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The general Degree Sequence Optimization problem is:

G))(nd(nfG)) + . . . + (1d(1f

All our graphs and subgraphs are on vertex set [n] := {1, . . ., n}

G)(iThe degree of vertex i in graph G is denoted d

Z>  ---)} H(id, . . ., 0,1: {ifand a function HGiven a graph 
for each vertex i, find a subgraph G of H which minimizes 

NP-hard: H has a nonempty cubic subgraph if and only if for some i the 
is zeroi≠jfor all 2)3-xx(x)=(jfand 2 )3-xx)=((ifoptimal value of DSO with 
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the problem is:, complete graphis the nK= H When 

find a graph G minimizingZ  >  ---} 1-n, . . ., 0,1: {ifGiven functions 

Theorem (Deza-Levin-Meesum-Onn 2018) 
hypergraph-3ofdegree sequence is ) nd, . . ., 1dto decide if (complete-NP

for all i2)id-xx)=((ifset :degree sequenceis a ) nd, . . ., 1d(Deciding if

Polynomial time by the characterization of Erdos-Gallai, but in contrast:

This answers a 30 year long open question (Colbourn et al. 1986)
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Complexity still open! But:

Proof: Involved dynamic programming with states being 7-tuples

Theorem (Koutecky-Onn 2021) 
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A). (jcand column sums A) (irrow sums nonincreasinghaving 
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The general Factor problem is:
,ifor each )} H(id, . . ., 0,1of {iBand a subset HGiven a graph 

ifor each iBin G) (ihas a subgraph G with dHdecide if 

)Cornuejols(gaps -2no if Stronger, ). Lovasz(intervaliBif each Polytime 

Theorem (Deza-Onn, Apollonio-Sebo)
Hand any graph ifconvexis polynomial time solvable for any DSO

Proof: Reduces to weighted matching on a suitable larger graph

Convex Functions and General Factors

interval:iBwith the following which is convex for DSOAlso reduces to 



Shmuel Onn

Bounded Tree Width or Depth

Theorem (Onn 2022) For any fixed k, can solve DSO in 
k≤ )H(twwith Hand any graph i fpolynomial time for any functions 



Shmuel Onn

Bounded Tree Width or Depth

I will show an earlier result which follows easily from recent results on 
Sparse Integer Programming forming a useful tool that I will show next 

Theorem (Onn 2022) For any fixed k, can solve DSO in 
k≤ )H(twwith Hand any graph i fpolynomial time for any functions 



Shmuel Onn

Bounded Tree Width or Depth

Theorem (Onn 2020) For any fixed k, can solve DSO in 
k≤ )Hwith td(Hand any graph i fpolynomial time for any functions 

I will show an earlier result which follows easily from recent results on 
Sparse Integer Programming forming a useful tool that I will show next 



Shmuel Onn

Bounded Tree Width or Depth

Theorem (Onn 2020) For any fixed k, can solve DSO in 
k≤ )Hwith td(Hand any graph i fpolynomial time for any functions 

The height of a rooted tree is max number of vertices on a root-leaf path



Shmuel Onn

Bounded Tree Width or Depth

Theorem (Onn 2020) For any fixed k, can solve DSO in 
k≤ )Hwith td(Hand any graph i fpolynomial time for any functions 

The height of a rooted tree is max number of vertices on a root-leaf path

Given a graph G on [n], a rooted tree on [n] is valid for G if for each
edge ij of G, one of i and j is on the path from the root to the other.



Shmuel Onn

Bounded Tree Width or Depth

Theorem (Onn 2020) For any fixed k, can solve DSO in 
k≤ )Hwith td(Hand any graph i fpolynomial time for any functions 

The height of a rooted tree is max number of vertices on a root-leaf path

Given a graph G on [n], a rooted tree on [n] is valid for G if for each
edge ij of G, one of i and j is on the path from the root to the other.

The tree-depth of G is the smallest height of a rooted tree valid for G
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iffan edge kj,with n] on [) A(Gis the graph Amatrix nxmof graphThe 
))A(Gtd():=Ais td(Aof depth-treeThe . iare nonzero for some ki,A, ji,A
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∞|A:=|a:Numeric measure })TAtd(),Atd(min{:=d:Sparsity measure

Theorem (Koutecky-Levin-Onn) IP parameterized by a and d is FPT.
Specifically, there are functions g(a,d), h(d) so IP is solvable in time:

g(a,d)poly(n)  when d=td(A)

)TAtd(=dwhen )  npoly()d(h)1+a(

Koutecky-Levin-Onn 2018, Eisenbrand-Hunkenschroder-Klein-Koutecky-Levin-Onn 2019

Koutecky-Onn 2021, “Sparse Integer Programming is FPT”, Bulletin EATCS

mZin b ,nin Zc,u,lmatrix, nxmintegerA

}n Zinx,   u≤x ≤ l,   b=xAx  :  c{min IP:      
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One Application: N-Fold and Block Shaped IP

Corollary: Block shaped IP and N-fold IP are solvable in FPT time
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In Particular: Multiway Tables

1
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n

marginswith given tables nX kmX . . .X 1mover FPT time in Optimization 

(and multicommodity flows), where this line started by De Loera – Onn:
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(which is a subset of its integer kernel) are bounded in terms of a,d

2. Using these bounds it can be shown that suitable auxiliary integer

programs can be used to efficiently find Graver-best steps recursively

on a small height tree validating small tree-depth d=td(A) or d=td(AT) 

3. It can be shown that few Graver-best steps suffice to reach optimum

∞|A:=|a:Numeric measure })TAtd(),Atd(min{:=d:Sparsity measure

Theorem (Koutecky-Levin-Onn) IP is FPT parameterized by a,d, where:
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Back to Degree Sequence Optimization

Theorem (Onn 2020) For any fixed k, can solve DSO in 
k≤ )Hwith td(Hand any graph i fpolynomial time for any functions 

1 -n=aof the following IP has parameters AThe matrix : Proof
):npoly()1+k(hnso solvable in polynomial time 1 )+Htd()=TAtd(=dand 
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