On Dantzig-Wolfe Relaxation of Rank Constrained Optimization: Exactness, Rank Bounds, and Algorithms

Weijun Xie

Joint work with Yongchun Li

March 3, 2023

Linear and Non-Linear Mixed Integer Optimization Workshop
Question: If we cut the tennis ball X, is the convex hull of the intersection equal to the intersection of the convex hull?

$$\text{conv}(\mathcal{L} \cap X) = \mathcal{L} \cap \text{conv}(X)$$

How about cut twice, three times, ...?
Rank Constrained Optimization Problem (RCOP)

\[
(V_{\text{opt}}) \quad V_{\text{opt}} := \min_{X \in \mathcal{X}} \{ \langle A_0, X \rangle : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \}
\]

- where \(\mathcal{X} : \text{rank} - k \) constrained domain set

\[
\mathcal{X} := \{ X \in Q : \text{rank}(X) \leq k, F_j(X) \leq 0, \forall j \in [t] \}
\]

- Matrix space \(Q := S^n_+, S^n, \) or \(\mathbb{R}^{n \times p} \)

- \(F_j(\cdot) \) can be nonconvex
Special Case I: QCQP

\[
\text{(RCOP)} \quad V_{\text{opt}} := \min_{X \in \mathcal{X}} \left\{ \langle A_0, X \rangle : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \right\}
\]

- Quadratically constrained quadratic program (QCQP)

\[
\text{(QCQP)} \quad \min_{x \in \mathbb{R}^n} \left\{ x^T Q_0 x + q_0^T x : b_i^l \leq x^T Q_i x + q_i^T x \leq b_i^u, \forall i \in [m] \right\}
\]

- Introduce matrix variable \(X := \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix}\)

\[
\text{(QCQP)} \quad \min_{X \in \mathcal{X}} \left\{ \langle A_0, X \rangle : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m], X_{11} = 1 \right\}
\]

- Domain set \(\mathcal{X} := \left\{ X \in S_n^{n+1} : \text{rank}(X) \leq 1 \right\}\)
Special Case II: Low-Rank Unsupervised Learning

\[(\text{RCOP}) \quad V_{opt} := \min_{X \in \mathcal{X}} \{ \langle A_0, X \rangle : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \}\]

- RCOP can cover Fair PCA (Tantipongpipat et al. 2019)

\[(\text{Fair PCA}) \quad \max_{(z, X) \in \mathbb{R} \times \mathcal{X}} \{ z : z \leq \langle A_i, X \rangle, \forall i \in [m] \}\]

- Domain set \(\mathcal{X} := \{ X \in S^n_+ : \text{rank}(X) \leq k, \|X\|_2 \leq 1 \}\)

- Matrix completion, signal processing, experimental design…
Special Case III: Sparse Optimization

\[(\text{RCOP}) \quad V_{\text{opt}} := \min_{X \in \mathcal{X}} \left\{ \langle A_0, X \rangle : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \right\} \]

- RCOP covers Sparse Optimization

\[\min_{(z, X) \in \mathbb{R} \times \mathcal{X}} \left\{ z : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \right\} \]

- Domain set

\[\mathcal{X} := \{ X \in S^n : \text{rank}(X) \leq k, X = \text{Diag}(\text{diag}(X)), \|y - A \text{diag}(X)\|_2 \leq z \} \]

\[\|\text{diag}(X)\|_0 \leq k \]
Dantzig-Wolfe Relaxation (DWR)

\(\text{(RCOP)} \quad \mathbf{V}_{\text{opt}} := \min_{\mathbf{X} \in \mathcal{X}} \left\{ \langle \mathbf{A}_0, \mathbf{X} \rangle : b_i^l \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m] \right\} \)

\(\text{(DWR)} \quad \mathbf{V}_{\text{rel}} := \min_{\mathbf{X} \in \text{conv}(\mathcal{X})} \left\{ \langle \mathbf{A}_0, \mathbf{X} \rangle : b_i^l \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m] \right\} . \)

- Replace domain set \(\mathcal{X} \) by its convex hull \(\text{conv}(\mathcal{X}) \)
- Feasible set of RCOP \(\mathcal{C} \): intersecting domain set \(\mathcal{X} \) with \(m \) two-sided LMIs
- Feasible set of DWR \(\mathcal{C}_{\text{rel}} \): intersecting \(\text{conv}(\mathcal{X}) \) with \(m \) two-sided LMIs
RCOP and DWR

(RCOP) \(V_{\text{opt}} := \min_{X \in \mathcal{C}} \langle A_0, X \rangle \geq 0 \) (DWR) \(V_{\text{rel}} := \min_{X \in \mathcal{C}_{\text{rel}}} \langle A_0, X \rangle \)

- Feasible set \(\mathcal{C} \): intersecting domain set \(\mathcal{X} \) with \(m \) two-sided LMIs
- Feasible set \(\mathcal{C}_{\text{rel}} \): intersecting \(\text{conv}(\mathcal{X}) \) with \(m \) two-sided LMIs

Observation. \(V_{\text{opt}} \geq V_{\text{rel}}, \text{conv}(\mathcal{C}) \subseteq \mathcal{C}_{\text{rel}}. \)
Goal: Show $\text{DWR} \equiv \text{RCOP}$

\[
(V_{\text{opt}} := \min_{x \in \mathcal{C}} \langle A_0, x \rangle) \quad (V_{\text{rel}} := \min_{x \in \mathcal{C}_{\text{rel}}} \langle A_0, x \rangle)
\]

- We would like to understand when $\text{DWR} \equiv \text{RCOP}$
 - $\mathcal{C}_{\text{rel}} = \text{conv}(\mathcal{C})$ or
 - $V_{\text{opt}} = V_{\text{rel}}$
Exactness Notion of DWR — Geometric View

\[(\text{RCOP}) \quad \mathcal{V}_{opt} := \min_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{A}_0, \mathbf{X} \rangle, \quad (\text{DWR}) \quad \mathcal{V}_{rel} := \min_{\mathbf{x} \in \mathcal{C}_{rel}} \langle \mathbf{A}_0, \mathbf{X} \rangle\]

Example: Intersect \mathcal{X} with $m = 1$ LMI
Exactness Notion of DWR — Optimality View

\[
(RCOP) \quad V_{opt} := \min_{X \in \mathcal{C}} \langle A_0, X \rangle, \quad (DWR) \quad V_{rel} := \min_{X \in \mathcal{C}_{rel}} \langle A_0, X \rangle
\]

Extreme Point Exactness
\[\text{ext}(\mathcal{C}_{rel}) \subseteq \mathcal{C}\]

Objective Exactness
\[V_{rel} = V_{opt}\]

Convex Hull Exactness
\[\mathcal{C}_{rel} = \text{conv}(\mathcal{C})\]

Objective Exactness given special families of linear objective functions
\[V_{rel} = V_{opt}\]
Literature Review

- DWR exactness conditions for the (QCQP) $\mathcal{X} := \{ X \in S^n_+: \text{rank}(X) \leq 1 \}$

<table>
<thead>
<tr>
<th>Method</th>
<th>Literature</th>
<th>Result</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-lemma</td>
<td>Yakubovich (1971), Fradkov and Yakubovich (1979), Sturm and Zhang (2003)…</td>
<td>Sufficient condition for objective exactness</td>
<td>Slater condition</td>
</tr>
<tr>
<td>Graph Structure</td>
<td>Kim and Kojima (2003), Sojoudi and Lavaei (2014), Burer and Ye (2020), Azuma et al. (2022)…</td>
<td>Sufficient condition for objective exactness</td>
<td>Nonnegative coefficients; Slater condition; Bipartite graph</td>
</tr>
<tr>
<td>Convex Lagrange dual multipliers</td>
<td>Wang and Kılınç-Karzan (2020, 2021, 2022)…</td>
<td>Necessary and sufficient conditions for convex hull, objective exactness</td>
<td>Dual Slater condition; Polyhedral dual set</td>
</tr>
</tbody>
</table>

- Note:
 - Mainly from the dual space with Slater condition
 - Ours is primal perspective
Main Contributions to the DWR Exactness

- Existing results: recover them and remove their assumptions
- New Results: exactness for IQP-2 and Fair SVD

<table>
<thead>
<tr>
<th>Application</th>
<th>Problem</th>
<th>Setting</th>
<th>Exactness result</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCQP ((k = 1))</td>
<td>QCQP-1</td>
<td>single quadratic constraint</td>
<td>extreme point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRS</td>
<td>single ball constraint</td>
<td>convex hull</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTRS</td>
<td>single quadratic inequality constraint</td>
<td>convex hull</td>
<td></td>
</tr>
<tr>
<td>Two-sided GTRS</td>
<td>single two-sided quadratic constraint</td>
<td>extreme point</td>
<td>(Q_1 \neq 0;) (-\infty < b_1^l \leq b_1^u < +\infty)</td>
<td></td>
</tr>
<tr>
<td>HQP-2</td>
<td>homogeneous QCQP with two quadratic constraints</td>
<td>extreme point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQP-2</td>
<td>inhomogeneous objective with two homogeneous quadratic constraints</td>
<td>extreme point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair Unsupervised Learning ((k \geq 1))</td>
<td>Fair PCA</td>
<td>two groups</td>
<td>convex hull</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair SVD</td>
<td>three groups</td>
<td>convex hull</td>
<td></td>
</tr>
</tbody>
</table>
Main Contributions on DWR Exactness

- We derive the “if and only if” conditions for all the three exactness notions
 - Beyond the QCQP
 - Primal perspective
 - Remove many assumptions in the literature, e.g., Slater condition
 - Geometric interpretation

- Generalize and extend exactness results for applications problems in QCQP and fair unsupervised learning
Extreme Point Exactness
“iff” Condition of the Extreme Point Exactness

\[\text{ext}(\mathcal{C}_{rel}) \leq \mathcal{C} \]

Given \(\mathcal{C}_{rel} \) is bounded

Objective Exactness
\[V_{rel} = V_{opt} \]

for any \(A_0 \)

for some favorable \(A_0 \)

Objective Exactness given special families of linear objective functions
\[V_{rel} = V_{opt} \]
“iff” Condition of the Extreme Point Exactness

Recall. \(\mathcal{C} := \{ \mathbf{X} \in \mathcal{X} : b_i^l \leq \langle A_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m] \} \)

\(\mathcal{C}_{\text{rel}} := \{ \mathbf{X} \in \text{conv}(\mathcal{X}) : b_i^l \leq \langle A_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m] \} \)

○ When \(\text{ext}(\mathcal{C}_{\text{rel}}) \subseteq \mathcal{C} \)? Depend on \(\leq m\text{-dim faces} \) in \(\text{conv}(\mathcal{X}) \)

Theorem.

All extreme points in set \(\mathcal{C}_{\text{rel}} \) belong to \(\mathcal{C} \) \hspace{2cm} \text{“iff”} \hspace{2cm} \text{Any } \leq m\text{-dimensional face in } \text{conv}(\mathcal{X}) \text{ is contained in } \mathcal{X} \)
Definition. For a closed convex set D, a convex subset F of D is called a face if for any line segment $[a, b] \subseteq D$ such that $[a, b] \cap F \neq \emptyset$, we have $[a, b] \subseteq F$.
What Faces are Extreme Points of C_{rel} Located?

$C_{rel} := \{ X \in \text{conv}(\mathcal{X}) : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \}$

- Extreme Points of C_{rel} lie on $\leq m$-dim faces in $\text{conv}(\mathcal{X})$
 - Hold for any m LMIs
- Example: $\mathcal{X} := \{ X \in S^2_+: \text{rank}(X) \leq 1, X_{12} = 0 \}$
 - Add $m = 1$ LMI: $X_{11} + X_{22} \leq 1$

\mathcal{X}: nonnegative axes
$\text{conv}(\mathcal{X})$: nonnegative orthant

- $\text{ext}(C_{rel}) = \{ a_1, a_2, a_3 \} \subseteq C$
- All the extreme points lie on the Point and Edges (i.e., ≤ 1-dim faces) in $\text{conv}(\mathcal{X})$
What Faces are Extreme Points of \mathcal{C}_{rel} Located?

$$\mathcal{C}_{\text{rel}} := \{ \mathbf{X} \in \text{conv}(\mathcal{X}) : b^l_i \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b^u_i, \forall i \in [m] \}$$

- Extreme Points of \mathcal{C}_{rel} lie on $\leq m$-dim faces in $\text{conv}(\mathcal{X})$
 - Hold for any m LMIs
- Example: Add $m = 1$ LMI to set \mathcal{X}

- $\text{ext}(\mathcal{C}_{\text{rel}}) = \{a_1\} \subseteq \mathcal{C}$
- The extreme point is a Point in $\text{conv}(\mathcal{X})$
“iff” Condition of the Extreme Point Exactness

Recall. \[C := \{ X \in \mathcal{X} : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \} \]

\[C_{rel} := \{ X \in \text{conv}(\mathcal{X}) : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \} \]

- Given \(\text{ext}(C_{rel}) \) is contained in \(\leq m\)-dim faces in \(\text{conv}(\mathcal{X}) \), when \(\text{ext}(C_{rel}) \subseteq C \) holds?

Theorem.

All extreme points in set \(C_{rel} \) belong to \(C \) \hspace{1cm} “iff” \hspace{1cm} Any \(\leq m \)-dimensional face in \(\text{conv}(\mathcal{X}) \) is contained in \(\mathcal{X} \)

Proof.

Sufficiency. Any extreme point \(Y \) of \(C_{rel} \) belongs to \(\leq m\)-dim faces in \(\text{conv}(\mathcal{X}) \) \(\subseteq \mathcal{X} \). And \(Y \) satisfies the \(m \) LMIs and thus \(Y \in C \).

Necessity. Prove by contradiction.
Geometric Interpretation of “iff” Condition

Recall. \[\mathcal{C} := \{ \mathbf{X} \in \mathcal{X} : b_i^l \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m] \} \]
\[\mathcal{C}_{rel} := \{ \mathbf{X} \in \text{conv}(\mathcal{X}) : b_i^l \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m] \} \]

Theorem.

All extreme points in set \(\mathcal{C}_{rel} \) belong to \(\mathcal{C} \) \hspace{2cm} “iff” \hspace{2cm} Any \(\leq m \)-dimensional face in \(\text{conv}(\mathcal{X}) \) is contained in \(\mathcal{X} \)

Step I: where are extreme points in \(\mathcal{C}_{rel} \) located for any \(m \) LMIs?

- On \(\leq m \)-dim faces of \(\text{conv}(\mathcal{X}) \)!

Step II: when set \(\mathcal{C} \) contains these extreme point locations?

- Any \(\leq m \)-dim face in \(\text{conv}(\mathcal{X}) \) belongs to \(\mathcal{X} \)
Application: QCQP

- For QCQP, \(\mathcal{X} := \{ \mathbf{X} \in S_+^n : \text{rank}(\mathbf{X}) \leq 1 \} \) and \(\text{conv}(\mathcal{X}) := S_+^n \)
- Any \(\leq 2 \)-dim face of \(\text{conv}(\mathcal{X}) \) is contained in \(\mathcal{X} \)

- **Point**: 0-dim face; **Edge**: 1-dim face; **Plane**: 2-dim face

Lemma. For QCQP, any \(\leq 2 \)-dim face of \(\text{conv}(\mathcal{X}) \) is contained in \(\mathcal{X} \).
Extending Many Interesting Results in QCQP

Lemma. For QCQP, any ≤ 2-dim face of $\text{conv}(\mathcal{X})$ is contained in \mathcal{X}.

- Using “iff” condition of extreme point exactness

Theorem. For QCQP, its DWR attains extreme point exactness whenever there are any ≤ 2 LMIs.

- Trust region subproblem (TRS)
- Generalized TRS
- Two-sided generalized TRS
- Homogeneous QCQP with 2 quadratic constraints
- Inhomogeneous QCQP with 2 homogeneous quadratic constraints
Convex Hull Exactness
“iff” Condition of the Convex Hull Exactness

$\text{ext}(C_{\text{rel}})$: all extreme points

$\text{ext}(C_{\text{rel}}) \subseteq C$

Convex Hull Exactness

$C_{\text{rel}} = \text{conv}(C)$

given C_{rel} is bounded

Objective Exactness

$V_{\text{rel}} = V_{\text{opt}}$

for any A_0

for some favorable A_0

Objective Exactness given special families of linear objective functions

$V_{\text{rel}} = V_{\text{opt}}$
Convex Hull Exactness \geq Extreme Point Exactness

- Example: $\mathcal{X} := \{X \in S_+^2: \text{rank}(X) \leq 1, X_{12} = 0\}$
 - Add $m = 1$ LMI: $X_{11} \leq X_{22}$

- Extreme point exactness holds, while convex hull exactness does not
- One-dim faces F_1, F_2 lie on the Edge and Plane (i.e., ≤ 2-dim faces) in $\text{conv}(\mathcal{X})$
What Faces are Extreme Directions of \mathcal{C}_{rel} Located?

\[\mathcal{C}_{\text{rel}} := \{ X \in \text{conv}(\mathcal{X}) : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \} \]

- Where are the one-dim faces of the recession cone of \mathcal{C}_{rel} located?
 - On $\leq (m + 1)$-dim face of the recession cone of $\text{conv}(\mathcal{X})$

Lemma. For any m LMIs, each one-dim face of the intersection set \mathcal{C}_{rel} is contained in a $\leq (m + 1)$-dim face of the recession cone of $\text{conv}(\mathcal{X})$.

Convex Hull Exactness
“iff” Condition of the Convex Hull Exactness

- When the domain set \mathcal{X} is conic, the sufficient condition
 - Reduces to “Any $\leq (m + 1)$-dim face in $\text{conv}(\mathcal{X})$ is contained in \mathcal{X}”
 - becomes necessary

Theorem. When the domain set \mathcal{X} is conic and pointed.

Set \mathcal{C}_{rel} is identical to the convex hull of set \mathcal{C}

“iff”

Any $\leq (m + 1)$-dim face in $\text{conv}(\mathcal{X})$ is contained in \mathcal{X}
Lemma. For QCQP, any ≤ 2-dim face of $\text{conv}(\mathcal{X})$ is contained in \mathcal{X}.

- Using “iff” condition of convex hull exactness

Theorem. For homogeneous QCQP with 1 quadratic constraint, convex hull exactness holds.
For Fair PCA (Tantipongpipat et al. 2019)

\[
(Fair \ PCA) \quad \max_{(z, \mathbf{X}) \in \mathbb{R} \times \mathcal{X}} \{ z : z \leq \langle \mathbf{A}_i, \mathbf{X} \rangle, \forall i \in [m] \}
\]

- Domain set \(\mathcal{X} := \{ \mathbf{X} \in \mathbb{S}_+^n : \text{rank}(\mathbf{X}) \leq k, \|\mathbf{X}\|_2 \leq 1 \} \)

Theorem.
For Fair PCA with two groups \(m = 2 \), the convex hull exactness holds.
Solution Algorithms
Column Generation Algorithm for Solving DWR

(DWR) \[V_{\text{rel}} := \min_{X \in \text{conv}(\mathcal{X})} \left\{ \langle A_0, X \rangle : b_i^l \leq \langle A_i, X \rangle \leq b_i^u, \forall i \in [m] \right\}. \]

- Given the spectral domain set \(\mathcal{X} \), we explicitly described \(\text{conv}(\mathcal{X}) \)

- Proposition [Kim et al., 2021] When \(Q := S^n_+ \) denotes the positive semidefinite matrix space, we show \(\text{conv}(\mathcal{X}) = \text{proj}_X(\mathcal{Y}) \), where
 \[\mathcal{Y} := \left\{ (X, x) \in Q \times \mathbb{R}^n_+ : f_j(x) \leq 0, \forall j \in [t], x_1 \geq \cdots \geq x_n, x_{k+1} = 0, x \geq \lambda(X) \right\}. \]

- Computationally expensive to formulate \(\text{conv}(\mathcal{X}) \)
 - Extended space
 - Majorization constraint
Given the explicit characterization of \(\text{conv}(\mathcal{X}) \),

- Directly use off-the-shelf solvers (Mosek) to solve DWR
 - Computationally expensive

- Column generation algorithm: at each iteration, directly solve the **pricing problem** over \(\text{conv}(\mathcal{X}) \)

\[
\text{(Pricing)} \quad \min_{\mathbf{X} \in \text{conv}(\mathcal{X})} \langle \mathbf{C}_t, \mathbf{X} \rangle = \min_{\mathbf{X} \in \mathcal{X}} \langle \mathbf{C}_t, \mathbf{X} \rangle
\]
Pricing Problem = A Simple Convex Program

\[\min_{\mathcal{X} \subseteq \text{conv}(\mathcal{X})} \langle C_t, X \rangle = \min_{X \in \mathcal{X}} \langle C_t, X \rangle \]

Theorem. For the spectral domain set,

\[\mathcal{X} := \{X \in \mathbb{Q} : \text{rank}(X) \leq k, F_j(X) := f_j(\lambda(X)) \leq 0, \forall j \in [t] \} \]

the pricing problem reduced the following vector-based convex optimization:

\[\lambda^* := \arg\max_{\lambda \in \mathbb{R}^n_+} \{ \lambda^T \beta : \lambda_i = 0, \forall i \in [k+1,n], f_j(\lambda) \leq 0, \forall j \in [t] \}. \]
Numerical Study: Compare Three Methods

\[(\text{DWR}) \quad V_{\text{rel}} := \min_{X \in \text{conv}(\mathcal{X})} \left\{ \langle A_0, X \rangle : b^l_i \leq \langle A_i, X \rangle \leq b^u_i, \forall i \in [m] \right\} \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Setting</th>
<th>Need conv(\mathcal{X})?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosek</td>
<td>Plug conv(\mathcal{X}) and directly solve the DWR</td>
<td>Yes</td>
</tr>
<tr>
<td>Naïve CG</td>
<td>Solve pricing problem over conv(\mathcal{X}) formulation</td>
<td>Yes</td>
</tr>
<tr>
<td>Proposed CG</td>
<td>Use vector-based reduction</td>
<td>No</td>
</tr>
</tbody>
</table>

- CG: Column Generation
- conv(\mathcal{X}) is an SDP formulation
Numerical Study: MIMO Network with $k \geq 1$

- Multiple-input and multiple-output (MIMO) radio network
 - The data streams at a transmitter \leq the number of transmit antennas
 - Rank-k constraint on the covariance matrix
 - Find the low rank data streams to minimize the total interference power

- Yu and Lau (2010) proposed a RCOP-type model with
 - $\mathcal{X} := \{ X \in \mathcal{S}_+^n : \text{rank}(X) \leq k, \logdet(I + X) \geq r, \text{tr}(X) \leq R \}$
 - I: identity matrix
 - Spectral domain set \mathcal{X}
Numerical Study: MIMO Network with $k \geq 1$

<table>
<thead>
<tr>
<th>n</th>
<th>Rank-k</th>
<th>m LMIs</th>
<th>Mosek</th>
<th>Naïve CG</th>
<th>Our CG</th>
<th>Theory Rank Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>time(s)</td>
<td>rank</td>
<td>time(s)</td>
<td>rank</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>5</td>
<td>43</td>
<td>2*</td>
<td>223</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>10</td>
<td>24</td>
<td>3*</td>
<td>1261</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>10</td>
<td>329</td>
<td>3*</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
<td>25</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

- “--”: cannot be solved within 3600 seconds
- “*”: infeasible solution
Numerical Study: QCQP with $k = 1$

- Optimal Power Flow (OPF) problem is a classic QCQP (Eltved and Burer 2020)

 \[
 \text{(OPF)} \quad \min_{x \in \mathbb{R}^n} \{ x^\top Q_0 x + q_0^\top x : r \leq x^\top x \leq R, \ b_i^l \leq x^\top Q_i x + q_i^\top x \leq b_i^u, \forall i \in [m] \}
 \]

- Introduce matrix variable $X := \begin{pmatrix} 1 & x^\top \\ x & xx^\top \end{pmatrix}$

- Move $r \leq \text{tr}(X) - 1 \leq R$ into the domain set

- Reformulate OPF as a RCOP-type model with
 - $\mathcal{X} := \{X \in S^{n+1}_+ : \text{rank}(X) \leq 1, r \leq \text{tr}(X) - 1 \leq R \}$
 - Spectral domain set \mathcal{X}
 - $\text{conv}(\mathcal{X}) := \{X \in S^{n+1}_+ : r \leq \text{tr}(X) - 1 \leq R \}$
Numerical Study: QCQP with $k = 1$

<table>
<thead>
<tr>
<th>n</th>
<th>Rank-k</th>
<th>m LMIs</th>
<th>Mosek</th>
<th>Naïve CG</th>
<th>Our CG</th>
<th>Theory Rank Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>1</td>
<td>60</td>
<td>642</td>
<td>1*</td>
<td>--</td>
<td>145</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
<td>75</td>
<td>844</td>
<td>1*</td>
<td>--</td>
<td>178</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>75</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>308</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>90</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>352</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>90</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>448</td>
</tr>
<tr>
<td>2500</td>
<td>1</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>756</td>
</tr>
</tbody>
</table>

- “--”: cannot be solved within 3600 seconds
- “*”: infeasible solution
Summary

- Study a rank-constrained optimization problem (RCOP)
 - General framework
 - Dantzig-Wolfe Relaxation (DWR)

- Derive “if and only if” conditions for the three DWR exactness
 - Only depend on the faces of the convex hull of domain \mathcal{X}
 - Geometric interpretation

- Beyond exactness, we derive rank bounds

- Column generation algorithm works well
Thank You!

Preprint is available at https://arxiv.org/pdf/2210.16191