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Large graphs are everywhere!

Biology
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Problem

How can we understand such large graphs?

Idea: understand the graph locally

This raises immediately two questions:

1 How do global and local properties relate?

2 What is even possible locally? → graph profiles!
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How shall we count today?

The number of homomorphisms from a graph H to a graph G is
hom(H;G ) =number of maps from V (H) to V (G ) that yield a graph
homomorphism, i.e., that map every edge of H to an edge of G .

The homomorphism density t(H;G ) := hom(H;G)

|V (G)||V (H)| is the probability that a

random map from V (H) to V (G ) yields a graph homomorphism.

Example

Let G = ,

the number of homomorphisms hom( ;G ) = 26,

the homomorphism density t( ;G ) = 26
64
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Graph profiles
Let U = {H1,H2, . . . ,Hl}. The (homomorphism) density profile of U is

DU := cl({(t(H1;G ), . . . , t(Hl ;G ))|G is a graph})
and the (homomorphism) number profile of U is

NU := {(hom(H1;G ), . . . , hom(Hl ;G ))|G is a graph}

0 1
0

1

t( ;G )

t(
;G

)

DU for U = { , } (Razborov 2008)
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Different techniques to certify graph inequalities

Integer programming

Hölder’s inequality

Entropy method

Lagrangian method

Cauchy-Schwarz/sums of squares

. . .
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Integer programming example

Theorem (R., 2014)

The Turán inequality t( ;G ) ≤ 1− 1
r−1 for all graphs G such that

t(Kr ;G ) = 0 can be proven by studying

max
∑

e∈E(Kn)

xe

such that
∑

e∈E(Q)

xe ≤
(
r

2

)
− 1 for all cliques Q of size r in Kn,

xe ∈ {0, 1} for all e ∈ E (Kn).
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Tools to certify graph inequalities with sos

Restrict to maps that send labelled vertices to specific vertices of G

t

(
1

2
;

1

3

4 2

5

6

)
= 3

6

Symmetrization=unlabeling

[[t( 1
2

;G )]] :=
1

|V (G )|2
∑

1≤i ,j≤|V (G)|

t( i
j ;G )

=t( ;G )

Multiplication=gluing along vertices that have the same labels

t(
2

3 1 ;G ) · t(
2

3 1 ;G ) = t(
2

3 1 ;G )
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Sums of square example

From now on, when it’s clear, we let H := t(H;G ).

Claim: − 2 + ≥ 0. (Goodman bound)

Proof:

[[( 1
2 3

− 2
1 3

− 3
1 2

+ 2

3
)2]] + 2[[( 1 − )2]]

=[[ 1
2 3

− 2
1 3

− 3
1 2

+ 2

3
]] + 2[[ 1 − 2 1 1 + ]]

= − 2 + + 2 − 4 + 2

= − 2 +
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Some sos successes

Density profile for U = { , } (Razborov, 2008)

The best bound for the Turán K
(3)
4 problem (Razborov, 2014) and a

solution to the problem in the ℓ2-norm (Balogh, Clemen, Lidický
2021)

Every n-vertex triangle-free graph has at most
(
n
5

)5
cycles of length

5, i.e., ind( ;G ) ≤
(
n
5

)5
whenever ind( ;G ) = 0 (Grzesik 2012;

Hatami, Hladký, Král’, Norine, Razborov 2013)

Ramsey multiplicity bounds and results (e.g., Parczyk, Pokutta,
Spiegel, Szabó 2022)

tind( ;G ) + tind( ;G ) ≥ 1
9 − on(1) (Gilboa, Glebov, Hefetz,

Linial, Morgenstern 2022)

The smallest eigenvalue of the signless Laplacian matrix of an n-vertex
graph G is at most 15n

94 (Balogh, Clemen, Lidický, Norin, Volec, 2022)
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Certifying polynomial inequalities with sos
A polynomial p ∈ R[x1, . . . , xn] =: R[x]
is nonnegative if p(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn

p sum of squares (sos), i.e., p =
∑l

i=1 f
2
i where fi ∈ R[x] ⇒ p ≥ 0

Hilbert (1888): Not all nonnegative polynomials are sos.

Artin (1927): Every nonnegative polynomial can be written as a (finite)
sum of squares of rational functions.

Motzkin (1967, with Taussky-Todd): M(x , y) = x4y2 + x2y4 + 1− 3x2y2

is a nonnegative polynomial but is not a sos.
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How do sums of squares fare with graph densities?

Hatami-Norine (2011): Not every valid inequality involving graph densities
can be written as a sum of squares of graph densities or even as a rational
sum of squares of graph densities.

Lovász-Szegedy (2006) + Netzer-Thom (2015): Every valid inequality
involving graph densities plus any ϵ > 0 can be written as a sum of squares
of graph densities.

BRST (2018,2020): − ≥ 0 is not a sum of squares or a rational sos.

RSST (2017): Graph sums of squares can be understood by doing
symmetry-reduction for real polynomials.
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Undecidability results

Theorem (Ioannidis and Ramakrishnan, 1995)

Determining the validity of a polynomial inequality between (unweighted)
homomorphism numbers is undecidable.

Theorem (Hatami and Norin, 2011)

Determining the validity of a polynomial inequality between (unweighted)
homomorphism densities is undecidable.

Theorem (BRW, 2022)

Determining the validity of a polynomial inequality between weighted
homomorphism densities or between weighted homomorphism numbers is
undecidable.
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Undecidability results - part 2

The number of homomorphisms from a graph H to a graph G with edge
weights w : E (G ) → R, denoted as Gw, is

hom(H;Gw) =
∑

φ:V (H)→V (Gw):
φ is a homomorphism

∏
{i ,j}∈E(H)

wφ(i),φ(j).

We define t(H;Gw) = hom(H;Gw)/|V (Gw)||V (H)| analogously.

Example

Let Gw = -10

5

-5

1

-1 ,

hom( ;G ) = 142
2(100+25+25+1+1)+2(−10·5−5·5−5·1−10·1+1·10+1·5−1·5−1·1) = 142

t( ;Gw) =
142
64

(the expected weight of a random map)
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Undecidability results - part 3

All these results build on the following solution to Hilbert’s 10th problem:

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined in a finite number of operations whether the
equation is solvable in rational integers.

Theorem (Matiyasevich 1970 (Davis, Putnam, Robinson), Tarski
1948)

Given k ∈ N and p ∈ Z[x1, . . . , xk ], the problem of determining whether
p(x1, . . . , xk) ≥ 0 for every x1, . . . , xk ∈ Z is undecidable.

In contrast, given k ∈ N and p ∈ Z[x1, . . . , xk ], the problem of determining
whether p(x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈ R is decidable.
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Simplifying graph profiles

Definition

The tropicalization of S ⊆ Rl
≥0 is

trop(S) := lim
k→0

log 1
k
(S).

Theorem (BRST20)

trop(DU ) = cl(conv(log(DU ))) which is a closed convex cone in Rl
≤0

determined by linear inequalities corresponding to the pure binomial
inequalities valid on DU . Similarly for NU (except Rl

≥0).

xα1
1 xα2

2 · · · xαl
l − xβ1

1 xβ2
2 · · · xβn

n ≥ 0
→ α1y1 + α2y2 + . . .+ αnyn − β1y1 − β2y2 − . . .− βnyn ≥ 0
where yi = log xi .
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Tropicalization example

0 1
0

1

t( ;G )

t(
;G

)

log(t( ;G ))

log(t( ;G ))

t( ;G )3 − t( ;G )2 ≥ 0
becomes

3 log(t( ;G ))− 2 log(t( ;G )) ≥ 0
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Tropicalizations we computed
In BRST2020 and BR2022, we computed trop(DU ) and trop(NU )...

for cliques: U = {K2,K3,K4, . . . ,Kl}
for even cycles: U = {C4,C6,C8, . . . ,C2l}
for odd cycles: U = {C3,C5,C7, . . . ,C2l+1}
for stars: U = {K1,0,K1,1,K1,2,K1,3, . . . ,K1,l}
for paths: U = {P1,P2, . . . ,Pl} (lifted) where Pi is the path on i
vertices

We can also do it for some hypergraphs and some non-graph objects like
the number of k-faces of simplicial complexes and matroids.

In all cases, the tropicalizations are rational polyhedral cones! So for
those U ’s, checking the validity of some binomial inequality in those
graphs comes down to solving a linear program.

Conjecture (BRST2020): trop(NU ) is a rational polyhedral cone.

BR22: If U contains only chordal series-parallel graphs, then trop(NU ) and
trop(DU ) is a rational polyhedral cone.
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Some consequences of the tropicalization of paths (BR22)
max{c ∈ R : hom(Pm;G ) ≥ hom(Pn;G )c for all graphs G}

=


m

n+1 when m is even and n is odd and m ≤ n
km−(m−1)

k(n−1)+2k−n when m and n are both even and m ≤ n
m
n when m is odd and m ≤ n
1 when m ≥ n

where k is the smallest integer such that k ·m ≥ n.
Our contribution is the first two lines.

We obtained a generalization of the Erdős-Simonovits conjecture:

hom(Pa;G )c−b hom(Pc ;G )b−a ≥ hom(Pb;G )c−a

for a ≤ b ≤ c , a, c odd.

(The original Erdős-Simonovits conjecture concerned the case when
a = 1.)

C5 is strongly common (Behague, Morrison, Noel 2022)
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Future directions

What are the strengths and limitations of different techniques to
prove graph inequalities?

Computing graph profiles in more than two dimensions (and even
computing more in two dimensions!)

Is the tropicalization of NU always a polyhedral rational cone?

Is determining the validity of a pure binomial inequality between
homomorphism numbers decidable?

Thank you!

Annie Raymond (UMass) Understanding graphs locally March 30, 2023



Tropicalization of homomorphism numbers of paths

Theorem (BR, 2021)

The following inequalities hold for homomorphism numbers of paths into any graph G
with no isolated vertices:

log-convexity between odd paths:
hom(Pa;G)c−b hom(Pc ;G)b−a ≥ hom(Pb;G)c−a for a ≤ b ≤ c, a, c odd

log-convexity for odd and even paths, even middle:
hom(Pa;G)c−b hom(Pc ;G)b−a ≥ hom(Pb;G)c−a for a ≤ b ≤ c, a odd, b, c even

“weak convexity” for odd and even path, odd middle:
hom(Pa;G)

c
2 hom(Pc ;G) ≥ hom(Pb;G)

c
2 for a ≤ b ≤ c, a, b odd, c even

non-decreasing:
hom(Pa;G) ≤ hom(Pb;G) for a ≤ b

log-subadditivity:
hom(Pa;G) hom(Pb;G) ≤ hom(Pa+b;G)

Moreover, any pure binomial inequality in paths can be deduced in a finite way from the
above inequalities. In particular, for a binomial inequality where the largest path has v
vertices, only inequalities involving paths on at most 2v vertices need to be considered.
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Example of how to deduce an inequality

Suppose we want to recover hom(P3;G)3 ≥ hom(P4;G)2. We know:

1 hom(P3;G) hom(P5;G) ≥ hom(P4;G)2 (log-convexity)

2 hom(P3;G) hom(P7;G) ≥ hom(P5;G)2 (log-convexity)

3 hom(P4;G)2 ≥ hom(P8;G) (log-subadditivity)

4 hom(P8;G) ≥ hom(P7;G) (non-decreasing)

So we have

hom(P3;G)3 hom(P5;G)2 hom(P7;G)

= (hom(P3;G) hom(P5;G))2(hom(P3;G) hom(P7;G))

≥ hom(P4;G)4 hom(P5;G)2

≥ hom(P4;G)2 hom(P5;G)2 hom(P8;G)

≥ hom(P4;G)2 hom(P5;G)2 hom(P7;G)

and so hom(P3;G)3 ≥ hom(P4;G)2.
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Example of how to deduce an inequality

Suppose we want to recover hom(P3;G)3 ≥ hom(P4;G)2.
Equivalently, we can recover 3y3 − 2y4 ≥ 0 where yi := log(hom(Pi ;G)).
So we know

1 y3 − 2y4 + y5 ≥ 0 (log-convexity)

2 y3 − 2y5 + y7 ≥ 0 (log-convexity)

3 2y4 − y8 ≥ 0 (log-subadditivity)

4 −y7 + y8 ≥ 0 (non-decreasing)

So we have
2 · ( y3 −2y4 +y5 ≥ 0)
+( y3 −2y5 +y7 ≥ 0)
+( −y7 +y8 ≥ 0)
+( 2y4 −y8 ≥ 0)

3y3 −2y4 ≥ 0

Checking the validity of a pure binomial in paths is equivalent to
checking if there exists a conical combination that yields it.
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Some important properties of NU and trop(NU)

NU has the Hadamard property since
hom(H;G1) · hom(H;G2) = hom(H;G1 × G2)
where G1 × G2 is the categorical product of G1 and G2

NU is closed under coordinatewise addition since
hom(H;G1) + hom(H;G2) = hom(H;G1G2)
where G1G2 is the disjoint union of G1 and G2

trop(NU ) is max-closed: if (x1, . . . , xl), (y1, . . . , xl) ∈ trop(NU ),
then (max{x1, y1}, . . . ,max{xl , yl}) ∈ trop(NU ).

Any extreme ray of the dual cone trop(NU )
∗ is spanned by a vector

with at most one negative coordinate (BR 2021). For example, this
means that we know the following inequality is redundant:

hom(P2a+1;G) hom(P2(a+b+c)+1;G) ≥ hom(P2a+c+1;G) hom(P2(a+b)+c+1;G).
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trop(NU) when U = { , , , , . . . ,Kl}

Theorem (BRST 2020)

Let U = {K1, . . . ,Kl} where Ki is a complete graph on i vertices. Let

QU =

{
y ∈ Rl | i · yi−1 − (i − 1) · yi ≥ 0 2 ≤ i ≤ l

yl ≥ 0

}
where yi = log(hom(Ki ;G )). Then trop(NU ) = QU .

Proof.

Claim 1: trop(NU ) ⊆ QU

Kruskal-Katona: hom(Ki−1;G )i ≥ hom(Ki ;G )i−1 for any i ≥ 3
hom( ;G )2 ≥ hom( ;G )
hom(Kl ;G ) ≥ 1
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trop(NU) = { , , , , . . . ,Kl}
Theorem (BRST 2020)

Let U = {K1, . . . ,Kl} where Ki is a complete graph on i vertices. Let

QU =

{
y ∈ Rl | i · yi−1 − (i − 1) · yi ≥ 0 2 ≤ i ≤ l

yl ≥ 0

}
where yi = log(hom(Ki ;G )). Then trop(NU ) = QU .

Proof.

Claim 2: The extreme rays of QU are ri = (r1, . . . , rl) for 1 ≤ i ≤ l where

rj =

{
j if j ≤ i ,
0 if j > i .

l constraints in l variables, and ri = (1, 2, . . . , i , 0, . . . , 0) satisfies all but

the ith constraint at equality (which it still satisfies).
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where yi = log(hom(Ki ;G )). Then trop(NU ) = QU .

Proof.

Claim 3: The extreme rays of QU are in trop(NU ), and hence
QU = trop(NU ).

To realize ri , let Gn be an i-partite complete graph where each part has n
i

vertices (i.e., a Turán graph) with a disjoint copy of Kl .

Then as n → ∞,
log hom(Kj ;Gn)

log n → j if j ≤ i and
log hom(Kj ;Gn)

log n → 0 if j > i .
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y ∈ Rl | i · yi−1 − (i − 1) · yi ≥ 0 2 ≤ i ≤ l
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where yi = log(hom(Ki ;G )). Then trop(NU ) = QU .

Consequence: Every pure binomial inequality involving complete graphs
can be deduced in a finite way from the inequalities above.

For example, the general Kruskal-Katona inequalities
hom(Kp;G )q ≥ hom(Kq;G )p for any 2 ≤ p < q can be recovered from
the set of inequalities hom(Ki−1;G )i ≥ hom(Ki ;G )i−1
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