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Motivation

Nonconvex X

o Question: If we cut the tennis ball X, 1s the convex hull of the

intersection equal to the intersection of the convex hull?

conv(£ N X) = £ N conv(X)

How about cut twice, three times, ...?



Rank Constrained Optimization Problem (RCOP)

(RCOP) 'V, :=min {(Ao, X) : b; < (A;, X) < b}, Vi € [m]}

XeX

o where X: rank—k constrained domain set
X:={X € Q:rank(X) <k, F;(X)<0,Vj €t]}

o Matrix space Q := ST, §™, or R™*P

o Fj(-) can be nonconvex



Special Case I: QCQP

(RCOP) V,p :=min {(Ao, X) : b} < (A;, X) < b}, Vi € [m]}

XeX

o Quadratically constrained quadratic program (QCQP)

(QCQP) min {z'Qux+q,x:b;<x'Qx+q = <b},Vie[m]}

xeR"

1 x

-
o Introduce matrix variable X := ( T)
X XX

(QCQP)  min {({Ay, X) :b; < (A;, X) b, Vi € [m], Xy, =1}

Domain set X :={X € S{™ rrank(X) <1}



Special Case 11:
Low-Rank Unsupervised Learning

(RCOP) 'V, :=min {(Ao, X) : b; < (A;, X) < b}, Vi € [m]}

XeX

o RCOP can cover Fair PCA (Tantipongpipat et al. 2019)

(Fair PCA) max {z:2<(A;, X),Vie[m]}

(z,X)ERX X

Domain set X :={X €8" :rank(X) <k, || X]|[, <1}

o Matrix completion, signal processing, experimental design...



Special Case 111: Sparse Optimization

(RCOP) Vopt = gI{lEII‘% {(Ao, X> . bi < (A,,,, X> < b;ll,vz (S [m]}

o RCOP covers Sparse Optimization

min  {z:b! <(A;, X) <b*,Vie [m]}

(2,X)eRx X

o Domain set
X :={X € 8" :rank(X) < k, X = Diag(diag(X)), ||y — A diag(X)||» < z}

|

||diag(X)||0 <k



Dantzig-Wolfe Relaxation (DWR)

(RCOP) V,p; :=min {(Ao, X) : b} < (A;, X) < b}, Vi € [m]}

XeX

Relaxation

(DWR) V,q:= min {(Ay,X):b <(A;, X)<b!Vie[m]}.

X econv(X)

o Replace domain set X by its convex hull conv(X)

conv(X)

o Feasible set of RCOP C: intersecting domain set X with m two-sided LMIs

o Feasible set of DWR C,: intersecting conv(X') with m two-sided LMIs

RCOP) Vg, :=min(Ay, X), (DWR) V,q:= min (A4y, X
p

XecC X €Cre)




(RCOP) Vi :zmin(Ao,X>)WR) Vil := min (Ag, X)

XeC Xecrel

o Feasible set C: intersecting domain set X with m two-sided LMIs

o Feasible set C.: intersecting conv(X') with m two-sided LMIs

Observation. V,,; > Vi), conv(C) S Crg.



Goal: Show DWR = RCOP

(RCOP) V= r)?ércl(Ag,X>,

VR) Vi9e:= min (Ay, X)

ECrel

o We would like to understand when DWR = RCOP

Cre] = conv(C) or

Vopt = Vrel

DWR Exactness




Exactness Notion of DWR — Geometric View

(RCOP) Vi :=min(Ap, X), (DWR) V,q:= min (Ay, X)

XeC X €Cye

AN AV

e A

rel
@ grel
a

TN g,

X': nonnegative axes conv(X): nonnegative orthant

a;

|

Example: Intersect X withm = 1 LMI

DWR Exactness 10



Exactness Notion of DWR — Optimality View

(RCOP) V,,:=min(Ap, X), (DWR) V,q:= min (Ag, X)

XeC X €Cyel

«— | Convex Hull Exactness
Cre1 = conv(C)

Extreme Point Exactness

ext (Crel) ccC

U

given C,¢ is bounded

given V,q > —00

for any Ag
for any Ag Objective Exactness

Vrel = Vopt

for some favorable A,

Objective Exactness given special families of linear objective functions

Vrel - Vopt

DWR Exactness



Literature Review

o DWR exactness conditions for the (QCQP) |X:={X €S :rank(X) < 1}

S-lemma Yakubovich (1971), Sufficient condition for ~ Slater condition
Fradkov and Yakubovich (1979),  objective exactness
Sturm and Zhang (2003) ...
Graph Kim and Kojima (2003), Sufficient condition for =~ Nonnegative
Structure Sojoudi and Lavaei (2014), objective exactness coefficients;
Burer and Ye (2020), Slater condition;
Azuma et al. (2022) ... Bipartite graph
Convex Wang and Kilinc-Karzan (2020, Necessary and sufficient  Dual Slater
Lagrange dual 2021, 2022)... conditions for convex condition;
multipliers hull, objective exactness  Polyhedral dual set
o Note:

Mainly from the dual space with Slater condition

Ours is primal perspective

DWR Exactness 12



Main Contributions to the DWR Exactness

o Existing results: recover them and remove their assumptions
o New Results: exactness for IQP-2 and Fair SVD

Application Problem Setting Exactness result Assumption
QCQP-1 single quadratic constraint extreme point -
TRS single ball constraint convex hull -
single quadratic inequality -
QCQP GTRS constraint convex hull
(k=1) single two-sided quadratic Q. #0;

Two-sided GTRS

constraint

extreme point

—oo < b <b¥ < 400

homogeneous QCQP with

HQP-2 two quadratic constraints extreme point
inhomogeneous objective -
IQP-2 with two homogeneous extreme point
quadratic constraints
Fair Unsu- Fair PCA two groups convex hull -
pervised
Learning _
(k>1) Fair SVD three groups convex hull

DWR Exactness
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Main Contributions on DWR Exactness

o We derive the “if and only 1f” conditions for all the three exactness notions
Beyond the QCQP
Primal perspective
Remove many assumptions in the literature, e.g., Slater condition

Geometric interpretation

o Generalize and extend exactness results for applications problems in QCQP
and fair unsupervised learning

DWR Exactness 14



Extreme Point Exactness



“iff””> Condition of the Extreme Point Exactness

Convex Hull Exactness

Cre1 = conv(C)

ext(Cre): all | Extreme Point Exactness
extreme points ext(Cre1) CC

V

given C,¢ is bounded

iven Vg > —00
& rel for any A

for any Ag Objective Exactness

Vrel = Vopt

for some favorable A,

Objective Exactness given special families of linear objective functions
Vrel - Vopt

Extreme Point Exactness 16



“iff”> Condition of the Extreme Point Exactness

Recall. C:={X eX:b <(A;,X)<b!, Vi€ [m|}

Crer :={ X € conv(X): b, < (A;, X) <b,Vi € [m]}

o When ext(Cre)) EC? Depend on < m-dim faces in conv(X)

Theorem.

All extreme points in “iff” Any < m-dimensional face in
set Cre) belong to C conv(X) is contained in X

Extreme Point Exactness 17



What are Faces?

0-dim face 1-dim face 2-dim face
(Point) (Edge) (Plane)

Definition. For a closed convex set D, a convex subset F of D is called a face
if for any line segment [a, b] € D such that [a, b] N F # @, we have [a, b] S F.

Extreme Point Exactness 18



What Faces are Extreme Points of C..; Located?

Crer :={ X € conv(X): b, < (A;, X) <b},Vie[m]}

o Extreme Points of Cpj lie on < m-dim faces in conv(X')
Hold for any m LMIs

o Example: X := {X € §2: rank(X) < 1,X;, = 0}
Addm =1 LMI: X11 +X22 < 1

e
N\
.

X': nonnegative axes conv(X): nonnegative orthant

o eXt(Crel) = {all as, a3} cC

o All the extreme points lie on the Point and Edges (i.e., < 1-dim faces) in conv(X)

Extreme Point Exactness 19



What Faces are Extreme Points of C..; Located?

Crer :={ X € conv(X): b, < (A;, X) <b¥,Vie[m]}

o Extreme Points of Cp¢ lie on < m-dim faces in conv(X)
Hold for any m LMIs

o Example: Add m =1 LMI to set X’

N

C Crel

a,

i

X':nonnegative axes conv(X'): nonnegative orthant

o ext(Cre) ={a1} €C

o The extreme point is a Point in conv(X)

Extreme Point Exactness 20



“iff”> Condition of the Extreme Point Exactness

Recall. C:={X eX:b,<(A;,X)<b!, Vi€ [m|}
Crer :={ X € conv(X):b; < (A;, X) <b},Vi e [m]}

o Given ext(Cpep) is contained in < m-dim faces in conv(X'), when ext(Cr.1) € C holds?

Theorem.
All extreme points in “iff” Any < m-dimensional face
set Cre) belong to C in conv(X) is contained in X
Proof.

Sufficiency. Any extreme point Y of Cpo belongs to < m-dim faces in conv(X) S
X. And Y satisfies the m LMIs and thus Y € C.

Necessity. Prove by contradiction.

Extreme Point Exactness 22



Geometric Interpretation of “iff” Condition

Recall. C:={X eX:b,<(A;,X)<b!, Vi€ [m|}
Crer :={ X € conv(X):b; < (A;, X) <b},Vi e [m]}

Theorem.
All extreme points in “ift” Any < m-dimensional face in
set Cre) belong to C conv(X) is contained in X

Step I: where are extreme points in Cpq located for any m LMIs?
On < m-dim faces of conv(X)!

Step II: when set C contains these extreme point locations?
Any < m-dim face in conv(X) belongs to X

Extreme Point Exactness 24



Application: QCQP

o For QCQP, X = {X € §}: rank(X) < 1} and conv(X) := 8§}

o0 Any < 2-dim face of conv(X) is contained in X

X conv(X)

o Point: 0-dim face; Edge: 1-dim face; Plane: 2-dim face

Lemma. For QCQP, any < 2-dim face of conv(X) is contained in X.

Extreme Point Exactness
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Lemma. For QCQP, any < 2-dim face of conv(X) is contained in X.

o Using “iff” condition of extreme point exactness

Theorem. For QCQP, its DWR attains extreme point exactness whenever
there are any < 2 LMIs.

Trust region subproblem (TRS)
Generalized TRS
Two-sided generalized TRS

Homogeneous QCQP with 2 quadratic constraints

O O O O O

Inhomogeneous QCQP with 2 homogeneous quadratic constraints



Convex Hull Exactness



“ift” Condition of the Convex Hull Exactness

ext(Cre)): all
extreme points

Extreme Point Exactness
ext (Crel) ccC

given Vi, > —00

for any Ao

V

given C,¢ is bounded

Objective Exactness

Vrel = Vopt

Convex Hull Exactness

Cre1 = conv(C)

for any A

for some favorable A,

Objective Exactness given special families of linear objective functions

Vrel - Vopt

Convex Hull Exactness
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Convex Hull Exactness = Extreme Point Exactness

o Example: X := {X € §%: rank(X) < 1,X;, = 0}
Add m = 1 LMI X11 S X22

N

C Crel
al al/
X':nonnegative axes conv(X'): nonnegative orthant

o Extreme point exactness holds, while convex hull exactness does not

o One-dim faces F;, F, lie on the Edge and Plane (i.e., < 2-dim faces) in
conv(X)

Convex Hull Exactness 29



What Faces are Extreme Directions of C..; Located?

Crer :={ X € conv(X): b < (A;, X) <b¥,Vie[m]}

o Where are the one-dim faces of the recession cone of Cp e located?
On < (m + 1)-dim face of the recession cone of conv(X)

Lemma. For any m LMIs, each one-dim face of the intersection set Crej

is contained in a < (m + 1)-dim face of the recession cone of conv(X).

Convex Hull Exactness 31



“ift”” Condition of the Convex Hull Exactness

o When the domain set X 1s conic, the sufficient condition

Reduces to “Any < (m + 1)-dim face in conv(X) is contained in X

becomes necessary

Theorem. When the domain set X is conic and pointed.

o , “iff”
Set Cye) 1s 1dentical to the Any < (m + 1) -dim face in
convex hull of set C conv(X) is contained in X

Convex Hull Exactness
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Lemma. For QCQP, any < 2-dim face of conv(X) is contained in X.

o Using “iff” condition of convex hull exactness

Theorem. For homogeneous QCQP with 1 quadratic constraint, convex
hull exactness holds.



Fair PCA

o For Fair PCA (Tantipongpipat et al. 2019)

(Fair PCA) max {z:2<(A;, X),Vie [m]}

(2,X)eERx X

Domain set X :={X €S” :rank(X) <k, || X[, <1}

Theorem.
For Fair PCA with two groups m = 2, the convex hull exactness holds.

34



Solution Algorithms



Column Generation Algorithm for Solving DWR

(DWR) V,a:= min {(Ao,X):b <(A;, X)<b!,Vie[m]}.

X €conv(X)

o Given the spectral domain set X, we explicitly described conv(X)

Proposition|Kim et al., 2021] When Q := S denotes the positive

semidefinite matrix space, we show conv(X') = projx(Y), where

yZ: {(X,a:) c QXRZ_ f](w) SO,VJG [t],.’lﬂ'l 2"‘2$n,$k+1 :O,JJEA(X)}

o Computationally expensive to formulate conv(X)
Extended space

Majorization constraint

Column Generation Algorithm 36



Column Generation Algorithm for Solving DWR

(DWR) V,a:= min {(Ao,X):b <(A;, X)<b!,Vie[m]}.

X econv(X)

Given the explicit characterization of conv(X),

o Directly use off-the-shelf solvers (Mosek) to solve DWR

Computationally expensive

o Column generation algorithm: at each iteration, directly solve the pricing
problem over conv(X)

(Pricing) min  (C}, X) = min(C}, X)

X econv(X) XeXx

Column Generation Algorithm 37



Pricing Problem = A Simple Convex Program

(Pricing) min (C;, X) = min(C}, X)

X econv(X) XeXx

Theorem. For the spectral domain set,
X :={X € Q:rank(X) <k, F,(X) = f,(A(X)) <0,j € [1]}

the pricing problem reduced the following vector-based convex

optimization:
A*:=argmax {A'B:\;=0,Vie [k+1,n], f;(X) <0,Vj € [t]}.

n
AERY

Column Generation Algorithm 38



Numerical Study: Compare Three Methods

(DWR) V.q:= min {(Ao,X):b <(A;, X)<b!,Vi€[m]}.

X econv(X)
Method Setting Need conv(X)?
Mosek Plug conv(X') and directly solve the DWR Yes
Naive CG | Solve pricing problem over conv(X) formulation Yes
Proposed CG Use vector-based reduction No

o CG: Column Generation

o conv(X) is an SDP formulation

Column Generation Algorithm 39



Numerical Study: MIMO Network with k > 1

o Multiple-input and multiple-output (MIMO) radio network
The data streams at a transmitter < the number of transmit antennas

Rank-k constraint on the covariance matrix

Find the low rank data streams to minimize the total interference power

o Yuand Lau (2010) proposed a RCOP-type model with
X ={X € §}: rank(X) < k,logdet(I + X) = r,tr(X) < R}
I: identity matrix

Spectral domain set X | -

| -

Column Generation Algorithm 40



Numerical Study: MIMO Network with k > 1

Parameters Mosek Naive CG Our CG Theory
Rank

n | Rank-k | m LMIs | time(s) | rank | time(s) | rank | time(s) | rank | Bound
50 5 5 43 223 3 1 3 7
50 5 10 24 1261 5 1 5 8
50 10 10 329 -- -- 1 4 13
100 10 10 - - -- -- 2 5 13
100 10 15 - - -- -- 2 5 14
100 15 15 - - -- -- 3 7 19
500 25 25 - - -- -- 24 8 31
500 25 50 - - -- -- 179 9 34
500 50 50 - - -- -- 181 27 59

o “--: cannot be solved within 3600 seconds

o

ek,

. infeasible solution

Column Generation Algorithm
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Numerical Study: QCQP with k = 1

o Optimal Power Flow (OPF) problem i1s a classic QCQP (Eltved and Burer 2020)

(OPF) Hg%{% ' Quz+qyz:r<ax'z<R, b <x'Qx+gq x<b!Vie[m]}

1 xT)
x xx'

o Mover <tr(X)— 1 < R into the domain set

o Reformulate OPF as a RCOP-type model with
X:={XeS8M: rank(X) <1,r <tr(X) — 1 < R}
Spectral domain set X
conv(X) = {X € S1:r <tr(X) —1 <R}

o Introduce matrix variable X := (

Column Generation Algorithm 42



Numerical Study: QCQP with k = 1

2Parameters Mosek Naive CG Our CG Theory

n Rank-k | m LMIs | time(s) | rank | time(s) | rank

1500 1 60 642 - -
1500 1 75 844 - -
2000 1 75 -- - - -
2000 1 90 -- - - -
2500 1 90 -- - - -
2500 1 100 -- - - -

o ‘--”: cannot be solved within 3600 seconds

O “*”:infeasible solution

Column Generation Algorithm 43



o

o

o

o

Study a rank-constrained optimization problem (RCOP)
General framework
Dantzig-Wolfe Relaxation (DWR)

Derive “if and only 1f” conditions for the three DWR exactness
Only depend on the faces of the convex hull of domain X
Geometric interpretation

Beyond exactness, we derive rank bounds

Column generation algorithm works well



Thank You !

Preprint is available at https://arxiv.org/pdf/2210.16191



