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Degree Sequence Optimization (DSO)

All our graphs and subgraphs are on vertex set [n]:= {1, .. ., n}

The degree of vertex i in graph G is denoted d,(G)

The general Degree Sequence Optimization problem is:

Given a graph H and a function f;: {0,1, . . ., d(H)} ---> Z
for each vertex i, find a subgraph G of H which minimizes

f1(di(6)) + . .. + £,(dy(6))

Example: with f,(x)=(x-1)? for all i can decide if H has a perfect matching
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Degree Sequence Optimization (DSO)

All our graphs and subgraphs are on vertex set [n]:= {1, .. ., n}

The degree of vertex i in graph G is denoted d,(G)

The general Degree Sequence Optimization problem is:

Given a graph H and a function f;: {0,1, . . ., d(H)} ---> Z
for each vertex i, find a subgraph G of H which minimizes

f1(di(6)) + . .. + £,(dy(6))

NP-hard: H has a nonempty cubic subgraph if and only if for some i the
optimal value of DSO with f(x)=(x-3)? and f;(x)=x(x-3)* for all j#i is zero
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Some Special Cases



Complete Graphs

When H = K, is the complete graph, the problem is:
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Complete Graphs

When H = K, is the complete graph, the problem is:

Given functions f,: {01, . . ., n-1} ---> Z find a graph G minimizing
fl(dl(G)) +...¢F fn(dn(G))

Complexity still open! But:

Theorem (Deza-Levin-Meesum-Onn 2018)
Polynomial time solvable when all functions are the same f; = . ..

fo
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Complete Graphs

When H = K, is the complete graph, the problem is:

Given functions f,: {01, . . ., n-1} ---> Z find a graph G minimizing
fl(dl(G)) +...¢F fn(dn(G))

Deciding if (dy, .. ., d,) is a degree sequence: set f(x)=(x-d;)*> for all i

Shmuel Onn



Complete Graphs

When H = K, is the complete graph, the problem is:

Given functions f,: {01, . . ., n-1} ---> Z find a graph G minimizing
fl(dl(G)) +...¢F fn(dn(G))

Deciding if (dy, .. ., d,) is a degree sequence: set f(x)=(x-d;)*> for all i

Polynomial time by the characterization of Erdos-Gallai, but in contrast:

Shmuel Onn



Complete Graphs

When H = K, is the complete graph, the problem is:

Given functions f;: {01, . . ., n-1} ---> Z find a graph G minimizing
fl(dl(G)) oot fn(dn(G))

Deciding if (dy, .. ., d,) is a degree sequence: set f(x)=(x-d;)*> for all i
Polynomial time by the characterization of Erdos-Gallai, but in contrast:

Theorem (Deza-Levin-Meesum-Onn 2018)
NP-complete to decide if (d;, .. ., d,) is degree sequence of 3-hypergraph
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Complete Graphs

When H = K, is the complete graph, the problem is:

Given functions f;: {01, . . ., n-1} ---> Z find a graph G minimizing
fl(dl(G)) oot fn(dn(G))

Deciding if (dy, .. ., d,) is a degree sequence: set f(x)=(x-d;)*> for all i
Polynomial time by the characterization of Erdos-Gallai, but in contrast:

Theorem (Deza-Levin-Meesum-Onn 2018)
NP-complete to decide if (d;, .. ., d,) is degree sequence of 3-hypergraph

This answers a 30 year long open question (Colbourn et al. 1986)
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Complete Bipartite Graphs

When H = K, , is the complete bipartite graph, the problem is
equivalent to the line-sum optimization problem over matrices:
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Complete Bipartite Graphs

When H = K, , is the complete bipartite graph, the problem is
equivalent to the line-sum optimization problem over matrices:

Given functions f;,g; find an mxn 0-1 matrix A minimizing

fi(ci(A)) +. ..+ Frlcn(A)) + gi(ri(A)) +. .. + gu(rm(A))

Complexity still open! But:

Theorem (Koutecky-Onn 2021)

Polynomial time solvable over monotone matrices A, that is,

having nonincreasing row sums r; (A) and column sums c;(A).
In particular, solvable when f;=...=f,andg;=...=g,

Proof: Involved dynamic programming with states being 7-tuples
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Convex Functions and General Factors

The general Factor problem is:

Given a graph H and a subset B, of {O,1, . . ., d.(H)} for each i,
decide if H has a subgraph G with d,(G) in B, for each i

Polytime if each B, interval (Lovasz). Stronger, if no 2-gaps (Cornuejols)

Reduces to DSO with f,(x):=0 for x in B, and f.(x):=1 for x not in B,
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Convex Functions and General Factors

The general Factor problem is:

Given a graph H and a subset B, of {O,1, . . ., d.(H)} for each i,
decide if H has a subgraph G with d,(G) in B, for each i
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Convex Functions and General Factors

The general Factor problem is:

Given a graph H and a subset B, of {O,1, . . ., d.(H)} for each i,
decide if H has a subgraph G with d,(G) in B; for each i

Polytime if each B; interval (Lovasz). Stronger, if no 2-gaps (Cornuejols)

Also reduces to DSO with the following which is convex for B, interval:
f

C

Theorem (Deza-Onn, Apollonio-Sebo) By

DSO is polynomial time solvable for any convex f; and any graph H

Proof: Reduces to weighted matching on a suitable larger graph
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Bounded Tree Width or Depth

Theorem (Onn 2022) For any fixed k, can solve DSO in
polynomial tfime for any functions f;and any graph H with tw(H) <k
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Bounded Tree Width or Depth

Theorem (Onn 2020) For any fixed k, can solve DSO in
polynomial fime for any functions f;and any graph H with td(H) < k

The height of a rooted tree is max number of vertices on a root-leaf path

Given a graph G on [n], a rooted tree on [n] is valid for G if for each
edge ij of G, one of i and j is on the path from the root to the other.
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Bounded Tree Width or Depth

Theorem (Onn 2020) For any fixed k, can solve DSO in
polynomial fime for any functions f;and any graph H with td(H) < k

The height of a rooted tree is max number of vertices on a root-leaf path

Given a graph G on [n], a rooted tree on [n] is valid for G if for each
edge ij of G, one of i and j is on the path from the root to the other.

The tree-depth of G is the smallest height of a rooted tree valid for 6
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Sparse Integer Programming



Tree-Depth of a Matrix

The graph of mxn matrix A is the graph G(A) on [n] with jk an edge iff
A i, Aix are nonzero for some i. The tree-depth of A is td(A):=td(G(A))

Shmuel Onn



Sparse Integer Programming

IP: min{cx : Ax=b, |sx<u, xeZ"}

A integer mxn matrix, l,ucinZ",binZ™
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Sparse Integer Programming
IP: min{cx : Ax=b, Isx<su, xezZ"}
A integer mxn matrix, l,ucinZ",binZ™
The matrix A is parameterized by:
Numeric measure: a:=|A|.,  Sparsity measure: d:=min{td(A), td(A")}

Theorem (Koutecky-Levin-Onn) IP parameterized by a and d is FPT.
Specifically, there are functions g(a,d), h(d) so IP is solvable in time:
g(a,d)poly(n) when d=td(A)

(a+1)"Dpoly(n) when d=td(A")
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Sparse Integer Programming

IP: min{cx : Ax=b, lsxsu, xeZ"}
A integer mxn matrix, l,ucinZ",binZ™

The matrix A is parameterized by:

Numeric measure: a:=|A|.,  Sparsity measure: d:=min{td(A), td(A")}
Theorem (Koutecky-Levin-Onn) IP parameterized by a and d is FPT.
Specifically, there are functions g(a,d), h(d) so IP is solvable in time:
g(a,d)poly(n) when d=td(A)
(a+1)"Dpoly(n) when d=td(A")
Koutecky-Levin-Onn 2018, Eisenbrand-Hunkenschroder-Klein-Koutecky-Levin-Onn 2019

Koutecky-Onn 2021, "Sparse Integer Programming is FPT", Bulletin EATCS
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One Application: N-Fold and Block Shaped IP

A11 A12 A13 A14 A15 A16 A17 A1,8\

A1 A292 A23 A24 Az2s O 0 0
A3y A3 O O O O 0 O
0O 0 Az3 O 0 0 0 0
0 0 0 Agy Azs O 0 0

0O 0 0 0 0 Az A37 A3zs
A - A4; 0O O O O O 0 o0
0 Aso O 0 0O O 0 0
0O O A43 0O O O 0 O
0O 0 0 A44 O O 0 O
0O 0O O 0 Ays 0O 0 0O
0 0 0 0 0 Ay O 0
0 0 0 0 0 0 As7 O

\ 0 0 0 0 0 0 0 Ass)

Corollary: Block shaped IP and N-fold IP are solvable in FPT time
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In Particular: Multiway Tables

Optimization in FPT time over myx- - -xmyxn tables with given margins
(and multicommodity flows), where this line started by De Loera - Onn:

8
<4>
6 L1 >
. @“
3] 0
0\\ //
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n 4 R \\///
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Proof Sketch

Theorem (Koutecky-Levin-Onn) IP is FPT parameterized by a,d, where:

Numeric measure: a:=|A|.,  Sparsity measure: d:=min{td(A), td(A")}
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Proof Sketch

Theorem (Koutecky-Levin-Onn) IP is FPT parameterized by a,d, where:

Numeric measure: a:=|A|,  Sparsity measure: d:=min{td(A), td(AD}

1. It can be shown that the norm of vectors in the Graver basis of A

(which is a subset of its integer kernel) are bounded in terms of a,d
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Proof Sketch

Theorem (Koutecky-Levin-Onn) IP is FPT parameterized by a,d, where:

Numeric measure: a:=|A|..  Sparsity measure: d:=min{+d(A), td(A")}

1. It can be shown that the norm of vectors in the Graver basis of A

(which is a subset of its integer kernel) are bounded in terms of a,d

2. Using these bounds it can be shown that suitable auxiliary integer
programs can be used to efficiently find Graver-best steps recursively

on a small height tree validating small tree-depth d=td(A) or d=td(A")
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Proof Sketch

Theorem (Koutecky-Levin-Onn) IP is FPT parameterized by a,d, where:

Numeric measure: a:=|A|..  Sparsity measure: d:=min{+d(A), td(A")}

1. It can be shown that the norm of vectors in the Graver basis of A

(which is a subset of its integer kernel) are bounded in terms of a,d

2. Using these bounds it can be shown that suitable auxiliary integer
programs can be used to efficiently find Graver-best steps recursively
on a small height tree validating small tree-depth d=td(A) or d=td(A")

3. It can be shown that few Graver-best steps suffice to reach optimum
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Back to Degree Sequence Optimization

Theorem (Onn 2020) For any fixed k, can solve DSO in
polynomial time for any functions f;and any graph H with td(H) <k
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Back to Degree Sequence Optimization

Theorem (Onn 2020) For any fixed k, can solve DSO in
polynomial fime for any functions f;and any graph H with td(H) < k

Proof: The matrix A of the following IP has parameters a=n-1
and d=td(A")=td(H)+1 so solvable in polynomial time n"(«Dpoly(n):

n  lH)

min > 2 £ () Y

L= 1 3=0
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Colored Degree Sequence Optimization

Adding suitable constraints to this IP, we can even solve the colored
version of DSO, where the edges are colored by p colors and we need
to find a subgraph having prescribed number of edges of each color:
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Colored Degree Sequence Optimization

Adding suitable constraints to this IP, we can even solve the colored
version of DSO, where the edges are colored by p colors and we need
to find a subgraph having prescribed number of edges of each color:

Theorem (Onn 2020) For any fixed k,p, can solve the colored DSO in
polynomial time for any functions f;and any graph H with td(H) < k

A special case of this problem is the notorious exact matching problem
for which a randomized algorithm is known but not a deterministic one
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