Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming

with an Application to Disaster Relief Logistics

Joint work with Margarita Castro (PUC-Chile) and Yongjia Song (Clemson)

ICERM February 2023

M. Bodur

MC Policies for MSILP

Motivating App. Hurricane Disaster Relief Planning

(Source: Wikipedia)

M. Bodur

MC Policies for MSILP

Motivating App. Hurricane Disaster Relief Planning

- Hurricane Katrina (2005):
 - > 1200 fatalities
 - >\$190 billion damage
- Hurricane Ian (2022):
 - > 160 fatalities
 - > \$113 billion damage

(Source: Wikipedia)

- Hurricanes can be detected a few days before their landfall
- ► ≈ 5 days before landfall, National Hurricane Center provides info about
 - · hurricane's predicted trajectory, speed, intensity
 - endangered areas

Motivating App. Hurricane Disaster Relief Planning

Predictions are leveraged by humanitarian and governmental agencies to prepare and allocate hurricane relief supplies

When, where, and how to preposition relief supplies ahead of an impeding hurricane?

How to distribute supplies to affected population in an efficient way?

Motivating App. Hurricane Disaster Relief Planning

Contingency modality activation:

A	8	C	D	E	F	G	н	- I.	J	K	L	м	N	0	P		R	S	T	U	V	W	X
Stan	dard Evac	uation La	ndfall Tin	neline																			
Date	1-Jul		2-Ju		3-Jul				4-Jul				5-Jul				6-Jul				7-Jul		
Day	Monday		Tuesday	1	Wednesda	iy .			Thursday				Friday				Saturday				Sunday		
Time	800		800		800				800				800				800				800	1400	
		OPO	ON 3		OPCON 2								OPCON 1										
	E Timelin	1e																					
	E-120		E-96		E-72		E-60		E-48		E-36		E-24		E-12		E		E+12		E+24	E+30	
	H Timeli	ne																					
	H-150		H-126		H-102				H-78				H-54				H-30				H-6	н	TS winds
	Day-to-day operations				505 0 M											FEE OLD II IF							2.101
	County Conference Calls ESF-6 Shelter Prep			ESE-8 Medical Evacuation Preparation											ESE-8 Medical Execution								
			EFE R HA	altheore Deer	ESE-16	ESE-16 Evacuation Preparation											ESE-16 Evacuation						
			C3P76 PIE	autoare Prep	Chate of Ferrore Device the												201	10 2100	Junion	-			
					state of Emergency Declaration																		
					ESF-19 National Guard W				rning														
					Go/No-Go Mas				Aass Tra	ansp.													
							Go/No-Go Medical Evac								1								
												_	Go/No-	Go De	ecision	on Evad							

- Not all types of operations are fully adaptive
- Some operations are "all or nothing" type decisions, e.g., contingency modality activation for expanding DC capacities

Talk is about: Multi-stage SP & A bit of two-stage SP

First need to move some key players to a different stage!

MC Policies for MSILP

Sequential Decision-making Under Uncertainty

- Uncertainty is gradually observed
- Decisions are dynamically adapted to:
 - Observed uncertainty
 - Previous decisions

Multi-stage stochastic programs

Finite-horizon sequential decision-making problems under uncertainty

- $T \ge 2$ decision stages
- Stochastic process: $\{\boldsymbol{\xi}_t\}_{t \in [T]}$
- History: $\xi^t := (\xi_1, ..., \xi_t)$
- Dynamics:

For convenience: $\xi_1 = 1$

 $[T] = \{1, \ldots, T\}$

Our Setup

Commonly used scenario-tree based approach Usually an exponentially large tree

Uncertainty model:

 Governed by a Markov chain (MC)

MSILP model:

- $\begin{array}{l} \min \ \sum_{n \in \mathcal{N}} p_n f_n(x_n, z_n, y_n) \\ \text{s.t.} \ \forall n \in \mathcal{N} : \\ (x_n, z_n, y_n) \in \mathcal{X}_n(x_{a(n)}, z_{a(n)}) \\ y_n \in \mathbb{R}^m \to \text{ cont. local variables} \\ x_n \in \mathbb{R}^r \to \text{ cont. state variables} \\ z_n \in \mathbb{Z}^\ell \to \text{ int. state variables} \end{array}$
 - Linear objective and constraints

M. Bodur

MC Policies for MSILP

Motivating Example

Hurricane Disaster Relief Planning

- Produce & distribute resources from distribution centers to shelters
- Decision stages: When hurricane originates to its landing
- Uncertainty:
 - Demand is a function of the hurricane's state
 - Evolution of the hurricane is modeled by a MC
 - MC states: Intensity + location

Decisions:

- Local variables: Production, distribution, unsatisfied demand
- Continuous state variables: Inventory and capacity
- Integer state variables: Contingency modality activation (to increase DC capacities)

Existing Methodologies: Purely continuous case

General case: Nested Benders decomposition

[Birge, 1985]

Via Benders cuts, approximate the expected cost-to-go functions:

$$Q_n(x_{a(n)}) = \min_{(x_n, y_n)} f_n(x_n, y_n) + \sum_{m \in \mathcal{C}(n)} \bar{p}_{nm} Q_m(x_n)$$

Existing Methodologies: Purely continuous case

Stage-wise independent case: SDDP

[Pereira and Pinto, 1991]

- Each stage has its own independent set of realizations
- Can recombine the scenario tree:

- One expected cost-to-go function per stage instead!
- Many fewer nodes!

Existing Methodologies

- Purely continuous:
 - General: Nested Benders
 - Stage-wise independence: SDDP
- Pure binary state variables: SDDiP
 - \rightarrow Lagrangian cuts tight at binary points
- General integer state variables: Binarization + SDDiP
 - \rightarrow Large # of binary state variables
- Lipschitz continuous exp. cost-to-go functions:
 - \rightarrow Nonlinear cuts + augmented Lagrangian
- General nonconvex mixed-integer nonlinear:
 - SDDP with generalized conjugacy cuts [Zhang and Sun, 2019]
 - \rightarrow Approximate *regularized* exp. cost-to-go functions
 - Nonconvex nested Benders
 - \rightarrow Extends binarization and regularization procedures
 - \rightarrow Successful implementation for deterministic multi-stage

[Birge, 1985] [Pereira and Pinto, 1991]

[Zou et al., 2019]

[Ahmed et al., 2020]

[Füllner and Rebennack, 2022]

MC Policies for MSILP

Our Idea

Challenge: Approximating nonconvex expected cost-to-go functions (due to integer state variables)

- Existing works: Develop exact lower-bounding techniques for the nonconvex expected cost-to-go functions
- Our work: Relocate all integer state variables to the first stage
 the resulting expected cost-to-go functions are convex
 - \Rightarrow can be approximated (exactly) by a decomposition scheme (e.g., nested Benders or SDDP)

Partially Extended Formulation

Partially Extended Formulation

Our idea: Relocate all integer state variables to the first stage

M. Bodur

MC Policies for MSILP

Our Contributions

- Goal: Leverage the structure of the underlying stochastic process to obtain high-quality policies
- Proposal:
 - Aggregation framework

 \rightarrow Impose additional structure to the **integer state** variables based on the stochastic process (e.g., Markov Chain)

- Methodology:
 - Branch-and-cut algorithm integrated with SDDP
 - \rightarrow Exact and approximation methods
 - MC-based two-stage linear decision rules
 - \rightarrow Approximation method
- Application:
 - Hurricane disaster relief logistics planning

Aggregation Framework

Idea: Simply enforce $z_n = z_{n'}$ for some pairs of nodes based on MC

Branch-and-cut + SDDP

Decomposition for the aggregated model:

Exact algorithm:

SDDP can be expensive \Rightarrow lighter version to get LBs

M. Bodur

Two-stage Linear Decision Rules

[B. and Luedtke, 2022]

Solution Method

Our Scenario-tree Version

2S-LDR Alternatives

Random variable realizations: $\xi_n^t = \{\xi_{1,r}, \dots, \xi_{t-1,a(n)}, \xi_{t,n}\}$

Stage-history LDR:

$$x_n = \mu_t^\top \xi_n^t$$

Stage-based LDR:

$$x_n = \mu_t^{\top} \xi_{t,n}$$

MC-based LDR:

$$x_n = \mu_{t,m(n)}^\top \xi_{t,n}$$

22/30

Solving the 2S-LDR Model

Decomposition:

Yields feasible solutions, thus UBs

23/30

M. Bodur

MC Policies for MSILP

Hurricane Disaster Relief Planning with contingency modality

M. Bodur

MC Policies for MSILP

24/30

Hurricane Disaster Relief Planning

- Produce & distribute resources from distribution centers to shelters
- Decision stages: When hurricane originates to its landing
- Objective: Minimize cost
 - Transportation, production, and inventory
 - Unsatisfied demand
- Decisions:
 - Local variables: Production, distribution, unsatisfied demand
 - Continuous state variables: Inventory and capacity
 - Integer state variables: Contingency modality activation
 - Choose only one modality
 - Ones active, stays active

Uncertainty Model

Demand is a function of the hurricane's MC state

MC model for the hurricane

- Region represented by a grid
- States: intensity + location
- Cone-shape movement until landing
- MC for intensity [Pacheco and Batta, 2016]

M. Bodur

MC Policies for MSILP

26/30

Initial state Location: (7,0) Intensity: 4

Proposed Restrictions

For contingency modalities

(P.S. $m_t(n) = (m_t^{\text{loc}}, m_t^{\text{int}}))$

► HN: Stage-based

 z_t^{A}

MA: MC-based

 $z_{t,m_t(n)}^{\mathbb{A}}$

MM: Double MC-based

 $z_{t,m_t(n),m_{t-1}(a(n))}^{\mathbb{A}}$

PM: MC + Intensity

 $z^{\mathbb{A}}_{t,m_t(n),m^{\text{int}}_{t-1}(a(n))}$

• **FH:** No restriction $(z^{A} = z)$

For inventories

LDR-T: Stage-based

$$x_{nj} = \sum_{i \in \mathcal{I}} \mu_{t(n)ji} d_{ni}$$

LDR-TH: Stage + history

$$x_{nj} = \sum_{n' \in \mathcal{P}(n)} \sum_{i \in \mathcal{I}} \mu_{t(n')tji} d_{n'i}$$

LDR-M: MC-based

$$x_{nj} = \sum_{i \in \mathcal{I}} \mu_{tm_t(n)ji} d_{ni}$$

Experimental Setup

Experiments:

- CPLEX 20.1 + callback
- Single thread
- Time limit: 6 hours

Methods:

- Extensive model
- B&C + SDDP
- 2S-LDR

Instances:

- Medium size: 4x5 grid and 5 stages
- Large size: 5x6 grid and 6 stages
- 6 intensity levels
- Initial capacity: 20%, 30% of max demand
- Modality options:
 - Setting 1: 10%, 20%, 30%, 40%
 - Setting 2: 15%, 30%, 45%, 60%
- 10 instances per configuration

Computational Experiments: Main Findings

- Value of MC-based Policies:
 - Inclusion of MC info from the previous stage \rightarrow significant improvement (PM and MM policies) (Closes > %50 gap between HN and FH policies)
 - MC intensity info of the previous stage captures the most needed (PM policy)

Exact Methods:

- Poor SDDP performance due to large # of subproblems
- Extensive model cannot solve larger instances
- Approximation Methods:
 - Lower bounding technique via integrated B&C + SDDP offers strong bounds
 - 2S-LDR generates high-quality feasible solutions with reasonable computational time

Summary

- Aggregation framework for MSILP with mixed-integer state variables
- Several policies based on the stochastic process (Markov chain)
- B&C framework integrated with SDDP
- MC-based 2S-LDR
- Hurricane disaster relief planning application
- Empirical results showing trade-offs

(Preprint of the paper is available online)

