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Motivation
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¢ Question: If we cut the tennis ball 𝑿, is the convex hull of the 

intersection equal to the intersection of the convex hull?

conv 𝔏 ∩ 𝑋 = 𝔏 ∩ conv(𝑋)

l How about cut twice, three times, …? 

Nonconvex 𝑿



Rank Constrained Optimization Problem (RCOP)
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¢ where 𝒳: rank−𝑘 constrained domain set

¢ Matrix space 𝒬 ≔ 𝒮!", 𝒮", or ℝ"×$

¢ 𝐹%(⋅) can be nonconvex



Special Case I: QCQP
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¢ Quadratically constrained quadratic program (QCQP)

¢ Introduce matrix variable 𝑿 ≔ 1 𝒙&
𝒙 𝒙𝒙&

l Domain set



Special Case II: 
Low-Rank Unsupervised Learning
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¢ RCOP can cover Fair PCA (Tantipongpipat et al. 2019)

l Domain set

¢ Matrix completion, signal processing, experimental design…



Special Case III: Sparse Optimization
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¢ RCOP covers Sparse Optimization 

¢ Domain set

𝒅𝒊𝒂𝒈 𝑿 ! ≤ 𝑘



Dantzig-Wolfe Relaxation (DWR)
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¢ Replace domain set 𝒳 by its convex hull conv(𝒳)

¢ Feasible set of RCOP 𝓒:  intersecting domain set 𝓧 with 𝑚 two-sided LMIs

¢ Feasible set of DWR 𝒞'(): intersecting conv(𝒳) with 𝑚 two-sided LMIs

𝓧

conv(𝒳)

Relaxation



RCOP and DWR
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¢ Feasible set 𝓒:  intersecting domain set 𝓧 with 𝑚 two-sided LMIs
¢ Feasible set 𝒞'(): intersecting conv(𝒳) with 𝑚 two-sided LMIs

Observation. V*+, ≥ V'(), conv 𝒞 ⊆ 𝒞'().

≥



Goal: Show DWR ≡ RCOP
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¢ We would like to understand when DWR ≡ RCOP
l 𝒞'() = conv(𝒞) or
l V*+, = V'()

DWR Exactness

≡



Exactness Notion of DWR — Geometric View
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Example: Intersect 𝒳 with 𝑚 = 1 LMI

𝒞 𝒞!"#

𝒳: nonnegative axes conv 𝒳 : nonnegative orthant

𝑎"𝑎"

𝒞 𝒞!"#

𝑎"𝑎"
𝑎#

𝑎$

𝑎#

𝑎$

DWR Exactness



Exactness Notion of DWR — Optimality View

11DWR Exactness



Literature Review
¢ DWR exactness conditions for the (QCQP)

¢ Note:
l Mainly from the dual space with Slater condition
l Ours is primal perspective
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Method Literature Result Assumption

S-lemma Yakubovich (1971), 
Fradkov and Yakubovich (1979), 
Sturm and Zhang (2003) …

Sufficient condition for 
objective exactness

Slater condition

Graph 
Structure

Kim and Kojima (2003),
Sojoudi and Lavaei (2014), 
Burer and Ye (2020),
Azuma et al. (2022) …

Sufficient condition for 
objective exactness

Nonnegative 
coefficients;
Slater condition;
Bipartite graph

Convex 
Lagrange dual 
multipliers

Wang and Kılınc-Karzan (2020, 
2021, 2022)…

Necessary and sufficient 
conditions for convex 
hull, objective exactness

Dual Slater 
condition;
Polyhedral dual set

DWR Exactness



Main Contributions to the DWR Exactness
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¢ Existing results: recover them and remove their assumptions
¢ New Results: exactness for IQP-2 and Fair SVD

DWR Exactness



Main Contributions on DWR Exactness
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¢ We derive the “if and only if” conditions for all the three exactness notions
l Beyond the QCQP
l Primal perspective 
l Remove many assumptions in the literature, e.g., Slater condition
l Geometric interpretation

¢ Generalize and extend exactness results for applications problems in QCQP 
and fair unsupervised learning

DWR Exactness



Extreme Point Exactness

DWR Exactness 15



“iff” Condition of the Extreme Point Exactness
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ext(𝒞!"#): all   
extreme points

Extreme Point Exactness



“iff” Condition of the Extreme Point Exactness
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Recall. 

All extreme points in
set 𝒞%&' belong to 𝒞

“iff”

¢ When ext(𝒞'())⊆𝒞? Depend on ≤ m-dim faces in conv 𝒳

Any ≤ m-dimensional face in
conv 𝒳 is contained in 𝒳

Theorem.

Extreme Point Exactness



What are Faces? 
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Definition. For a closed convex set 𝐷, a convex subset 𝐹 of 𝐷 is called a face
if for any line segment 𝑎, 𝑏 ⊆ 𝐷 such that 𝑎, 𝑏 ∩ 𝐹 ≠ ∅, we have 𝑎, 𝑏 ⊆ 𝐹.

Extreme Point Exactness

0-dim face              1-dim face                  2-dim face 
(Point)                      (Edge)                       (Plane)



What Faces are Extreme Points of 𝒞!"# Located?
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¢ Extreme Points of 𝒞%&' lie on ≤ m-dim faces in conv 𝒳
l Hold for any 𝑚 LMIs

¢ Example: 𝒳 ≔ 𝑿 ∈ 𝒮(#: rank 𝑿 ≤ 1, 𝑋"# = 0
l Add 𝑚 = 1 LMI: 𝑋"" + 𝑋## ≤ 1

𝒞 𝒞!"#

conv 𝒳 : nonnegative orthant

𝑎"𝑎"
𝑎#

𝑎$

𝑎#

𝑎$

¢ ext 𝒞%&' = 𝑎", 𝑎#, 𝑎$ ⊆ 𝒞
¢ All the extreme points lie on the Point and Edges (i.e., ≤ 1-dim faces) in conv 𝒳

𝒳: nonnegative axes

Extreme Point Exactness



What Faces are Extreme Points of 𝒞!"# Located?
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¢ Extreme Points of 𝒞%&' lie on ≤ m-dim faces in conv 𝒳
l Hold for any 𝑚 LMIs

¢ Example: Add 𝑚 = 1 LMI to set 𝒳

¢ ext 𝒞%&' = 𝑎" ⊆ 𝒞
¢ The extreme point is a Point in conv 𝒳

𝒞 𝒞!"#

𝒳: nonnegative axes conv 𝒳 : nonnegative orthant

𝑎"𝑎"

Extreme Point Exactness



“iff” Condition of the Extreme Point Exactness
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Recall. 

All extreme points in
set 𝒞%&' belong to 𝒞

“iff”

¢ Given ext 𝒞%&' is contained in ≤ m-dim faces in conv 𝒳 ,	when ext 𝒞%&' ⊆ 𝒞 holds?

Any ≤ m -dimensional face
in conv 𝒳 is contained in 𝒳

Theorem.

Proof. 

Sufficiency. Any extreme point 𝑌 of 𝒞%&' belongs to ≤ m-dim faces in conv 𝒳 ⊆
𝒳. And 𝑌 satisfies the 𝑚 LMIs and thus 𝑌 ∈ 𝒞. 
Necessity. Prove by contradiction.

Extreme Point Exactness



Geometric Interpretation of “iff” Condition 
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Recall. 

All extreme points in
set 𝒞%&' belong to 𝒞

“iff” Any ≤ m-dimensional face in
conv 𝒳 is contained in 𝒳

Theorem.

Step I: where are extreme points in 𝒞'() located for any 𝑚 LMIs?
l On ≤ 𝑚-dim faces of conv 𝒳 !

Step II: when set 𝒞 contains these extreme point locations?
l Any ≤ 𝑚-dim face in conv 𝒳 belongs to 𝒳

Extreme Point Exactness



Application: QCQP
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¢ For QCQP, 𝒳 ≔ 𝑿 ∈ 𝒮(): rank 𝑿 ≤ 1 and conv 𝒳 ≔ 𝒮()

¢ Any ≤ 2-dim face of conv 𝒳 is contained in 𝒳

¢ Point: 0-dim face; Edge: 1-dim face; Plane: 2-dim face

𝒳 conv 𝒳

Lemma. For QCQP, any ≤ 2-dim face of conv 𝒳 is contained in 𝒳.

Extreme Point Exactness



Extending Many Interesting Results in QCQP
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Lemma. For QCQP, any ≤ 2-dim face of conv 𝒳 is contained in 𝒳.

Extreme Point Exactness

Theorem. For QCQP, its DWR attains extreme point exactness whenever 
there are any ≤ 2 LMIs.

¢ Using “iff” condition of extreme point exactness

¢ Trust region subproblem (TRS)
¢ Generalized TRS
¢ Two-sided generalized TRS
¢ Homogeneous QCQP with 2 quadratic constraints
¢ Inhomogeneous QCQP with 2 homogeneous quadratic constraints



Convex Hull Exactness

DWR Exactness 27



“iff” Condition of the Convex Hull Exactness
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ext(𝒞!"#): all   
extreme points

Convex Hull Exactness



Convex Hull Exactness ≥ Extreme Point Exactness
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¢ Example: 𝒳 ≔ 𝑿 ∈ 𝒮(#: rank 𝑿 ≤ 1, 𝑋"# = 0
l Add 𝑚 = 1 LMI: 𝑋"" ≤ 𝑋##

𝒞 𝒞!"#

𝒳: nonnegative axes conv 𝒳 : nonnegative orthant

𝑎"𝑎"

¢ Extreme point exactness holds, while convex hull exactness does not

¢ One-dim faces 𝐹", 𝐹# lie on the Edge and Plane (i.e., ≤ 2-dim faces) in
conv 𝒳

Convex Hull Exactness



What Faces are Extreme Directions of 𝒞!"# Located?
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¢ Where are the one-dim faces of the recession cone of 𝒞'() located?
l On ≤ (𝑚 + 1)-dim face of the recession cone of conv 𝒳

Lemma. For any 𝑚 LMIs, each one-dim face of the intersection set 𝒞'()
is contained in a ≤ (𝑚 + 1)-dim face of the recession cone of conv 𝒳 .

Convex Hull Exactness



“iff” Condition of the Convex Hull Exactness
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Set 𝒞%&' is identical to the
convex hull of set 𝒞

“iff”

¢ When the domain set 𝒳 is conic, the sufficient condition
l Reduces to “Any≤ (m + 1)-dim face in conv 𝒳 is contained in 𝒳”

l becomes necessary

Any ≤ (m + 1) -dim face in
conv 𝒳 is contained in 𝒳

Theorem. When the domain set 𝒳 is conic and pointed.

Convex Hull Exactness



QCQP Revisited
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Lemma. For QCQP, any ≤ 2-dim face of conv 𝒳 is contained in 𝒳.

Extreme Point Exactness

Theorem. For homogeneous QCQP with 1 quadratic constraint, convex 
hull exactness holds.

¢ Using “iff” condition of convex hull exactness



Fair PCA
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¢ For Fair PCA (Tantipongpipat et al. 2019)

l Domain set

Theorem.
For Fair PCA with two groups 𝑚 = 2, the convex hull exactness holds.



Solution Algorithms
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Column Generation Algorithm for Solving DWR
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¢ Given the spectral domain set 𝒳, we explicitly described conv(𝒳)

¢ Computationally expensive to formulate conv 𝒳
l Extended space
l Majorization constraint

Column Generation Algorithm

Proposition[Kim et al., 2021] When 𝒬 ≔ 𝒮!" denotes the positive
semidefinite matrix space, we show conv 𝒳 = proj3(𝒴), where



Column Generation Algorithm for Solving DWR
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Given the explicit characterization of conv(𝒳),

¢ Directly use off-the-shelf solvers (Mosek) to solve DWR
l Computationally expensive

¢ Column generation algorithm: at each iteration, directly solve the pricing 
problem over conv(𝒳)

Column Generation Algorithm



Pricing Problem = A Simple Convex Program

38Column Generation Algorithm

Theorem. For the spectral domain set,

the pricing problem reduced the following vector-based convex
optimization:



Numerical Study: Compare Three Methods
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¢ CG: Column Generation
¢ conv(𝒳) is an SDP formulation

Column Generation Algorithm

Method Setting Need conv(𝒳)?

Mosek Plug conv(𝒳) and directly solve the DWR Yes

Naïve CG Solve pricing problem over conv(𝒳) formulation Yes

Proposed CG Use vector-based reduction No



Numerical Study: MIMO Network with 𝑘 ≥ 1
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¢ Multiple-input and multiple-output (MIMO) radio network
l The data streams at a transmitter ≤ the number of transmit antennas
l Rank-𝑘 constraint on the covariance matrix
l Find the low rank data streams to minimize the total interference power 

¢ Yu and Lau (2010) proposed a RCOP-type model with
l 𝒳 ≔ 𝑋 ∈ 𝒮!": rank 𝑿 ≤ 𝑘, logdet 𝐼 + 𝑿 ≥ 𝑟, tr 𝑿 ≤ 𝑅
l 𝐼: identity matrix
l Spectral domain set 𝒳

Column Generation Algorithm



Numerical Study: MIMO Network with 𝑘 ≥ 1
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¢ “--”: cannot be solved within 3600 seconds
¢ “*”: infeasible solution

Parameters Mosek Naïve CG Our CG Theory
Rank

Bound𝑛 Rank-𝑘 𝑚 LMIs time(s) rank time(s) rank time(s) rank

50 5 5 43 2* 223 3 1 3 7
50 5 10 24 3* 1261 5 1 5 8
50 10 10 329 3* -- -- 1 4 13

100 10 10 -- -- -- -- 2 5 13
100 10 15 -- -- -- -- 2 5 14
100 15 15 -- -- -- -- 3 7 19
500 25 25 -- -- -- -- 24 8 31
500 25 50 -- -- -- -- 179 9 34
500 50 50 -- -- -- -- 181 27 59



Numerical Study: QCQP with 𝑘 = 1
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¢ Optimal Power Flow (OPF) problem is a classic QCQP (Eltved and Burer 2020) 

¢ Introduce matrix variable 𝑿 ≔ 1 𝒙&
𝒙 𝒙𝒙&

¢ Move 𝑟 ≤ tr 𝑿 − 1 ≤ 𝑅 into the domain set
¢ Reformulate OPF as a RCOP-type model with

l 𝒳 ≔ 𝑋 ∈ 𝒮!"!4 : rank 𝑿 ≤ 1, 𝑟 ≤ tr 𝑿 − 1 ≤ 𝑅
l Spectral domain set 𝒳
l conv(𝒳) ≔ 𝑋 ∈ 𝒮!"!4 : 𝑟 ≤ tr 𝑿 − 1 ≤ 𝑅



Numerical Study: QCQP with 𝑘 = 1
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¢ “--”: cannot be solved within 3600 seconds

¢ “*”: infeasible solution 

2Parameters Mosek Naïve CG Our CG Theory
Rank

Bound𝑛 Rank-𝑘 𝑚 LMIs time(s) rank time(s) rank time(s) rank

1500 1 60 642 1* -- -- 145 2 11

1500 1 75 844 1* -- -- 178 2 12

2000 1 75 -- -- -- -- 308 2 12

2000 1 90 -- -- -- -- 352 2 13

2500 1 90 -- -- -- -- 448 3 13

2500 1 100 -- -- -- -- 756 2 14



Summary

¢ Study a rank-constrained optimization problem (RCOP)
l General framework
l Dantzig-Wolfe Relaxation (DWR)

¢ Derive “if and only if” conditions for the three DWR exactness
l Only depend on the faces of the convex hull of domain 𝒳
l Geometric interpretation

¢ Beyond exactness, we derive rank bounds

¢ Column generation algorithm works well

44



Thank You !
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Preprint is available at https://arxiv.org/pdf/2210.16191


