On Dantzig-Wolfe Relaxation of Rank Constrained Optimization: Exactness, Rank Bounds, and Algorithms

Weijun Xie

Joint work with Yongchun Li

March 3, 2023

Linear and Non-Linear Mixed Integer Optimization Workshop

Motivation

- Question: If we cut the tennis ball X, is the convex hull of the intersection equal to the intersection of the convex hull? $\operatorname{conv}(\mathfrak{L} \cap X) = \mathfrak{L} \cap \operatorname{conv}(X)$
 - How about cut twice, three times, ...?

Rank Constrained Optimization Problem (RCOP)

$$(\text{RCOP}) \quad \mathbf{V}_{\text{opt}} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{X}}} \left\{ \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\}$$

• where \mathcal{X} : rank-k constrained domain set

 $\mathcal{X} := \{ \mathbf{X} \in \mathcal{Q} : \operatorname{rank}(\mathbf{X}) \le \mathbf{k}, F_j(\mathbf{X}) \le 0, \forall j \in [t] \}$

- Matrix space $Q \coloneqq S^n_+$, S^n , or $\mathbb{R}^{n \times p}$
- $F_j(\cdot)$ can be nonconvex

Special Case I: QCQP

$$(\text{RCOP}) \quad \mathbf{V}_{\text{opt}} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{X}}} \left\{ \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\}$$

• Quadratically constrained quadratic program (QCQP)

 $(\text{QCQP}) \quad \min_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ \boldsymbol{x}^\top \boldsymbol{Q}_0 \boldsymbol{x} + \boldsymbol{q}_0^\top \boldsymbol{x} : b_i^l \leq \boldsymbol{x}^\top \boldsymbol{Q}_i \boldsymbol{x} + \boldsymbol{q}_i^\top \boldsymbol{x} \leq b_i^u, \forall i \in [m] \right\}$

• Introduce matrix variable $X \coloneqq \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix}$

 $(\text{QCQP}) \quad \min_{\boldsymbol{X} \in \mathcal{X}} \left\{ \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m], X_{11} = 1 \right\}$

• Domain set
$$\mathcal{X} := \{ \mathbf{X} \in \mathcal{S}_+^{n+1} : \operatorname{rank}(\mathbf{X}) \le 1 \}$$

Special Case II: Low-Rank Unsupervised Learning

$$(\operatorname{RCOP}) \quad \mathbf{V}_{\operatorname{opt}} := \min_{\mathbf{X} \in \mathcal{X}} \left\{ \langle \mathbf{A}_0, \mathbf{X} \rangle : b_i^l \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m]
ight\}$$

• RCOP can cover Fair PCA (Tantipongpipat et al. 2019)

(Fair PCA)
$$\max_{(z, \boldsymbol{X}) \in \mathbb{R} \times \mathcal{X}} \{ z : z \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle, \forall i \in [m] \}$$

- Domain set $\mathcal{X} := \{ \mathbf{X} \in \mathcal{S}_+^n : \operatorname{rank}(\mathbf{X}) \le k, ||\mathbf{X}||_2 \le 1 \}$
- Matrix completion, signal processing, experimental design...

Special Case III: Sparse Optimization

$$(\text{RCOP}) \quad \mathbf{V}_{\text{opt}} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{X}}} \left\{ \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\}$$

• RCOP covers Sparse Optimization

$$\min_{(z, \boldsymbol{X}) \in \mathbb{R} \times \mathcal{X}} \{ z : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \}$$

• Domain set

$$\mathcal{X} := \{ \boldsymbol{X} \in \mathcal{S}^n : \operatorname{rank}(\boldsymbol{X}) \le k, \boldsymbol{X} = \operatorname{Diag}(\operatorname{diag}(\boldsymbol{X})), \|\boldsymbol{y} - \boldsymbol{A}\operatorname{diag}(\boldsymbol{X})\|_2 \le z \}$$

$$\left\| \boldsymbol{\lambda} = \left\| \left\| \boldsymbol{\lambda} = \boldsymbol{\lambda} \right\|_2 \right\|_2 \le k$$

• Replace domain set \mathcal{X} by its convex hull $\operatorname{conv}(\mathcal{X})$

 $\operatorname{conv}(\mathcal{X})$

- Feasible set of RCOP \mathcal{C} : intersecting domain set \mathcal{X} with m two-sided LMIs
- Feasible set of DWR \mathcal{C}_{rel} : intersecting $conv(\mathcal{X})$ with *m* two-sided LMIs

(RCOP)
$$\mathbf{V}_{opt} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{C}}} \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle$$
, (DWR) $\mathbf{V}_{rel} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{C}}_{rel}} \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle$

RCOP and DWR

(RCOP)
$$\mathbf{V}_{opt} := \min_{\mathbf{X} \in \mathcal{C}} \langle \mathbf{A}_0, \mathbf{X} \geq \mathcal{W} \mathbf{R} \rangle$$
 $\mathbf{V}_{rel} := \min_{\mathbf{X} \in \mathcal{C}_{rel}} \langle \mathbf{A}_0, \mathbf{X} \rangle$

- Feasible set \mathcal{C} : intersecting domain set \mathcal{X} with m two-sided LMIs
- Feasible set \mathcal{C}_{rel} : intersecting $conv(\mathcal{X})$ with *m* two-sided LMIs

Observation. $V_{opt} \ge V_{rel}$, $conv(\mathcal{C}) \subseteq \mathcal{C}_{rel}$.

Goal: Show DWR \equiv RCOP

(RCOP)
$$\mathbf{V}_{opt} := \min_{\mathbf{X} \in \mathcal{C}} \langle \mathbf{A}_0, \mathbf{X} \rangle$$

- We would like to understand when $DWR \equiv RCOP$
 - $C_{rel} = conv(C)$ or
 - $V_{opt} = V_{rel}$

Exactness Notion of DWR — Geometric View

(RCOP)
$$\mathbf{V}_{opt} := \min_{\mathbf{X} \in \mathcal{C}} \langle \mathbf{A}_0, \mathbf{X} \rangle$$
, (DWR) $\mathbf{V}_{rel} := \min_{\mathbf{X} \in \mathcal{C}_{rel}} \langle \mathbf{A}_0, \mathbf{X} \rangle$

Example: Intersect X with m = 1 LMI

Exactness Notion of DWR — Optimality View

$$(\text{RCOP}) \quad \mathbf{V}_{\text{opt}} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{C}}} \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle, \quad (\text{DWR}) \quad \mathbf{V}_{\text{rel}} := \min_{\boldsymbol{X} \in \boldsymbol{\mathcal{C}}_{\text{rel}}} \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle$$

Literature Review

• DWR exactness conditions for the (QCQP)

$$\mathcal{X} := \{ \boldsymbol{X} \in \mathcal{S}^n_+ : \operatorname{rank}(\boldsymbol{X}) \leq 1 \}$$

Method	Literature	Result	Assumption
S-lemma	Yakubovich (1971), Fradkov and Yakubovich (1979), Sturm and Zhang (2003)	Sufficient condition for objective exactness	Slater condition
Graph Structure	Kim and Kojima (2003), Sojoudi and Lavaei (2014), Burer and Ye (2020), Azuma et al. (2022)	Sufficient condition for objective exactness	Nonnegative coefficients; Slater condition; Bipartite graph
Convex Lagrange dual multipliers	Wang and Kılınc-Karzan (2020, 2021, 2022)	Necessary and sufficient conditions for convex hull, objective exactness	Dual Slater condition; Polyhedral dual set

• Note:

- Mainly from the dual space with Slater condition
- Ours is primal perspective

Main Contributions to the DWR Exactness

- Existing results: recover them and remove their assumptions
- New Results: exactness for IQP-2 and Fair SVD

Application	Problem	Setting	Exactness result	Assumption
	QCQP-1	single quadratic constraint	extreme point	—
	TRS	single ball constraint	convex hull	_
QCQP	GTRS	single quadratic inequality constraint	convex hull	_
(k = 1)	Two-sided GTRS	single two-sided quadratic constraint	extreme point	$oldsymbol{Q}_1 eq oldsymbol{0}; \ -\infty < b_1^l \le b_1^u < +\infty$
	HQP-2	homogeneous QCQP with two quadratic constraints	extreme point	
	IQP-2	inhomogeneous objective with two homogeneous quadratic constraints	extreme point	—
Fair Unsupervised Learning $(k \ge 1)$	Fair PCA	two groups	convex hull	-
	Fair SVD	three groups	convex hull	_

Main Contributions on DWR Exactness

- We derive the "if and only if" conditions for all the three exactness notions
 - Beyond the QCQP
 - Primal perspective
 - Remove many assumptions in the literature, e.g., Slater condition
 - Geometric interpretation
- Generalize and extend exactness results for applications problems in QCQP and fair unsupervised learning

Extreme Point Exactness

"iff" Condition of the Extreme Point Exactness

"iff" Condition of the Extreme Point Exactness

<u>Recall.</u> $\mathcal{C} := \left\{ \mathbf{X} \in \mathcal{X} : b_i^l \le \langle \mathbf{A}_i, \mathbf{X} \rangle \le b_i^u, \forall i \in [m] \right\}$

$$\mathcal{C}_{\mathrm{rel}} := \left\{ \boldsymbol{X} \in \mathrm{conv}(\boldsymbol{\mathcal{X}}) : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m]
ight\}$$

• When $ext(\mathcal{C}_{rel}) \subseteq \mathcal{C}$? Depend on \leq m-dim faces in $conv(\mathcal{X})$

What are Faces?

Definition. For a closed convex set *D*, a convex subset *F* of *D* is called a face if for any line segment $[a, b] \subseteq D$ such that $[a, b] \cap F \neq \emptyset$, we have $[a, b] \subseteq F$.

What Faces are Extreme Points of C_{rel} Located?

 $\mathcal{C}_{\mathrm{rel}} := \left\{ oldsymbol{X} \in \operatorname{conv}(oldsymbol{\mathcal{X}}) : b_i^l \leq \langle oldsymbol{A}_i, oldsymbol{X}
angle \leq b_i^u, orall i \in [m]
ight\}$

- Extreme Points of C_{rel} lie on \leq m-dim faces in conv(\mathcal{X})
 - Hold for any *m* LMIs
- Example: $\mathcal{X} \coloneqq \{ X \in S_+^2 : \operatorname{rank}(X) \le 1, X_{12} = 0 \}$
 - Add m = 1 LMI: $X_{11} + X_{22} \le 1$

 \mathcal{X} : nonnegative axes

 $\operatorname{conv}(\mathcal{X})$: nonnegative orthant

- $\operatorname{ext}(\mathcal{C}_{\operatorname{rel}}) = \{a_1, a_2, a_3\} \subseteq \mathcal{C}$
- All the extreme points lie on the **Point and Edges** (i.e., ≤ 1 -dim faces) in conv(\mathcal{X})

What Faces are Extreme Points of C_{rel} Located?

 $\mathcal{C}_{ ext{rel}} := \left\{ oldsymbol{X} \in \operatorname{conv}(oldsymbol{\mathcal{X}}) : b_i^l \leq \langle oldsymbol{A}_i, oldsymbol{X}
angle \leq b_i^u, orall i \in [m]
ight\}$

- Extreme Points of C_{rel} lie on \leq m-dim faces in conv(\mathcal{X})
 - Hold for any *m* LMIs
- Example: Add m = 1 LMI to set \mathcal{X}

- $\operatorname{ext}(\mathcal{C}_{\operatorname{rel}}) = \{a_1\} \subseteq \mathcal{C}$
- The extreme point is a **Point** in conv(X)

"iff" Condition of the Extreme Point Exactness

$$\begin{array}{ll} \displaystyle \underline{\mathsf{Recall.}} & \quad \mathcal{C} := \left\{ \boldsymbol{X} \in \boldsymbol{\mathcal{X}} : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\} \\ & \quad \mathcal{C}_{\mathrm{rel}} := \left\{ \boldsymbol{X} \in \mathrm{conv}(\boldsymbol{\mathcal{X}}) : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\} \end{array}$$

• Given $ext(\mathcal{C}_{rel})$ is contained in \leq m-dim faces in $conv(\mathcal{X})$, when $ext(\mathcal{C}_{rel}) \subseteq \mathcal{C}$ holds?

<u>Proof</u>.

Sufficiency. Any extreme point Y of C_{rel} belongs to \leq m-dim faces in conv(\mathcal{X}) \subseteq \mathcal{X} . And Y satisfies the *m* LMIs and thus $Y \in C$.

Necessity. Prove by contradiction.

Geometric Interpretation of "iff" Condition

$$\begin{array}{ll} \underline{\operatorname{Recall.}} & \quad \mathcal{C} := \left\{ \boldsymbol{X} \in \boldsymbol{\mathcal{X}} : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\} \\ & \quad \mathcal{C}_{\operatorname{rel}} := \left\{ \boldsymbol{X} \in \operatorname{conv}(\boldsymbol{\mathcal{X}}) : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\} \end{array}$$

Step I: where are extreme points in C_{rel} located for any *m* LMIs?

• On $\leq m$ -dim faces of conv(\mathcal{X})!

Step II: when set C contains these extreme point locations?

• Any $\leq m$ -dim face in conv(\mathcal{X}) belongs to \mathcal{X}

Application: QCQP

- For QCQP, $\mathcal{X} \coloneqq \{X \in \mathcal{S}_+^n : \operatorname{rank}(X) \le 1\}$ and $\operatorname{conv}(\mathcal{X}) \coloneqq \mathcal{S}_+^n$
- Any \leq 2-dim face of conv(\mathcal{X}) is contained in \mathcal{X}

• Point: 0-dim face; Edge: 1-dim face; Plane: 2-dim face

Lemma. For QCQP, any ≤ 2 -dim face of conv(\mathcal{X}) is contained in \mathcal{X} .

Extending Many Interesting Results in QCQP

Lemma. For QCQP, any ≤ 2 -dim face of conv(\mathcal{X}) is contained in \mathcal{X} .

• Using "iff" condition of extreme point exactness

Theorem. For QCQP, its DWR attains extreme point exactness whenever there are any ≤ 2 LMIs.

- Trust region subproblem (TRS)
- Generalized TRS
- Two-sided generalized TRS
- Homogeneous QCQP with 2 quadratic constraints
- Inhomogeneous QCQP with 2 homogeneous quadratic constraints

Convex Hull Exactness

"iff" Condition of the Convex Hull Exactness

Convex Hull Exactness ≥ Extreme Point Exactness

- Example: $\mathcal{X} \coloneqq \{ X \in S_+^2 : \operatorname{rank}(X) \le 1, X_{12} = 0 \}$
 - Add m = 1 LMI: $X_{11} \le X_{22}$

- Extreme point exactness holds, while convex hull exactness does not
- One-dim faces F_1, F_2 lie on the Edge and Plane (i.e., ≤ 2 -dim faces) in conv(\mathcal{X})

What Faces are Extreme Directions of C_{rel} Located? $C_{rel} := \{ X \in conv(\mathcal{X}) : b_i^l \le \langle A_i, X \rangle \le b_i^u, \forall i \in [m] \}$

Where are the one-dim faces of the recession cone of C_{rel} located?
 On ≤ (m + 1)-dim face of the recession cone of conv(X)

Lemma. For any *m* LMIs, each one-dim face of the intersection set C_{rel} is contained in a $\leq (m + 1)$ -dim face of the recession cone of conv(\mathcal{X}).

"iff" Condition of the Convex Hull Exactness

• When the domain set \mathcal{X} is conic, the sufficient condition

- Reduces to "Any $\leq (m + 1)$ -dim face in conv(\mathcal{X}) is contained in \mathcal{X} "
- becomes necessary

Theorem. When the domain set \mathcal{X} is conic and pointed.

Set C_{rel} is identical to the convex hull of set C

Any $\leq (m + 1)$ -dim face in conv(\mathcal{X}) is contained in \mathcal{X}

QCQP Revisited

Lemma. For QCQP, any ≤ 2 -dim face of conv(\mathcal{X}) is contained in \mathcal{X} .

• Using "iff" condition of convex hull exactness

Theorem. For homogeneous QCQP with 1 quadratic constraint, convex hull exactness holds.

• For Fair PCA (Tantipongpipat et al. 2019)

 $(\text{Fair PCA}) \quad \max_{(z, \boldsymbol{X}) \in \mathbb{R} \times \mathcal{X}} \{ z : z \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle, \forall i \in [m] \}$

• Domain set
$$\mathcal{X} := \{ \mathbf{X} \in \mathcal{S}_+^n : \operatorname{rank}(\mathbf{X}) \le k, ||\mathbf{X}||_2 \le 1 \}$$

Theorem.

For Fair PCA with two groups m = 2, the convex hull exactness holds.

Solution Algorithms

Column Generation Algorithm for Solving DWR

$$(\mathrm{DWR}) \quad \mathbf{V}_{\mathrm{rel}} := \min_{\mathbf{X} \in \mathrm{conv}(\mathcal{X})} \left\{ \langle \mathbf{A}_0, \mathbf{X} \rangle : b_i^l \leq \langle \mathbf{A}_i, \mathbf{X} \rangle \leq b_i^u, \forall i \in [m]
ight\}.$$

• Given the spectral domain set \mathcal{X} , we explicitly described conv (\mathcal{X})

Proposition[Kim et al., 2021] When $Q \coloneqq S_+^n$ denotes the positive semidefinite matrix space, we show $conv(X) = proj_X(Y)$, where

 $\mathcal{Y} := \{ (\boldsymbol{X}, \boldsymbol{x}) \in \mathcal{Q} \times \mathbb{R}^n_+ : f_j(\boldsymbol{x}) \le 0, \forall j \in [t], x_1 \ge \cdots \ge x_n, x_{k+1} = 0, \boldsymbol{x} \succeq \boldsymbol{\lambda}(\boldsymbol{X}) \}.$

- Computationally expensive to formulate conv(X)
 - Extended space
 - Majorization constraint

Column Generation Algorithm for Solving DWR

$$(\text{DWR}) \quad \mathbf{V}_{\text{rel}} := \min_{\boldsymbol{X} \in \text{conv}(\boldsymbol{\mathcal{X}})} \left\{ \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\}.$$

Given the explicit characterization of conv(X),

- Directly use off-the-shelf solvers (Mosek) to solve DWR
 - Computationally expensive
- Column generation algorithm: at each iteration, directly solve the pricing problem over conv(X)

$$(\text{Pricing}) \quad \min_{\boldsymbol{X} \in \text{conv}(\mathcal{X})} \langle \boldsymbol{C}_t, \boldsymbol{X} \rangle = \min_{\boldsymbol{X} \in \mathcal{X}} \langle \boldsymbol{C}_t, \boldsymbol{X} \rangle$$

Pricing Problem = A Simple Convex Program

 $(\text{Pricing}) \quad \min_{\boldsymbol{X} \in \text{conv}(\mathcal{X})} \langle \boldsymbol{C}_t, \boldsymbol{X} \rangle = \min_{\boldsymbol{X} \in \mathcal{X}} \langle \boldsymbol{C}_t, \boldsymbol{X} \rangle$

Theorem. For the spectral domain set,

 $oldsymbol{\lambda} \in \mathbb{R}^n_{\perp}$

 $\mathcal{X} := \{ \boldsymbol{X} \in \mathcal{Q} : \operatorname{rank}(\boldsymbol{X}) \leq k, F_j(\boldsymbol{X}) := \boldsymbol{f}_j(\boldsymbol{\lambda}(\boldsymbol{X})) \leq 0, \forall j \in [t] \}$

the pricing problem reduced the following vector-based convex optimization: $\lambda^* := \arg \max \left\{ \lambda^\top \beta : \lambda_i = 0, \forall i \in [k+1,n], f_j(\lambda) \le 0, \forall j \in [t] \right\}.$

Numerical Study: Compare Three Methods

$$(\text{DWR}) \quad \mathbf{V}_{\text{rel}} := \min_{\boldsymbol{X} \in \text{conv}(\boldsymbol{\mathcal{X}})} \left\{ \langle \boldsymbol{A}_0, \boldsymbol{X} \rangle : b_i^l \leq \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle \leq b_i^u, \forall i \in [m] \right\}.$$

Method	Setting	Need conv(\mathcal{X})?
Mosek	Plug conv(\mathcal{X}) and directly solve the DWR	Yes
Naïve CG	Solve pricing problem over $conv(X)$ formulation	Yes
Proposed CG	Use vector-based reduction	No

- CG: Column Generation
- $\operatorname{conv}(\mathcal{X})$ is an SDP formulation

Numerical Study: MIMO Network with $k \ge 1$

- Multiple-input and multiple-output (MIMO) radio network
 - The data streams at a transmitter \leq the number of transmit antennas
 - Rank-*k* constraint on the covariance matrix
 - Find the low rank data streams to minimize the total interference power
- Yu and Lau (2010) proposed a RCOP-type model with
 - $\mathcal{X} \coloneqq \{X \in \mathcal{S}_+^n : \operatorname{rank}(\mathbf{X}) \le k, \operatorname{logdet}(I + \mathbf{X}) \ge r, \operatorname{tr}(\mathbf{X}) \le R\}$
 - *I*: identity matrix
 - Spectral domain set X

Numerical Study: MIMO Network with $k \ge 1$

	Paramet	ers	Mos	ek	Naïve CG		Our CG		Theory
n	Rank-k	m LMIs	time(s)	rank	time(s)	rank	time(s)	rank	Rank Bound
50	5	5	43	2*	223	3	1	3	7
50	5	10	24	3*	1261	5	1	5	8
50	10	10	329	3*			1	4	13
100	10	10					2	5	13
100	10	15					2	5	14
100	15	15					3	7	19
500	25	25					24	8	31
500	25	50					179	9	34
500	50	50					181	27	59

- "--": cannot be solved within 3600 seconds
- "*": infeasible solution

Numerical Study: QCQP with k = 1

- Optimal Power Flow (OPF) problem is a classic QCQP (Eltved and Burer 2020)
- $(\text{OPF}) \quad \min_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ \boldsymbol{x}^\top \boldsymbol{Q}_0 \boldsymbol{x} + \boldsymbol{q}_0^\top \boldsymbol{x} : r \leq \boldsymbol{x}^\top \boldsymbol{x} \leq R, \ b_i^l \leq \boldsymbol{x}^\top \boldsymbol{Q}_i \boldsymbol{x} + \boldsymbol{q}_i^\top \boldsymbol{x} \leq b_i^u, \forall i \in [m] \right\}$

• Introduce matrix variable
$$X \coloneqq \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix}$$

- Move $r \leq tr(X) 1 \leq R$ into the domain set
- Reformulate OPF as a RCOP-type model with
 - $\mathcal{X} \coloneqq \{X \in \mathcal{S}^{n+1}_+ : \operatorname{rank}(X) \le 1, r \le \operatorname{tr}(X) 1 \le R\}$
 - Spectral domain set X
 - $\operatorname{conv}(\mathcal{X}) \coloneqq \{X \in \mathcal{S}^{n+1}_+ : r \le \operatorname{tr}(X) 1 \le R\}$

Numerical Study: QCQP with k = 1

2Parameters		Mosek		Naïve CG		Our CG		Theory	
n	Rank-k	<i>m</i> LMIs	time(s)	rank	time(s)	rank	time(s)	rank	Rank Bound
1500	1	60	642	1*			145	2	11
1500	1	75	844	1*			178	2	12
2000	1	75					308	2	12
2000	1	90					352	2	13
2500	1	90					448	3	13
2500	1	100					756	2	14

- "--": cannot be solved within 3600 seconds
- *"*"*: infeasible solution

Summary

- Study a rank-constrained optimization problem (RCOP)
 - General framework
 - Dantzig-Wolfe Relaxation (DWR)
- Derive "if and only if" conditions for the three DWR exactness
 - Only depend on the faces of the convex hull of domain \mathcal{X}
 - Geometric interpretation
- Beyond exactness, we derive rank bounds
- Column generation algorithm works well

Thank You !

Preprint is available at https://arxiv.org/pdf/2210.16191