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Spherical Designs

Definition: A spherical quadrature rule is a set of points {z1,...,2n} C S4

and weights a; € K chosen so that

1 n
S S f(z) do ~ Z&z‘f(ﬂ?z')
i=1

whenever f is smooth in some suitable way.

What is a graphical design?
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whenever f is smooth in some suitable way.

A spherical t-design is a quadrature
rule which integrates all polynomials
up to degree t exactly.

What is a graphical design?



Spherical Designs

Definition: A spherical quadrature rule is a set of points {z1,...,2,} C S
and weights a; € R chosen so that

1 T
dr ~ i J (2
= /S J(o) dr = 3o (@)

whenever f is smooth in some suitable way.

\ A spherical t-design is a quadrature
rule which integrates all polynomials

up to degree t exactly.

This is a spherical 5-design!

What is a graphical design?



Extension to Graphs

Definition: G = (|n|, F/, w) a finite, connected, weighted graph. A subset

S C [n| with weights a averagesafunctlongo [ | — R if
> a(s) =+ Y ¢l
sesS ’UE[n]

w: E — Ry

What is a graphical design?
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Extension to Graphs

Definition: G = (|n|, E/, w) a finite, connected, weighted graph. A subset

S C [n| with weights a averagesafunctlongo [ | — R if

> agp(s) Z (v
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&
_ 0
1 1
0 0
1 1
2
1 1 1 1 . ﬁ -1
B -1
¥ = ) Y = 0 —2
2 2
—2 9 1 ‘Q
—1 . —1
1
- i —1 1
B 1 1 1
a=(0,0,0,0,0,1,1,1,1,1) q — §’(),(),5,1’0,()’0,0,§

What is a graphical design?



What Functions Should We Average?

Definition: G = (|n|, F, w). Eigenvectors of the operator D — A.

Qan

is the weighted adjacency matrix A;; = w(ij) if ij € E

Qan

is the diagonal matrix with D;; = deg 1 = ZijEE w(i])

in this example,

w(ij) : :

B “edges adjacent to i #edges adjacent to j

What is a graphical design?



What Functions Should We Average?

Definition: G = (|n|, F, w). Eigenvectors of the operator D — A.

e A €
o) €

23/15
0
0
—1/2
0
—1/2
~8/15
0
0

Qan

is the weighted adjacency matrix A;; = w(ij) if ij € E

Qan

is the diagonal matrix with D;; = deg 1 = Zz’jEE w(i])

D— A

0 0 —1/2 0 ~-1/2  —8/15 0 0
23/15 0 ~1/2  —1/2 0 0 ~8/15 0

0  23/15 0 ~1/2  —1/2 0 0 —8/15
~1/2 0 12/5  —1/3  —1/3 —11/30 —11/30 0
~1/2  -1/2 -1/3  12/5  —1/3 0  —11/30 —11/30

o -1/2 -1/3 -1/3 12/5 —11/30 0  —11/30

0 0 -—11/30 0  —11/30 31/15 —-2/5  —2/5
~8/15 0  —11/30 —11/30 0 —2/5  31/15  —2/5

0 -8/15 0  —11/30 —-11/30 -2/5 —2/5  31/15

What is a graphical design?



What Functions Should We Average?

Definition: G = (|n], £, w). Eigenvectors of the operator D — A.
e A € R"*"isthe weighted adjacency matrix A;; = w(ij) if ij € F
*D € R"*"isthediagonal matrixwith D;; = degi =} . w(ij)

Eigenvectors by eigenspace

A1 =0 1 1 1 1 1 1 1 1 1
Ao = 1.069 | —.6262 0616 .0646 —.0264 256 —.2291 —.3059 2744 0316
—.2870 —.3988 68358 —.2798 1171 1627 —.1402 —.1948 3350
A3 = 1.861 3193 3193 3193 1406 .1406 .1406 —.4600 —.4600 —.4600
Ay = 2.661 3248 —.4014 0766 0507 2150 —.2658 —.4852 .0996 —.1144
2760 1433 —.4193  —=.2776 1827 .0949 —.4123 —.2141 6263
A5 = 2.672 3468 3458 3468 —.4499  —.4499 —.4499 1032 1032 1032
Ag = 3.003 0724 —.0995 0271 1880 0015 —.6394 2707 —.3721 1015
0731 0261 —.0992 —.6876 .0066 1810 2734 0977 —.3711

What is a graphical design?



What Eigenspaces?

o

Mty

5 S

The first eigenvector by frequency The second eigenvector by frequency

What is a graphical design?



What Eigenspaces?

@ O

i

:\:
00
28NN

0 CJ\Z .
The first eigenvector by frequency The second eigenvector by frequency

The 18th eigenvector by frequency

What is a graphical design?



What Eigenspaces?

@ O

The first eigenvector by frequency The second eigenvector by frequency

“ .\‘. 9
N IANIZT NS TSI
J’J’J'J\VAVJ’J\‘
‘\‘.\VJELVJ
ANZN v;;:\\‘

M Climate Group, Oregon Stale Universil

Averages the first 6 eigenvectors Average annual precipitation, 1981-2010

What is a graphical design?



Definitions

G = (|n], E,w). Order the eigenspaces A1 < Ay < ... < A,

Definition: A k-graphical designis S C [n|and weights a; € R such that
S averages a basis for the first k£ eigenspaces with these weights.

w: E — Ry Stefan Steinerberger

What is a graphical design?



Definitions

G = (|n|, E, w). Order the eigenspaces A1 < Ay < ... < A,y

Definition: A k-graphical designis S C [n|and weights a; € R such that

S averages a basis for the first k£ eigenspaces with these weights.

A1 =0 1 1 1 1 1 1 1 1 1

Ay = 1.069 | —.6262 0616 .0646 —.0264 .256 —.2291 —.3059 2744 0316
—.2870 —.3988 6858 —.2798 1171 1627 —.1402 —.1948 .3350
A3 = 1.861 3193 3193 3193 .1406 .1406 .1406 —.4600 —.4600 —.4600
A4 = 2.661 3248 —.4014 0766 0507 2150 —.2658 —.4852 .0996 —.1144
.2760 1433 —.4193  —=.2776 1827 .0949 —.4123 —.2141 6263
As = 2.672 .3468 3458 3468 —.4499  —.4499  —.4499 1032 .1032 1032
A = 3.003 0724 —.0995 0271 1880 0015 —.6894 2707 —.3721 1015
0731 0261 —.0992 —.6876 0066 1810 2734 0977 —.3711

What is a graphical design?



Definitions

G = (|n], E,w). Orderthe eigenspaces A1 < Ay < ... < A,

Definition: A k-graphical designis S C [n|and weights a; € R such that

S averages a basis for the first k£ eigenspaces with these weights.

a1 — ag — 0342, Ao — 1111, ag — 5328, ag — 28706

S = {1,2,3,6,8)

What is a graphical design?



What Kind Of Quadrature Weights?

The unweighted icosahedral graph with

A A1<A4<A3<A2.
N

IS 2
K

ANz

An arbitrarily weighted 3-design

A, € R

A positively weighted 3-design
A, > 0

What is a graphical design?



What Kind Of Quadrature Weights?

The unweighted icosahedral graph with

A A1<A4<A3<A2.
N 7

NN N Y
An arbitrarily weighted 3-design \‘."'

LKA ’( \;

A combinatorial 2-design

R

Ay €

a, € 10,1}
A positively weighted 3-design
A, > 0

What is a graphical design?



Main Structure Theorem

Notation:

* matrix U, rows are the eigenvectors

'k:{)\Z,---,)\k}

.E — {Al, Ak—l—la « oo Am}
* Uy , U = submatrices of corresponding eigenvectors

* Uy, + U = columns of corresponding submatrices
* P = conv(Uz) is an eigenpolytope (Chris Godsil)

Gale Duality
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Notation:

* matrix U, rows are the eigenvectors

‘kz{)\z,...,)\k}

‘E — {Al, Ak_|_1, « oo )\m}
* Uy , U = submatrices of corresponding eigenvectors
* Uy + Uy = columns of corresponding submatrices

* P = conv(Uy) is an eigenpolytope (Chris Godsil)
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Main Structure Theorem

Notation:

* matrix U, rows are the eigenvectors

‘kz{/\z,...,)\k}

.E — {)\1, )\k_|_1, « oo Am}
* Uy, , U = submatrices of corresponding eigenvectors
* Uy + Uy = columns of corresponding submatrices

* P = conv(Uy) is an eigenpolytope (Chris Godsil)

A Ay
Uz A,
Ao
U
Az
Ao
Uk
Ay
Az
m=4,k=3

Gale Duality



Main Structure Theorem

Notation:

* matrix U, rows are the eigenvectors

‘k:{)\g,...,)\k}

‘E — {Al, )\k_|_1, « oo Am}
* Uy , U = submatrices of corresponding eigenvectors
* Uy + Uy = columns of corresponding submatrices

* P = conv(Uy) is an eigenpolytope (Chris Godsil)

Al j\ﬂl
U
Ay
Az |
U
Asj
Ao
U
As
m=4,k=3 |

Gale Duality



Main Structure Theorem

Notation:

* matrix U, rows are the eigenvectors T UA UL
Ql_{:{AQ,...,Ak} Z/{E ﬂ

*k = {)\laAk—l—la---a)\m}' A4

* Uy, , U = submatrices of corresponding eigenvectors |

* Uy, + Uiz = columns of corresponding submatrices
* P = conv(Uy) is an eigenpolytope (Chris Godsil)

Theorem (B., Thomas, Shiroma):

{ Minimal positively

< 3 Facets of
weighted k-designs P = conv(Uy)

S C [n] s a k-design €———>» V \ S isafacet

Gale Duality



The Truncated Tetrahedral Graph

find a minimal 4-graphical design?

eigenvalue

1 1 1 1 1 1 1 1 1 1 1 1 0
-1 -1 —=0.5 1.5 2 1o -05 —-15 —1 1 0 C

2 1.5 lo -0 -1 —-15 -1 —-0o -1 0 1 C 1
-1 -0 —-15 —-1o5 -1 —-0.0 1.5 1.5 2 0 0 1
0 —1 1 —1 0 1 —1 1 0 0 0 C

[ — —1 0 1 —1 1 0 0 C 0O —1 1 C 5
0 0 0 0 1 —1 1 C -1 -1 0 1
—1 0 1 0 —1 0 1 U —1 1 0 C

—1 0 0 1 —1 0 C 1 -1 0 1 C 4
—1 1 0 0 —1 1 C U -1 0 0 1

1 —1 0 0 —1 1 1 —1 O —-1 1 0 3
0 —1 1 1 —1 0 U —1 I -1 0 1

Examples



The Truncated Tetrahedral Graph

1 111 111 11 111
Us;=|1 -1 0 0 -1 1 1 -1 0 -1 1 0
0 -1 1 1 =1 00 =1 1 =1 0 1
{3,4,9,12}

{1.6.7.11}

£2,5.8.10)

Examples



The Truncated Tetrahedral Graph

1 111 111 11 111
Usi=|1 =1 0 0 -1 1 1T -1 0 —1 1 0].
0 -1 1 1 -1 00 -1 1 =1 0 1

{2.5,8,10}

complement = design

Examples



That Weighted Graph From Before

Al = 1 1 1 1 1 1 1 1 1
Ao = 1.069 | —.6262 0616 .0646 —.0264 .256 —.2291 —.3059 2744 0316
—.2870 —.3988 6858 —.2798 1171 1627 —.1402 —.1948 3350
A3 = 1.861 3193 .3193 3193 1406 1406 1406 —.4600 —.4600 —.4600
Aq4 = 2.661 3248 —.4014 0766 0507 2150 —.2658 —.4852 .0996 —.1144
.2760 1433 —.4193 —.2776 1827 .0949 —.4123 —.2141 6263
As = 2.672 3468 3458 3468 —.4499 —.4499 —.4499 1032 1032 1032
A = 3.003 0724 —.0995 0271 1880 0015 —.6394 2707 —.3721 1015
0731 0261 —.0992 —.6876 .0066 1810 2734 0977 —.3711

Examples
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Examples



The Petersen Graph

M =02 = 5% and A3 = 2
1 1 111 1 1 1 11
0 -1 0 1 10 —10 0 0
g1 -1 -1 011 -10 0 0
2= 1o 0 1 00 0 -1 1 —1 0
0 -1 -1 00 1 0 0 1 0
0 -1 -1 010 0 0 0 1

The eigenpolytope is 5-dimensional and has face vector
(10, 45, 90, 75, 22)

22 facets come in two types: 12 are simplices and 10 have 6 vertices

Examples



The Petersen Graph

M=0D = 57 and A3 = 2
{1 1 1 111 1 1 1 11
0 -1 0 1 10 -1 0 0 0
g1 -1 -1 011 -10 0 0
2710 0 1 000 -1 1 -1 0
0 -1 -1 001 0 0 1 0
0 -1 -1 010 0 0 0 1

22 facets come in two types: 12 are simplices and 10 have 6 vertices

<

Examples



Why?

Oriented matroid duality for vector configurations:

U
U
|||||||||||| © =0

Gale Duality



Why?

Gale duality for polytopes:

1 1 -1
U= 0 0 -1
1 2 3

(3,4)

—1 0 0 [
—1 1 1

4 5 6

(5,6)

(1,2)

1 1 1 1 1 1
I -1 0 0 0 0
O O 1 —1 0 0
o o0 O 0 1 -1
1 2 3 4 5 6
A

6

Gale Duality



Why?

Gale duality for polytopes:

1 1 1 1 1 1
1 1 -1 —-1 0 0 . |1 =1 0 0 0 0O
U=10 0 -1 —111] U"=10o 0 1 -1 0 o
-1 9 3 4 5 6 O O 0 O 1 —1
1 2 3 4 5 6
(5,6) /@
(1,2)

Gale Duality



Why?

Gale duality for polytopes:

1 1 1 1 1 1
1 1 -1 —-1 0 0 . |1 =1 0 0 0 0O
U=10 0 -1 —111] U"=10 0 1 -1 0 o
-1 9 3 4 5 6 0 0 0 0 1 —1
1 2 3 4 5 6
(5.6) /@
(1.2)

Theorem: For I C [n], conv{u} :i € [n] \ I} is aface of conv(U*) if and
only if O is in the relative interior of conv{u; : i € I}

V

Gale Duality



Two Consequences

Existence and Bounds

Theorem (B., Thomas, Shiroma): Fork = 1,...,m—1 thereis a positively

weighted k-designof size at most Zf:l dim A; y

Two Consequences



Two Consequences

Existence and Bounds

Theorem (B., Thomas, Shiroma): Fork = 1,...,m—1thereis a positively
weighted k-design of size at most Zle dim A;
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Organization
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Two Consequences

Existence and Bounds

Theorem (B., Thomas, Shiroma): Fork = 1, ..., m—1thereis a positively
weighted k-design of size at most Zle dim A;

N4 o @@
@% %@% %
@ .

Organization

'/

@

3459 14510

Two Consequences



Cross-Polytopes

The d-dimensonal cross polytopeis (g = CODV{:I: €; 1€ [d]}

vertex
€1 —€1 €d —€d
A\ = 1’
)\2 — 2d €1 €1 v €Cd—1 €d—1 —1 —1
A3:2d—2 e]_ —61 o o o e o o e o o ed _ed

Families



Cross-Polytopes

The d-dimensonal cross polytopeis (g = COHV{:I: €; 1€ [d]}

vertex
€1 —€1 €d —€(
A\ = 1’
)\2 — 2d €1 €1 €d—1 Cd—1 —1 —1
A3:2d—2 61 —6‘1 o o o e o o e o o ed _ed

—
A1<A2<A3 A1<A3<A2
Ps ~ Oy Ps is the d-simplex
2-designs are facets 2-designs are antipodal points

Families
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The Hamming code!

Linear error correcting codes make ‘good’
graphical designs on the graphs of cubes

Families



Cubes

The eigenpolytopes of the cube can be
thought of as generalized cut polytopes

cut? 1 1 1 1 1 1 1 1
1 -1 1 1 —-1 —1 1 -1

01l @ \ 1 1 -1 1 -1 1 -1 -1

2Y N g1 o1 1 -1 1 -1 -1
“ 11 -1 -1 1 1 -1 -1 1

00? 601 1 —1 1 -1 -1 1 —1 1

000 (100 1 1 -1 -1 -1 -1 1 1
1 -1 —1 -1 1 1 1 -1

Bonisoli's Theorem for linear equidistant codes provides surprisingly small
graphical designs on the cube, equivalently, very large faces of these polytopes

Families



45

2.3

1,3 R 1,2
2,4 3,5

1.4 1,5

2.5 3.4

More generally, if a graph comes from an association scheme,
graphical designs are a generalization of classical t-designs

Families



Random Walks on Graphs

L] -|-t
A random neighbor is chosen with equal probability
ran
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Random Walks



Random Walks on Graphs

A random neighboris chosen with equal probability

Random Walks



Random Walks on Graphs

L] -|-t
A random neighbor is chosen with equal probability
ran

-——_

1/5 @

Random Walks



Random Walks on Graphs

A random neighbor is chosen with equal probability

N 1/4

—
__
— —
__
— —

Random Walks



Random Walks on Graphs

Initial measure: U

ppr1 = AD ™ puy,
Stationary distribution: D11 normalized

Random Walks



Random Walks on Graphs

Initial measure: U

ppr1 = AD ™ puy,
Stationary distribution: D11 normalized

1/2 >
o ®

1/2

O O
20

Random Walks



Random

Walks on Graphs

Initial measure: U
—1
pr+1 = AD™ " g
Stationary distribution: D11 normalized

1/2

Convergence to the stationary

distribution is controlled by |As|

7

Random Walks



Random Walks + Graphical Designs

Theorem (Steinerberger & Thomas): If 11 defines an ¢-graphical design,

then 1 2
2 \

Mk(’U) — —| = )\£+1
veV

m
Convergence to the stationary distribution controlled by |)\l+1 ‘ |

/

Random Walks



Random Walks + Graphical Designs

Theorem (Steinerberger & Thomas): If 11 defines an ¢-graphical design,

then 1
)3

1 (v) < \2R
veV

S A \

Convergence to the stationary distribution controlled by |)\l+1 | |

Never converges :( Converges in one step :)

Random Walks



Complexity Results: A Road Map

A polytope P described O(n3

n
by its n vertices /
Z

>

k-designs
d JO 5190e)

)

\Z /

G = ([n], E,w) with P O(n?)

as an eigenpolytope

An orthonormal
basis for IR"

Z

Complexity Results



Creating Graphs from Orthonormal Bases

Lemma (B. and Shiroma): The algorithm
Input: an orthonormal basis 5 of]l,f; and a set partition of [n — 1]
Output: G = ([n], E, w), with nontrivial eigenvectors 3,
eigenspaces specified by the partition
can be done in O(n?) time.

Towards Complexity Results



Creating Graphs from Orthonormal Bases

Lemma (B. and Shiroma): The algorithm
Input: an orthonormal basis 15 of]l,,J; and a set partition of [n — 1]
Output: G = ([n], E, w), with nontrivial eigenvectors 3,
eigenspaces specified by the partition
can be done in O(n?) time.

Step 1: derive constraints on the eigenvalues from expressing

D—-A=B'"MB

M = Dlag(O, )\2, Ce e )\n)

Towards Complexity Results



Creating Graphs from Orthonormal Bases

Lemma (B. and Shiroma): The algorithm

Input: an orthonormal basis B of 1~ and a set partition of [n — 1]
Output: G = ([n], E, w), with nontrivial eigenvectors 3,
eigenspaces specified by the partition
can be done in O(n?) time.

Step 2: wiggle!

full-dimensional polyhedral
cone of eigenvalues which
provide valid graphs

1 corresponding to
K, liesin the interior

Towards Complexity Results



Embedding Polytopes in Graphs

Theorem (B. and Shiroma): The algorithm
Input: A polytope P described by its n vertices
Output: G = (|n|, E/, w) which has an eigenpolytope combinatorially
equivalent to P.
can be done in O(n?°) time.

Towards Complexity Results



Embedding Polytopes in Graphs

Theorem (B. and Shiroma): The algorithm
Input: A polytope P described by its n vertices
Output: G = (|n|, E/, w) which has an eigenpolytope combinatorially
equivalent to P.
can be done in O(n°) time.

— A ~—
1
complete toan ONB
= B
a scaled and polytope
polytope centered embedding

Towards Complexity Results



Universality of Eigenpolytopes

Corollary (B. and Shiroma): Every combinatorial polytope appears as the
eigenpolytope of a positively weighted graph.

— A —
1
complete to an ONB
= B
a scaled and polytope
polytope centered embedding

Towards Complexity Results



Complexity Results

Theorem (Chandrasekaran-Kabadi-Murty, Dyer, Fukuda-Liebling-Margot):
The following decision problem is strongly NP-complete.
Instance: A polytope P described by its vertices

Question: Is P simplicial? /
4

simplicial polytope = every facet is a simplex

Complexity Results



Complexity Results

Theorem (Chandrasekaran-Kabadi-Murty, Dyer, Fukuda-Liebling-Margot):
The following decision problem is strongly NP-complete.

Instance: A polytope P described by its vertices

Question: Is P simplicial?

simplicial polytope = every facet is a simplex

Theorem (B. and Shiroma):
The following decision problem is strongly NP-complete.
Instance: G = ([n], E,w) with an eigenspace orderingand k € {2,...,m — 1}
Question: Does G have a k-graphical design with cardinality smaller
than the “facet bound”?

Theorem: Foreach bk =1,..., m—1 there is a positively weighted k-design
of size at most Zle dim A;.

Complexity Results



Complexity Results

Theorem (Dyer, Linial):

The following counting problem is #P-complete.
Instance: A polytope P described by its vertices
Question: How many facets does P have?

Complexity Results



Complexity Results

Theorem (Dyer, Linial):

The following counting problem is #P-complete.
Instance: A polytope P described by its vertices
Question: How many facets does P have?

Theorem (B. and Shiroma):

The following counting problem is #P-complete.
Instance: G = ([n], E,w) with an eigenspace orderingand k € {2,...,m — 1}
Question: How many positively weighted k-graphical designs does G have?

Complexity Results



A (very silly) LP Relaxation

The following LP finds a (not necessarily minimal or minimum) positively

weighted k-graphical design.

min

7

1

s.t. Upx =0, 1"z = I,z > 0

Complexity Results



A (very silly) LP Relaxation

The following LP finds a (not necessarily minimal or minimum) positively

weighted k-graphical design.

min

7

1 S.t. Uk.:vz(),]lTazzl,a;'ZO

the support of a positively weighted
100-design on the similarity graph of
the 1000 most common English words.

https://code.google.com/archive/p/word2vec/

Complexity Results






