n} \geq 0 \\
& \text { where } y_{i}=\log x_{i} .
\end{aligned}
$$

Tropicalization example

Tropicalizations we computed
 In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{1}\right\}$

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{1}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 I+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$
- for paths: $\mathcal{U}=\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ (lifted) where P_{i} is the path on i vertices

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$
- for paths: $\mathcal{U}=\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ (lifted) where P_{i} is the path on i vertices
We can also do it for some hypergraphs and some non-graph objects like the number of k-faces of simplicial complexes and matroids.

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$
- for paths: $\mathcal{U}=\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ (lifted) where P_{i} is the path on i vertices
We can also do it for some hypergraphs and some non-graph objects like the number of k-faces of simplicial complexes and matroids.

In all cases, the tropicalizations are rational polyhedral cones!

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$
- for paths: $\mathcal{U}=\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ (lifted) where P_{i} is the path on i vertices
We can also do it for some hypergraphs and some non-graph objects like the number of k-faces of simplicial complexes and matroids.

In all cases, the tropicalizations are rational polyhedral cones! So for those \mathcal{U} 's, checking the validity of some binomial inequality in those graphs comes down to solving a linear program.

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$
- for paths: $\mathcal{U}=\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ (lifted) where P_{i} is the path on i vertices
We can also do it for some hypergraphs and some non-graph objects like the number of k-faces of simplicial complexes and matroids.

In all cases, the tropicalizations are rational polyhedral cones! So for those \mathcal{U} 's, checking the validity of some binomial inequality in those graphs comes down to solving a linear program.

Conjecture (BRST2020): $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ is a rational polyhedral cone.

Tropicalizations we computed

In BRST2020 and BR2022, we computed $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \ldots$

- for cliques: $\mathcal{U}=\left\{K_{2}, K_{3}, K_{4}, \ldots, K_{l}\right\}$
- for even cycles: $\mathcal{U}=\left\{C_{4}, C_{6}, C_{8}, \ldots, C_{21}\right\}$
- for odd cycles: $\mathcal{U}=\left\{C_{3}, C_{5}, C_{7}, \ldots, C_{2 /+1}\right\}$
- for stars: $\mathcal{U}=\left\{K_{1,0}, K_{1,1}, K_{1,2}, K_{1,3}, \ldots, K_{1,1}\right\}$
- for paths: $\mathcal{U}=\left\{P_{1}, P_{2}, \ldots, P_{l}\right\}$ (lifted) where P_{i} is the path on i vertices
We can also do it for some hypergraphs and some non-graph objects like the number of k-faces of simplicial complexes and matroids.

In all cases, the tropicalizations are rational polyhedral cones! So for those \mathcal{U} 's, checking the validity of some binomial inequality in those graphs comes down to solving a linear program.

Conjecture (BRST2020): $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ is a rational polyhedral cone.
BR22: If \mathcal{U} contains only chordal series-parallel graphs, then $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ and $\operatorname{trop}\left(\mathcal{D}_{\mathcal{U}}\right)$ is a rational polyhedral cone.

Some consequences of the tropicalization of paths (BR22)

- $\max \left\{c \in \mathbb{R}: \operatorname{hom}\left(P_{m} ; G\right) \geq \operatorname{hom}\left(P_{n} ; G\right)^{c}\right.$ for all graphs $\left.G\right\}$

$$
= \begin{cases}\frac{m}{n+1} & \text { when } m \text { is even and } n \text { is odd and } m \leq n \\ \frac{k m-(m-1)}{k(n-1)+2 k-n} & \text { when } m \text { and } n \text { are both even and } m \leq n \\ \frac{m}{n} & \text { when } m \text { is odd and } m \leq n \\ 1 & \text { when } m \geq n\end{cases}
$$

where k is the smallest integer such that $k \cdot m \geq n$.
Our contribution is the first two lines.

Some consequences of the tropicalization of paths (BR22)

- $\max \left\{c \in \mathbb{R}: \operatorname{hom}\left(P_{m} ; G\right) \geq \operatorname{hom}\left(P_{n} ; G\right)^{c}\right.$ for all graphs $\left.G\right\}$

$$
= \begin{cases}\frac{m}{n+1} & \text { when } m \text { is even and } n \text { is odd and } m \leq n \\ \frac{k m-(m-1)}{k(n-1)+2 k-n} & \text { when } m \text { and } n \text { are both even and } m \leq n \\ \frac{m}{n} & \text { when } m \text { is odd and } m \leq n \\ 1 & \text { when } m \geq n\end{cases}
$$

where k is the smallest integer such that $k \cdot m \geq n$.
Our contribution is the first two lines.

- We obtained a generalization of the Erdős-Simonovits conjecture:

$$
\operatorname{hom}\left(P_{a} ; G\right)^{c-b} \operatorname{hom}\left(P_{c} ; G\right)^{b-a} \geq \operatorname{hom}\left(P_{b} ; G\right)^{c-a}
$$

for $a \leq b \leq c, a, c$ odd.
(The original Erdős-Simonovits conjecture concerned the case when $a=1$.)

Some consequences of the tropicalization of paths (BR22)

- $\max \left\{c \in \mathbb{R}: \operatorname{hom}\left(P_{m} ; G\right) \geq \operatorname{hom}\left(P_{n} ; G\right)^{c}\right.$ for all graphs $\left.G\right\}$

$$
= \begin{cases}\frac{m}{n+1} & \text { when } m \text { is even and } n \text { is odd and } m \leq n \\ \frac{k m-(m-1)}{k(n-1)+2 k-n} & \text { when } m \text { and } n \text { are both even and } m \leq n \\ \frac{m}{n} & \text { when } m \text { is odd and } m \leq n \\ 1 & \text { when } m \geq n\end{cases}
$$

where k is the smallest integer such that $k \cdot m \geq n$.
Our contribution is the first two lines.

- We obtained a generalization of the Erdős-Simonovits conjecture:

$$
\operatorname{hom}\left(P_{a} ; G\right)^{c-b} \operatorname{hom}\left(P_{c} ; G\right)^{b-a} \geq \operatorname{hom}\left(P_{b} ; G\right)^{c-a}
$$

for $a \leq b \leq c, a, c$ odd.
(The original Erdős-Simonovits conjecture concerned the case when $a=1$.)

- C_{5} is strongly common (Behague, Morrison, Noel 2022)

Future directions

- What are the strengths and limitations of different techniques to prove graph inequalities?
- Computing graph profiles in more than two dimensions (and even computing more in two dimensions!)
- Is the tropicalization of $\mathcal{N}_{\mathcal{U}}$ always a polyhedral rational cone?
- Is determining the validity of a pure binomial inequality between homomorphism numbers decidable?

Thank you!

Tropicalization of homomorphism numbers of paths

Theorem (BR, 2021)

The following inequalities hold for homomorphism numbers of paths into any graph G with no isolated vertices:

- log-convexity between odd paths:
$\operatorname{hom}\left(P_{a} ; G\right)^{c-b} \operatorname{hom}\left(P_{c} ; G\right)^{b-a} \geq \operatorname{hom}\left(P_{b} ; G\right)^{c-a}$ for $a \leq b \leq c, a, c$ odd
- log-convexity for odd and even paths, even middle:
$\operatorname{hom}\left(P_{a} ; G\right)^{c-b} \operatorname{hom}\left(P_{c} ; G\right)^{b-a} \geq \operatorname{hom}\left(P_{b} ; G\right)^{c-a}$ for $a \leq b \leq c$, a odd, b, c even
- "weak convexity" for odd and even path, odd middle:
$\operatorname{hom}\left(P_{a} ; G\right)^{\frac{c}{2}}$ hom $\left(P_{c} ; G\right) \geq \operatorname{hom}\left(P_{b} ; G\right)^{\frac{c}{2}}$ for $a \leq b \leq c, a, b$ odd, c even
- non-decreasing:
$\operatorname{hom}\left(P_{a} ; G\right) \leq \operatorname{hom}\left(P_{b} ; G\right)$ for $a \leq b$
- log-subadditivity:
$\operatorname{hom}\left(P_{a} ; G\right) \operatorname{hom}\left(P_{b} ; G\right) \leq \operatorname{hom}\left(P_{a+b} ; G\right)$
Moreover, any pure binomial inequality in paths can be deduced in a finite way from the above inequalities. In particular, for a binomial inequality where the largest path has v vertices, only inequalities involving paths on at most $2 v$ vertices need to be considered.

Example of how to deduce an inequality

Suppose we want to recover $\operatorname{hom}\left(P_{3} ; G\right)^{3} \geq \operatorname{hom}\left(P_{4} ; G\right)^{2}$. We know:
(1) $\operatorname{hom}\left(P_{3} ; G\right) \operatorname{hom}\left(P_{5} ; G\right) \geq \operatorname{hom}\left(P_{4} ; G\right)^{2}$ (log-convexity)
(2) hom $\left(P_{3} ; G\right) \operatorname{hom}\left(P_{7} ; G\right) \geq \operatorname{hom}\left(P_{5} ; G\right)^{2}$ (log-convexity)
(3) hom $\left(P_{4} ; G\right)^{2} \geq \operatorname{hom}\left(P_{8} ; G\right)$ (log-subadditivity)
(4) $\operatorname{hom}\left(P_{8} ; G\right) \geq \operatorname{hom}\left(P_{7} ; G\right)$ (non-decreasing)

So we have

$$
\begin{aligned}
& \operatorname{hom}\left(P_{3} ; G\right)^{3} \operatorname{hom}\left(P_{5} ; G\right)^{2} \operatorname{hom}\left(P_{7} ; G\right) \\
& \quad=\left(\operatorname{hom}\left(P_{3} ; G\right) \operatorname{hom}\left(P_{5} ; G\right)\right)^{2}\left(\operatorname{hom}\left(P_{3} ; G\right) \operatorname{hom}\left(P_{7} ; G\right)\right) \\
& \quad \geq \operatorname{hom}\left(P_{4} ; G\right)^{4} \operatorname{hom}\left(P_{5} ; G\right)^{2} \\
& \quad \geq \operatorname{hom}\left(P_{4} ; G\right)^{2} \operatorname{hom}\left(P_{5} ; G\right)^{2} \operatorname{hom}\left(P_{8} ; G\right) \\
& \quad \geq \operatorname{hom}\left(P_{4} ; G\right)^{2} \operatorname{hom}\left(P_{5} ; G\right)^{2} \operatorname{hom}\left(P_{7} ; G\right)
\end{aligned}
$$

and so $\operatorname{hom}\left(P_{3} ; G\right)^{3} \geq \operatorname{hom}\left(P_{4} ; G\right)^{2}$.

Example of how to deduce an inequality

Suppose we want to recover $\operatorname{hom}\left(P_{3} ; G\right)^{3} \geq \operatorname{hom}\left(P_{4} ; G\right)^{2}$.
Equivalently, we can recover $3 y_{3}-2 y_{4} \geq 0$ where $y_{i}:=\log \left(\operatorname{hom}\left(P_{i} ; G\right)\right)$. So we know
(1) $y_{3}-2 y_{4}+y_{5} \geq 0$ (log-convexity)
(2) $y_{3}-2 y_{5}+y_{7} \geq 0$ (log-convexity)
(3) $2 y_{4}-y_{8} \geq 0$ (log-subadditivity)
(4) $-y_{7}+y_{8} \geq 0$ (non-decreasing)

So we have

$2 \cdot($	y_{3}	$-2 y_{4}$	$+y_{5}$			$\geq 0)$
+	y_{3}		$-2 y_{5}$	$+y_{7}$		≥ 0)
+				$-y_{7}$	$+y_{8}$	≥ 0)
+($2 y_{4}$			$-y_{8}$	≥ 0)
	$3 y_{3}$	$-2 y_{4}$				≥ 0

Example of how to deduce an inequality

Suppose we want to recover $\operatorname{hom}\left(P_{3} ; G\right)^{3} \geq \operatorname{hom}\left(P_{4} ; G\right)^{2}$.
Equivalently, we can recover $3 y_{3}-2 y_{4} \geq 0$ where $y_{i}:=\log \left(\operatorname{hom}\left(P_{i} ; G\right)\right)$. So we know
(1) $y_{3}-2 y_{4}+y_{5} \geq 0$ (log-convexity)
(2) $y_{3}-2 y_{5}+y_{7} \geq 0$ (log-convexity)
(3) $2 y_{4}-y_{8} \geq 0$ (log-subadditivity)
(4) $-y_{7}+y_{8} \geq 0$ (non-decreasing)

So we have

Checking the validity of a pure binomial in paths is equivalent to checking if there exists a conical combination that yields it.

Some important properties of $\mathcal{N}_{\mathcal{U}}$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$

- $\mathcal{N}_{\mathcal{U}}$ has the Hadamard property since $\operatorname{hom}\left(H ; G_{1}\right) \cdot \operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} \times G_{2}\right)$ where $G_{1} \times G_{2}$ is the categorical product of G_{1} and G_{2}

Some important properties of $\mathcal{N}_{\mathcal{U}}$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$

- $\mathcal{N}_{\mathcal{U}}$ has the Hadamard property since $\operatorname{hom}\left(H ; G_{1}\right) \cdot \operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} \times G_{2}\right)$ where $G_{1} \times G_{2}$ is the categorical product of G_{1} and G_{2}
- $\mathcal{N}_{\mathcal{U}}$ is closed under coordinatewise addition since $\operatorname{hom}\left(H ; G_{1}\right)+\operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} G_{2}\right)$ where $G_{1} G_{2}$ is the disjoint union of G_{1} and G_{2}

Some important properties of $\mathcal{N}_{\mathcal{U}}$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$

- $\mathcal{N}_{\mathcal{U}}$ has the Hadamard property since $\operatorname{hom}\left(H ; G_{1}\right) \cdot \operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} \times G_{2}\right)$ where $G_{1} \times G_{2}$ is the categorical product of G_{1} and G_{2}
- $\mathcal{N}_{\mathcal{U}}$ is closed under coordinatewise addition since $\operatorname{hom}\left(H ; G_{1}\right)+\operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} G_{2}\right)$ where $G_{1} G_{2}$ is the disjoint union of G_{1} and G_{2}
- $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ is max-closed: if $\left(x_{1}, \ldots, x_{l}\right),\left(y_{1}, \ldots, x_{l}\right) \in \operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$, then $\left(\max \left\{x_{1}, y_{1}\right\}, \ldots, \max \left\{x_{l}, y_{l}\right\}\right) \in \operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$.

Some important properties of $\mathcal{N}_{\mathcal{U}}$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$

- $\mathcal{N}_{\mathcal{U}}$ has the Hadamard property since $\operatorname{hom}\left(H ; G_{1}\right) \cdot \operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} \times G_{2}\right)$ where $G_{1} \times G_{2}$ is the categorical product of G_{1} and G_{2}
- $\mathcal{N}_{\mathcal{U}}$ is closed under coordinatewise addition since $\operatorname{hom}\left(H ; G_{1}\right)+\operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} G_{2}\right)$ where $G_{1} G_{2}$ is the disjoint union of G_{1} and G_{2}
- $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ is max-closed: if $\left(x_{1}, \ldots, x_{l}\right),\left(y_{1}, \ldots, x_{l}\right) \in \operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$, then $\left(\max \left\{x_{1}, y_{1}\right\}, \ldots, \max \left\{x_{l}, y_{l}\right\}\right) \in \operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$.
- Any extreme ray of the dual cone $\operatorname{trop}\left(\mathcal{N}_{U}\right)^{*}$ is spanned by a vector with at most one negative coordinate (BR 2021).

Some important properties of $\mathcal{N}_{\mathcal{U}}$ and $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$

- $\mathcal{N}_{\mathcal{U}}$ has the Hadamard property since $\operatorname{hom}\left(H ; G_{1}\right) \cdot \operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} \times G_{2}\right)$ where $G_{1} \times G_{2}$ is the categorical product of G_{1} and G_{2}
- $\mathcal{N}_{\mathcal{U}}$ is closed under coordinatewise addition since $\operatorname{hom}\left(H ; G_{1}\right)+\operatorname{hom}\left(H ; G_{2}\right)=\operatorname{hom}\left(H ; G_{1} G_{2}\right)$ where $G_{1} G_{2}$ is the disjoint union of G_{1} and G_{2}
- $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ is max-closed: if $\left(x_{1}, \ldots, x_{l}\right),\left(y_{1}, \ldots, x_{l}\right) \in \operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$, then $\left(\max \left\{x_{1}, y_{1}\right\}, \ldots, \max \left\{x_{l}, y_{l}\right\}\right) \in \operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$.
- Any extreme ray of the dual cone $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)^{*}$ is spanned by a vector with at most one negative coordinate (BR 2021). For example, this means that we know the following inequality is redundant:

$$
\operatorname{hom}\left(P_{2 a+1} ; G\right) \operatorname{hom}\left(P_{2(a+b+c)+1} ; G\right) \geq \operatorname{hom}\left(P_{2 a+c+1} ; G\right) \operatorname{hom}\left(P_{2(a+b)+c+1} ; G\right)
$$

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ when $\mathcal{U}=\left\{\cdot, \dot{,}, \mathcal{X}, \ldots, K_{l}\right\}$
Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{\mathcal{U}}=\left\{\begin{array}{lll}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq I \\
& y_{I} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=Q_{\mathcal{U}}$.
$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ when $\mathcal{U}=\left\{\cdot, 0, \mathcal{X}, \ldots, K_{l}\right\}$
Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.

Proof.

Claim 1: $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \subseteq Q_{u}$
$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ when $\mathcal{U}=\left\{\cdot, 0, \mathcal{X}, \ldots, K_{l}\right\}$
Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{cl}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.

Proof.

Claim 1: $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \subseteq Q_{u}$
Kruskal-Katona: hom $\left(K_{i-1} ; G\right)^{i} \geq \operatorname{hom}\left(K_{i} ; G\right)^{i-1}$ for any $i \geq 3$
$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ when $\mathcal{U}=\left\{\cdot, 0, \mathcal{X}, \ldots, K_{l}\right\}$
Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{cl}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.

Proof.

Claim 1: $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \subseteq Q_{u}$
Kruskal-Katona: hom $\left(K_{i-1} ; G\right)^{i} \geq \operatorname{hom}\left(K_{i} ; G\right)^{i-1}$ for any $i \geq 3$ $\operatorname{hom}(\cdot ; G)^{2} \geq \operatorname{hom}\left({ }^{\circ} ; G\right)$
$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$ when $\mathcal{U}=\left\{\cdot, 0, \mathcal{X}, \ldots, K_{l}\right\}$
Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.

Proof.

Claim 1: $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right) \subseteq Q_{u}$
Kruskal-Katona: hom $\left(K_{i-1} ; G\right)^{i} \geq \operatorname{hom}\left(K_{i} ; G\right)^{i-1}$ for any $i \geq 3$ $\operatorname{hom}(\cdot ; G)^{2} \geq \operatorname{hom}\left({ }^{\circ} ; G\right)$ $\operatorname{hom}\left(K_{l} ; G\right) \geq 1$

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, \varrho, \varrho, \ldots, K_{l}\right\}$

Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{\mathcal{U}}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \left\lvert\, \begin{array}{l}
i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq I \\
\\
y_{I} \geq 0
\end{array}\right.
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=Q_{\mathcal{U}}$.

Proof.

Claim 2: The extreme rays of $Q_{\mathcal{U}}$ are $\mathbf{r}_{i}=\left(r_{1}, \ldots, r_{l}\right)$ for $1 \leq i \leq I$ where

$$
r_{j}= \begin{cases}j & \text { if } j \leq i, \\ 0 & \text { if } j>i\end{cases}
$$

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, \varrho, \varrho, \ldots, K_{l}\right\}$

Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \left\lvert\, \begin{array}{l}
i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
\\
y_{l} \geq 0
\end{array}\right.
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=Q_{u}$.

Proof.

Claim 2: The extreme rays of $Q_{\mathcal{U}}$ are $\mathbf{r}_{i}=\left(r_{1}, \ldots, r_{l}\right)$ for $1 \leq i \leq I$ where

$$
r_{j}= \begin{cases}j & \text { if } j \leq i, \\ 0 & \text { if } j>i\end{cases}
$$

I constraints in I variables, and $\mathbf{r}_{i}=(1,2, \ldots, i, 0, \ldots, 0)$ satisfies all but the i th constraint at equality (which it still satisfies).

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, \varrho, \varrho, \ldots, K_{l}\right\}$

Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
& y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.

Proof.

Claim 3: The extreme rays of $Q_{\mathcal{U}}$ are in $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$, and hence $Q_{\mathcal{U}}=\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$.

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, 0, \therefore, \ldots, K_{l}\right\}$

Theorem (BRST 2020)

Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{\mathcal{U}}=\left\{\begin{array}{cl}
\mathbf{y} \in \mathbb{R}^{\prime} \left\lvert\, \begin{array}{l}
i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
\\
y_{I} \geq 0
\end{array}\right.
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=Q_{\mathcal{U}}$.

Proof.

Claim 3: The extreme rays of $Q_{\mathcal{U}}$ are in $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$, and hence $Q_{\mathcal{U}}=\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$.
To realize \mathbf{r}_{i}, let G_{n} be an i-partite complete graph where each part has $\frac{n}{i}$ vertices (i.e., a Turán graph) with a disjoint copy of K_{l}.

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, 0, \therefore, \ldots, K_{l}\right\}$

Theorem (BRST 2020)

Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{\mathcal{U}}=\left\{\begin{array}{cl}
\left.\left.\mathbf{y} \in \mathbb{R}^{\prime} \left\lvert\, \begin{array}{l}
i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
\\
y_{I} \geq 0
\end{array}\right.\right\} .\right\} .
\end{array}\right.
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=Q_{\mathcal{U}}$.

Proof.

Claim 3: The extreme rays of $Q_{\mathcal{U}}$ are in $\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$, and hence $Q_{\mathcal{U}}=\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)$.
To realize \mathbf{r}_{i}, let G_{n} be an i-partite complete graph where each part has $\frac{n}{i}$ vertices (i.e., a Turán graph) with a disjoint copy of K_{l}.
Then as $n \rightarrow \infty, \frac{\log \operatorname{hom}\left(K_{j} ; G_{n}\right)}{\log n} \rightarrow j$ if $j \leq i$ and $\frac{\log \operatorname{hom}\left(K_{j} ; G_{n}\right)}{\log n} \rightarrow 0$ if $j>i$.

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, 0, \therefore, \ldots, K_{l}\right\}$

Theorem (BRST 2020)
Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.
Consequence: Every pure binomial inequality involving complete graphs can be deduced in a finite way from the inequalities above.

$\operatorname{trop}\left(\mathcal{N}_{\mathcal{U}}\right)=\left\{\cdot, 0, \therefore, \ldots, K_{l}\right\}$

Theorem (BRST 2020)

Let $\mathcal{U}=\left\{K_{1}, \ldots, K_{l}\right\}$ where K_{i} is a complete graph on i vertices. Let

$$
Q_{u}=\left\{\begin{array}{ll}
\mathbf{y} \in \mathbb{R}^{\prime} \mid & i \cdot y_{i-1}-(i-1) \cdot y_{i} \geq 0 \quad 2 \leq i \leq 1 \\
y_{l} \geq 0
\end{array}\right\}
$$

where $y_{i}=\log \left(\operatorname{hom}\left(K_{i} ; G\right)\right)$. Then $\operatorname{trop}\left(\mathcal{N}_{u}\right)=Q_{u}$.
Consequence: Every pure binomial inequality involving complete graphs can be deduced in a finite way from the inequalities above.
For example, the general Kruskal-Katona inequalities hom $\left(K_{p} ; G\right)^{q} \geq \operatorname{hom}\left(K_{q} ; G\right)^{p}$ for any $2 \leq p<q$ can be recovered from the set of inequalities hom $\left(K_{i-1} ; G\right)^{i} \geq \operatorname{hom}\left(K_{i} ; G\right)^{i-1}$

