Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming
with an Application to Disaster Relief Logistics

Joint work with
Margarita Castro (PUC-Chile) and Yongjia Song (Clemson)

ICERM
February 2023
Motivating App. Hurricane Disaster Relief Planning

(Source: Wikipedia)
Motivating App. Hurricane Disaster Relief Planning

- **Hurricane Katrina (2005):**
 - > 1200 fatalities
 - > $190 billion damage

- **Hurricane Ian (2022):**
 - > 160 fatalities
 - > $113 billion damage

Hurricanes can be detected a few days before their landfall

- \(\approx 5\) days before landfall, National Hurricane Center provides info about
 - hurricane’s predicted trajectory, speed, intensity
 - endangered areas

(Source: Wikipedia)
Motivating App. Hurricane Disaster Relief Planning

Predictions are leveraged by humanitarian and governmental agencies to prepare and allocate hurricane relief supplies.

When, where, and how to preposition relief supplies ahead of an impeding hurricane?

How to distribute supplies to affected population in an efficient way?
Motivating App. Hurricane Disaster Relief Planning

Contingency modality activation:

- Not all types of operations are fully adaptive
- Some operations are “all or nothing” type decisions, e.g., contingency modality activation for expanding DC capacities
Talk is about: Multi-stage SP & A bit of two-stage SP

First need to move some key players to a different stage!
Sequential Decision-making Under Uncertainty

Uncertainty is gradually observed

Decisions are dynamically adapted to:
- Observed uncertainty
- Previous decisions
Multi-stage stochastic programs

Finite-horizon sequential decision-making problems under uncertainty

- \(T \geq 2 \) decision stages
- Stochastic process: \(\{\xi_t\}_{t\in[T]} \) \([T] = \{1, \ldots, T\} \)
- History: \(\xi^t := (\xi_1, \ldots, \xi_t) \)
- Dynamics:

\[
\begin{align*}
t = 1 & \quad \ldots \quad \text{Stage } t-1 \text{ decisions} \\
\downarrow \quad \text{observe} \quad \xi_t & \quad \rightarrow \quad \text{Stage } t \text{ decisions} \\
y_1, x_1 & \quad \ldots \quad \xi^{t-1} & \quad \rightarrow \quad y_t, x_t \\
\end{align*}
\]

- Decision variables: (nonanticipative)
 - State variables: \(x_t(\xi^t) \)
 - Recourse (stage) variables: \(y_t(\xi^t) \)
- For convenience: \(\xi_1 = 1 \)
Our Setup

Commonly used scenario-tree based approach
Usually an exponentially large tree

Uncertainty model:

- Governed by a Markov chain (MC)

MSILP model:

\[
\min \sum_{n \in \mathcal{N}} p_n f_n(x_n, z_n, y_n)
\]

s.t. \(\forall n \in \mathcal{N} : \)

- \((x_n, z_n, y_n) \in \mathcal{X}_n(x_{a(n)}, z_{a(n)})\)
- \(y_n \in \mathbb{R}^m \rightarrow \) cont. local variables
- \(x_n \in \mathbb{R}^r \rightarrow \) cont. state variables
- \(z_n \in \mathbb{Z}^l \rightarrow \) int. state variables

Linear objective and constraints
Motivating Example

Hurricane Disaster Relief Planning

- Produce & distribute resources from distribution centers to shelters

- **Decision stages**: When hurricane originates to its landing

- **Uncertainty**:
 - Demand is a function of the hurricane’s state
 - Evolution of the hurricane is modeled by a MC
 - MC states: Intensity + location

- **Decisions**:
 - Local variables: Production, distribution, unsatisfied demand
 - Continuous state variables: Inventory and capacity
 - Integer state variables: Contingency modality activation (to increase DC capacities)
Existing Methodologies: Purely continuous case

General case: Nested Benders decomposition

Via Benders cuts, approximate the expected cost-to-go functions:

$$Q_n(x_{a(n)}) = \min_{(x_n, y_n)} f_n(x_n, y_n) + \sum_{m \in C(n)} \bar{p}_{nm} Q_m(x_n)$$
Existing Methodologies: Purely continuous case

- Stage-wise independent case: SDDP
 - Each stage has its own independent set of realizations
 - Can recombine the scenario tree:

![Scenario Tree Diagram]

- One expected cost-to-go function per stage instead!
- Many fewer nodes!
Shabbir’s SDDP Illustration
Iter 1: Forward pass

\[Q_1(x_1) \]

\[Q_2(x_2) \]

\[Q_3(x_3) \]

\[x_1 \]

\[x_2 \]

\[x_3 \]
Shabbir’s SDDP Illustration

Iter 1: Forward pass

- $Q_1(x_1)$
- $Q_2(x_2)$
- $Q_3(x_3)$

x_1, x_2, x_3
Shabbir’s SDDP Illustration
Shabbir’s SDDP Illustration

Iter 1: Backward pass

$Q_1(x_1)$

$Q_2(x_2)$

$Q_3(x_3)$
Shabbir’s SDDP Illustration

Iter 1: Backward pass

$Q_1(x_1)$

$Q_2(x_2)$

$Q_3(x_3)$

x_1

x_2

x_3
Existing Methodologies

► Purely continuous:
 • **General:** Nested Benders [Birge, 1985]
 • **Stage-wise independence:** SDDP [Pereira and Pinto, 1991]

► Pure binary state variables: SDDiP [Zou et al., 2019]
 → Lagrangian cuts tight at binary points

► General integer state variables: Binarization + SDDiP
 → Large # of binary state variables

► Lipschitz continuous exp. cost-to-go functions: [Ahmed et al., 2020]
 → Nonlinear cuts + augmented Lagrangian

► General nonconvex mixed-integer nonlinear:
 • SDDP with generalized conjugacy cuts [Zhang and Sun, 2019]
 → Approximate *regularized* exp. cost-to-go functions
 • Nonconvex nested Benders [Füllner and Rebennack, 2022]
 → Extends binarization and regularization procedures
 → Successful implementation for deterministic multi-stage
Our Idea

Challenge: Approximating nonconvex expected cost-to-go functions (due to integer state variables)

- **Existing works:** Develop exact lower-bounding techniques for the nonconvex expected cost-to-go functions

- **Our work:** Relocate all integer state variables to the first stage
 - the resulting expected cost-to-go functions are convex
 - can be approximated (exactly) by a decomposition scheme (e.g., nested Benders or SDDP)
Partially Extended Formulation

Our idea:
Relocate all integer state variables to the first stage

\[
\begin{align*}
\text{Q}_{\text{Ref}}(x_a(n), z) &= \min (x_n, y_n) \\
&+ \sum_m \bar{p}_{nm} \text{Q}_{\text{Ref}}^m(x_n, z)
\end{align*}
\]

Too many first-stage (integer) variables!
Partially Extended Formulation

Our idea: Relocate all integer state variables to the first stage

\[
Q^\text{Ref}_n(x_{a(n)}, z) = \min_{(x_n, y_n)} f_n(x_n, y_n, z_n) + \sum_{m \in C(n)} \bar{p}_{nm} Q^\text{Ref}_m(x_n, z)
\]

Too many first-stage (integer) variables!
Our Contributions

- **Goal:** Leverage the structure of the underlying stochastic process to obtain high-quality policies

- **Proposal:**
 - Aggregation framework
 - Impose additional structure to the **integer state** variables based on the stochastic process (e.g., Markov Chain)

- **Methodology:**
 - Branch-and-cut algorithm integrated with SDDP
 - Exact and approximation methods
 - MC-based two-stage linear decision rules
 - Approximation method

- **Application:**
 - Hurricane disaster relief logistics planning
Aggregation Framework

Idea: Simply enforce $z_n = z_{n'}$ for some pairs of nodes based on MC

Scenario Tree

Here-and-now (current stage)

Markov-based (current MC state)

Previous and current MC state

$\# z^A's$: 15

4

7

11
Branch-and-cut + SDDP

Decomposition for the aggregated model:

\[\{ (y_n, x_n) \}_{n \in \mathbb{N} \setminus \{1\}} \]

Candidate solution

Benders cuts

Exact algorithm:

SDDP can be expensive ⇒ lighter version to get LBs

M. Bodur
Two-stage Linear Decision Rules

Stage 1
\[y_1, x_1, z^A \]
Stage \(t - 1 \)
\[y_{t-1}(\xi^{t-1}) \]
\[x_{t-1}(\xi^{t-1}) \]
Stage \(t \)
\[y_t(\xi^t) \]
\[x_t(\xi^t) \]
Stage \(T \)
\[y_T(\xi^T) \]
\[x_T(\xi^T) \]

\[x_t(\xi^t) = \mu_t^T \xi^t \]

Stage 1
\[y_1, x_1, z^A, \]
\[\{\mu_t\}_{t \in [T]} \]
Stage 2
\[\{y_t(\xi^t)\}_{t \in [2,T]} \]
Our Scenario-tree Version
2S-LDR Alternatives

Random variable realizations: $\xi_n^t = \{\xi_{1,r}, \ldots, \xi_{t-1,a(n)}, \xi_{t,n}\}$

- **Stage-history LDR:**
 \[x_n = \mu_t^T \xi_n^t \]

- **Stage-based LDR:**
 \[x_n = \mu_t^T \xi_{t,n} \]

- **MC-based LDR:**
 \[x_n = \mu_{t,m(n)}^T \xi_{t,n} \]
Solving the 2S-LDR Model

Decomposition:

\[y_1, x_1, z^A, \mu^{LDR} \]

Candidate solution

\[\{(y_n)\}_{n \in \mathcal{N} \setminus \{1\}} \]

Benders cuts

Algorithm:

Yields feasible solutions, thus UBs

Decomposed subproblems: one per node in the scenario tree
Hurricane Disaster Relief Planning
with contingency modality
Hurricane Disaster Relief Planning

- Produce & distribute resources from distribution centers to shelters

- **Decision stages:** When hurricane originates to its landing

- **Objective:** Minimize cost
 - Transportation, production, and inventory
 - Unsatisfied demand

- **Decisions:**
 - **Local variables:** Production, distribution, unsatisfied demand
 - **Continuous state variables:** Inventory and capacity
 - **Integer state variables:** Contingency modality activation
 - Choose only one modality
 - Ones active, stays active
Uncertainty Model

Demand is a function of the hurricane’s MC state

MC model for the hurricane

- Region represented by a grid
- States: intensity + location
- Cone-shape movement until landing
- MC for intensity [Pacheco and Batta, 2016]

![Diagram showing the region represented by a grid with initial state (7,0) intensity 4]
Proposed Restrictions

For contingency modalities

(P.S. \(m_t(n) = (m_t^{\text{loc}}, m_t^{\text{int}}) \))

- **HN**: Stage-based
 \[z_t^A \]

- **MA**: MC-based
 \[z_t^A m_t(n) \]

- **MM**: Double MC-based
 \[z_t^A m_t(n), m_{t-1}(a(n)) \]

- **PM**: MC + Intensity
 \[z_t^A m_t(n), m_{t-1}(a(n)) \]

- **FH**: No restriction \((z^A = z)\)

For inventories

- **LDR-T**: Stage-based
 \[
 x_{nj} = \sum_{i \in I} \mu_t(n) ji d_{ni}
 \]

- **LDR-TH**: Stage + history
 \[
 x_{nj} = \sum_{n' \in P(n')} \sum_{i \in I} \mu_{t(n')} ji d_{n'i}
 \]

- **LDR-M**: MC-based
 \[
 x_{nj} = \sum_{i \in I} \mu_{tm_t(n)} ji d_{ni}
 \]
Experimental Setup

Experiments:
- CPLEX 20.1 + callback
- Single thread
- Time limit: 6 hours

Methods:
- Extensive model
- B&C + SDDP
- 2S-LDR

Instances:
- Medium size: 4x5 grid and 5 stages
- Large size: 5x6 grid and 6 stages
- 6 intensity levels
- Initial capacity: 20%, 30% of max demand
- Modality options:
 - Setting 1: 10%, 20%, 30%, 40%
 - Setting 2: 15%, 30%, 45%, 60%
- 10 instances per configuration
Computational Experiments: Main Findings

- **Value of MC-based Policies:**
 - Inclusion of MC info from the previous stage → significant improvement (PM and MM policies) (Closes > %50 gap between HN and FH policies)
 - MC intensity info of the previous stage captures the most needed (PM policy)

- **Exact Methods:**
 - Poor SDDP performance due to large # of subproblems
 - Extensive model cannot solve larger instances

- **Approximation Methods:**
 - Lower bounding technique via integrated B&C + SDDP offers strong bounds
 - 2S-LDR generates high-quality feasible solutions with reasonable computational time
Summary

- Aggregation framework for MSILP with mixed-integer state variables
- Several policies based on the stochastic process (Markov chain)
- B&C framework integrated with SDDP
- MC-based 2S-LDR
- Hurricane disaster relief planning application
- Empirical results showing trade-offs

(Preprint of the paper is available online)