Approximating Weighted Connectivity Augmentation Below Factor 2

Vera Traub
University of Bonn

Rico Zenklusen
ETH Zurich

Introduction to
 Weighted Connectivity Augmentation

Weighted Connectivity Augmentation Problem (WCAP)

$$
\begin{aligned}
& G=(V, E) \\
& L \subseteq\binom{V}{2} \\
& c: L \rightarrow \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\min \{c(U): U \subseteq L$ with $(V, E \cup U)$ is $(\mathbf{k}+1)$-edge-connected $\}$

From WCAP to Weighted Cactus Augmentation ...

Cactus representation of min cuts allows for assuming that G is cactus.
([Dinitz,Karzanov,Lomonosov;1976])
... and finally to the Weighted Ring Augmentation Problem (WRAP)

Prior work

2-approximation obtainable through various techniques, including:

- specialized techniques [Frederickson, Jájá; 1981], [Khuller, Thurimella; 1993], [Khuller, Vishkin; 1994],
- primal-dual algorithms [Goemans, Goldberg, Plotkin, Shmoys, Tardos, Williamson; 1994], and
- iterative rounding [Jain; 2001].

Prior work

2-approximation obtainable through various techniques, including:

- specialized techniques [Frederickson, Jájá; 1981], [Khuller, Thurimella; 1993], [Khuller, Vishkin; 1994],
- primal-dual algorithms [Goemans, Goldberg, Plotkin, Shmoys, Tardos, Williamson; 1994], and
- iterative rounding [Jain; 2001].

Prior progress on beating factor 2 only for special cases, including:

- Unweighted Tree Augmentation. (1.393-approximation)
[Nagamochi; 2003], [Cheriyan, Karloff, Khandekar, Könemann; 2008], [Even, Feldman, Kortsarz, Nutov; 2009],
[Cohen, Nutov; 2013], [Kortsarz, Nutov; 2016], [Nutov; 2017], [Cheriyan, Gao; 2018a], [Cheriyan, Gao; 2018b],
[Adjiashvili; 2018], [Fiorini, Groß, Könemann, Sanità; 2018], [Grandoni, Kalaitzis, Z. ;2018], [Kortsarz, Nutov; 2018],
[Cecchetto, T., Z.; 2021]

Prior work

2-approximation obtainable through various techniques, including:

- specialized techniques [Frederickson, Jájá; 1981], [Khuller, Thurimella; 1993], [Khuller, Vishkin; 1994],
- primal-dual algorithms [Goemans, Goldberg, Plotkin, Shmoys, Tardos, Williamson; 1994], and
- iterative rounding [Jain; 2001].

Prior progress on beating factor 2 only for special cases, including:

- Unweighted Tree Augmentation. (1.393-approximation)
[Nagamochi; 2003], [Cheriyan, Karloff, Khandekar, Könemann; 2008], [Even, Feldman, Kortsarz, Nutov; 2009],
[Cohen, Nutov; 2013], [Kortsarz, Nutov; 2016], [Nutov; 2017], [Cheriyan, Gao; 2018a], [Cheriyan, Gao; 2018b],
[Adjiashvili; 2018], [Fiorini, Groß, Könemann, Sanità; 2018], [Grandoni, Kalaitzis, Z. ;2018], [Kortsarz, Nutov; 2018],
[Cecchetto, T., Z.; 2021]
- Weighted Tree Augmentation. ((1.5 $+\varepsilon)$-approximation)
[T., Z. ; 2021], [T., Z. ; 2022]

2-approximation obtainable through various techniques, including:

- specialized techniques [Frederickson, Jája; 1981], [Khuller, Thurimella; 1993], [Khuller, Vishkin; 1994],
- primal-dual algorithms [Goemans, Goldaerg, Plotkin, Shmoys, Tardos, Williamson; 1994], and
- iterative rounding [Jain; 2001].

Prior progress on beating factor 2 only for special cases, including:

- Unweighted Tree Augmentation. (1.393-approximation)
[Nagamochi; 2003], [Cheriyan, Karloff, Khandekar, Könemann; 2008], [Even, Feldman, Kortsarz, Nutov; 2009],
[Cohen, Nutov; 2013], [Kortsarz, Nutov; 2016], [Nutov; 2017], [Cheriyan, Gao; 2018a], [Cheriyan, Gao; 2018b],
[Adjiashvili; 2018], [Fiorini, Groß, Könemann, Sanità; 2018], [Grandoni, Kalaitzis, Z. ;2018], [Kortsarz, Nutov; 2018], [Cecchetto, T., Z.; 2021]
- Weighted Tree Augmentation. ((1.5 $+\varepsilon)$-approximation) [T., Z. ; 2021], [T., Z. ; 2022]
- Unweighted Connectivity Augmentation. (1.393-approximation)
[Byrka, Grandoni, Jabal Ameli; 2020], [Nutov; 2021], [Cecchetto, T., Z.; 2021]

Our contribution

Theorem [T.,Z;; 2023]

There is a $(1.5+\varepsilon)$-approximation algorithm for Weighted Connectivity Augmentation (WCAP).

A bird's-eye view on our approach

Directed WRAP: A weaker but highly structured version of WRAP.
Improvement step: Exchange set of directed links by (cheaper set of) undirected ones.

A bird's-eye view on our approach

Directed WRAP: A weaker but highly structured version of WRAP.
Improvement step: Exchange set of directed links by (cheaper set of) undirected ones.
One way to improve on factor 2: relative greedy
Start with 2-approximate directed solution and improve it iteratively.

Directed WRAP

(a Highly Structured Simplification of WRAP)

Differences between directed WRAP and WRAP:

- Links are directed.
- To cover a 2 -cut $C \subseteq V \backslash\{r\}$, a directed link needs to enter it.

Directed WRAP can be solved efficiently.

A simple 2-approximation for WRAP via directed WRAP

(similar to [Khuller, Vishkin, 1994] and [Cecchetto, T., Z., 2021])

Shortenings: toward structured solutions

Properties of non-shortenable solutions

A non-shortenable solution ...

- is an r-arborescence;
- has a planar canonical straight-line embedding;
- has at most one left-outgoing and one right-outgoing link per vertex, and out-degree 1 at r.

Improving on directed WRAP solutions

Definition: mixed solution

Every 2-cut $C \subseteq V \backslash\{r\}$ has either

- an entering directed link, or
- a crossing undirected link.

A possible (improving) step

Improvement step: Exchange set of directed links by (cheaper set of) undirected ones.

A possible (improving) step

Improvement step: Exchange set of directed links by (cheaper set of) undirected ones.

Which directed links should we drop?

Cut responsibility

Cut responsibility is defined wrt non-shortenable sol. (V, \vec{F}).

Definition: responsibility of arc for a 2-cut

$(u, v) \in \vec{F}$ is responsible for a 2 -cut $C \subseteq V \backslash\{r\}$ if
(i) (u, v) enters C, and
(ii) no directed link on $r-u$ path of (V, \vec{F}) enters C.

$$
\mathcal{R}_{\vec{F}}(\vec{e}):=\{\text { all 2-cuts } \vec{\ell} \text { is responsible for }\}
$$

Drop of an undirected link set

$\operatorname{Drop}_{\vec{F}}(K):=\left\{\vec{\ell} \in \vec{F}:\right.$ each $C \in \mathcal{R}_{\vec{F}}(\vec{e})$ is crossed by some link in $\left.K\right\}$

Then $\left(\vec{F} \backslash \operatorname{Drop}_{\vec{F}}(K)\right) \cup K$ is a mixed solution.

Characterizing when all 2-cuts a link is responsible are covered?

descendants of v

Lemma

There is a path in $H[K]$ connecting a link $(u, v) \in \operatorname{Drop}_{\vec{F}}(K) \quad \Leftrightarrow \quad$ incident to v to one incident to a vertex that is not a descendant of v (in \vec{F}).

Characterizing when all 2-cuts a link is responsible are covered?

link intersection graph $H[K]$

Lemma

There is a path in $H[K]$ connecting a link $(u, v) \in \operatorname{Drop}_{\vec{F}}(K) \quad \Leftrightarrow \quad$ incident to v to one incident to a vertex that is not a descendant of v (in \vec{F}).

More structure: a nice coverage property

$$
\operatorname{lca}(V(K))
$$

Improvements through thin components

Finding improving steps

Improvement step: Exchange set of directed links by (cheaper set of) undirected ones.

> Which undirected links should we add?

Thin components

Definition: α-thin component $K \subseteq L$

$K \subseteq L$ is α-thin if \exists triangulation s.t. the side of any triangle is crossed by $\leq \alpha$ links in K.

Thin components

Definition: α-thin component $K \subseteq L$

$K \subseteq L$ is α-thin if \exists triangulation s.t. the side of any triangle is crossed by $\leq \alpha$ links in K.

Optimization Theorem

Given a non-shortenable directed WRAP solution \vec{F} and $\alpha=O(1)$, one can efficiently find an α-thin $K \subseteq L$ minimizing

$$
\frac{c(K)}{c\left(\operatorname{Drop}_{\vec{F}}(K)\right)} .
$$

Decomposition Theorem

Fix $\varepsilon>0$.
$\vec{F}:=$ non-shortenable directed WRAP solution

Decomposition Theorem

There exists a partition \mathcal{K} of OPT into $4\lceil 1 / \varepsilon\rceil$ thin components s.t.:

$$
\sum_{K \in \mathcal{K}} c\left(\operatorname{Drop}_{\vec{F}}(K)\right) \geq(1-\varepsilon) \cdot c(\vec{F}) .
$$

Decomposition Theorem

Fix $\varepsilon>0$.
$\vec{F}:=$ non-shortenable directed WRAP solution

Decomposition Theorem

There exists a partition \mathcal{K} of OPT into $4\lceil 1 / \varepsilon\rceil$ thin components s.t.:

$$
\sum_{K \in \mathcal{K}} c\left(\operatorname{Drop}_{\vec{F}}(K)\right) \geq(1-\varepsilon) \cdot c(\vec{F}) .
$$

Approximation Algorithms

Relative Greedy: $(1+\ln 2+\varepsilon)$-approximation

- Start with a non-shortenable directed WRAP solution \vec{F}_{0} of cost $\leq 2 \cdot c(\mathrm{OPT})$.
- Iteratively add components K_{1}, \ldots, K_{m} (chosen greedily using optimization theorem).
- Remove $\operatorname{Drop}_{\vec{F}_{0}}\left(K_{1}\right), \ldots, \operatorname{Drop}_{\vec{F}_{0}}\left(K_{m}\right)$.

Approximation Algorithms

Relative Greedy: $(1+\ln 2+\varepsilon)$-approximation

- Start with a non-shortenable directed WRAP solution \vec{F}_{0} of cost $\leq 2 \cdot c(\mathrm{OPT})$.
- Iteratively add components K_{1}, \ldots, K_{m} (chosen greedily using optimization theorem).
- Remove $\operatorname{Drop}_{\vec{F}_{0}}\left(K_{1}\right), \ldots, \operatorname{Drop}_{\vec{F}_{0}}\left(K_{m}\right)$.

Local Search: $(1.5+\varepsilon)$-approximation

- Algorithm based on the approach from [т.,Z;2022].
- We maintain an undirected WRAP solution $F \subseteq L$.
- F can be turned into non-shortenable directed WRAP solution \vec{F}.
- When looking for an exchange step, use \vec{F} to measure progress.
- Remove $\ell \in F$ if (the at most 2) links in \vec{F} corresponding to ℓ have been dropped.

Local search step

Conclusions

Theorem [T. \& Z., 2023]

There is a $(1.5+\varepsilon)$-approximation for Weighted Connectivity Augmentation.

- Directed WRAP is highly structured problem that can be leveraged to approach WRAP.
- Cut responsibility helps to make search for good link set algorithmically tractable.
- Careful definition of thin components \rightarrow Optimization \& Decomposition Theorem.
- Main technical parts (skipped here): Proof of Optimization \& Decomposition Theorem.
- Derived structural results can be exploited in relative greedy or local search algorithms.

