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Introduction

Motivating App. Hurricane Disaster Relief Planning
United States Hurricane Strikes 1950-2021*

hows 2021 Hurricanes Ida and Nicholas in detail.
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Introduction

Motivating App. Hurricane Disaster Relief Planning

Hurricanes making landfall in the U.S.

Hurricane Katrina (2005):
« > 1200 fatalities
« > $190 billion damage

Hurricane lan (2022):

(] > 160 fatalities May Jun Jul Aug Sep Oct Nov Dec
« > $113 billion damage
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(Source: Wikipedia)

Hurricanes can be detected a few days before their landfall

~ 5 days before landfall, National Hurricane Center provides info
about
« hurricane’s predicted trajectory, speed, intensity
» endangered areas

v
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Introduction

Motivating App. Hurricane Disaster Relief Planning

Predictions are leveraged by

oS humanitarian and governmental
| . S agencies to prepare and allo-
N cate hurricane relief supplies

When, where, and how to How to distribute supplies

preposition relief supplies to affected population C @ . L
ahead of an impeding hurricane? in an efficient way? :
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Motivating App. Hurricane Disaster Relief Planning

Contingency modality activation:
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» Not all types of operations are fully adaptive

» Some operations are “all or nothing” type de
contingency modality activation for expandin
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Talk is about: Multi-stage SP & A bit of two-stage SP

First need to move some key players to a different stage!

I ‘
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Introduction

Sequential Decision-making Under Uncertainty

Uncertainty Uncertainty Uncertainty

SRR

Decisions
at
stage 2

Decisions Decisions
........ at at >

Decisions
at
stage 1

stage t — 1 stage ¢

» Uncertainty is gradually observed

» Decisions are dynamically adapted to:

« Observed uncertainty
« Previous decisions

CO.L

wiatonslOptimizaton L

M. Bodur MC Policies for MSILP 7/30



Introduction

Multi-stage stochastic programs

Finite-horizon sequential decision-making problems under uncertainty
» T > 2 decision stages

» Stochastic process: {§,}ic(r) T =A{1,...,T}
» History: ¢' := (¢4,..., &)
» Dynamics:
t=1| ... Stage t — 1 observe Stage t T
_ decisions ¢, “| decisions _
Y1, 21 =1, Tt—1 ========--mmm= == > Yt, Tt
(€ (€")

» Decision variables:  (nonanticipative)
o State variables: z;(¢")
o Recourse (stage) variables: y;(£")

» For convenience: & =1 COL
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Our Setup

Commonly used scenario-tree based approach
Usually an exponentially large tree

Uncertainty model: | MSILP model: |
é( min Z pnfn(xmznayn)
"é%/ neN
~ st.VneN:
@i@
O @ («777’“ Zn,s yn) € X, (xa(n)a Za(n))
\ /@<® yn € R™ — cont. local variables
@\ z, € R" — cont. state variables
®< g . .
® zn € Z° — int. state variables
» Governed by a » Linear objective and
Markov chain (MC) constraints C O . L
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Introduction

Motivating Example

Hurricane Disaster Relief Planning

» Produce & distribute resources from distribution centers to shelters

» Decision stages: When hurricane originates to its landing

» Uncertainty:
« Demand is a function of the hurricane’s state
« Evolution of the hurricane is modeled by a MC
« MC states: Intensity + location

» Decisions:
« Local variables: Production, distribution, unsatisfied demand
« Continuous state variables: Inventory and capacity
« Integer state variables: Contingency modality activation
(to increase DC capacities) :
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Existing Methodologies: Purely continuous case

» General case: Nested Benders decomposition [Birge, 1985]
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Via Benders cuts, approximate the expected cost-to-go functions:

Qn($a(n)) = (min) fn(@n, yn) + Z PrmQm (Tn) '
o meclo cooL
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Introduction

Existing Methodologies: Purely continuous case

» Stage-wise independent case: SDDP [Pereira and Pinto, 1991]

« Each stage has its own independent set of realizations

« Can recombine the scenario tree:

Q—OQ—O®

®<@>—<@>—<@

« One expected cost-to-go function per stage instead!

« Many fewer nodes!
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Shabbir's SDDP lllustration

lllustration of SDDP
Qs(z3)
Q2($2)
Q1(z1)
3
P
Z1
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Shabbir's SDDP lllustration

Iter 1: Forward pass

Q3(x3)
Qs (x2)
9 (xl)

I3

)

Z1
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Shabbir's SDDP lllustration

Iter 1: Forward pass

Q3(w3)
Q2($2)
Qi (1)

I3

T2

I
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Shabbir's SDDP lllustration

Iter 1: Backward pass

Q3(w3)

Qa(x2)

Benders’ Cut

Qi (1)

I
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Shabbir's SDDP lllustration

Iter 1: Backward pass

Q3(x3)

Qs (x2)

Q1(z1)
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Shabbir's SDDP lllustration

Iter 1: Backward pass

Q3(3)

Qs (x2)

Q1(z1)
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Existing Methodologies

» Purely continuous:

« General: Nested Benders [Birge, 1985]
« Stage-wise independence: SDDP [Pereira and Pinto, 1991]
» Pure binary state variables: SDDiP [Zou et al., 2019]

— Lagrangian cuts tight at binary points

» General integer state variables: Binarization + SDDiP
— Large # of binary state variables

» Lipschitz continuous exp. cost-to-go functions: [Ahmed et al., 2020]
— Nonlinear cuts + augmented Lagrangian

» General nonconvex mixed-integer nonlinear:
« SDDP with generalized conjugacy cuts [Zhang and Sun, 2019]
— Approximate regularized exp. cost-to-go functions
« Nonconvex nested Benders [Fullner and Rebennack, 2022]
— Extends binarization and regularization procedures C O . L
— Successful implementation for deterministic multi-stage
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_modwefon
Our Idea

Challenge: | Approximating nonconvex expected cost-to-go functions
(due to integer state variables)

» Existing works: Develop exact lower-bounding techniques for the
nonconvex expected cost-to-go functions

» Our work: Relocate all integer state variables to the first stage
= the resulting expected cost-to-go functions are convex

= can be approximated (exactly) by a decomposition scheme
(e.g., nested Benders or SDDP)

CO.L
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Introduction

Partially Extended Formulation
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Introduction

Partially Extended Formulation

Our idea: Relocate all integer state variables to the first stage
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Too many first-stage (integer) variables!
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Introduction

Our Contributions

» Goal: Leverage the structure of the underlying stochastic process to
obtain high-quality policies
» Proposal:
« Aggregation framework
— Impose additional structure to the integer state variables
based on the stochastic process (e.g., Markov Chain)
» Methodology:
« Branch-and-cut algorithm integrated with SDDP
— Exact and approximation methods
« MC-based two-stage linear decision rules
— Approximation method

» Application:
« Hurricane disaster relief logistics planning C O . L

wiatonslOptimizaton L
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Aggregation Framework

Aggregation Framework

Idea: Simply enforce z,, = z,. for some pairs of nodes based on MC

Scenario Tree
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Aggregation Framework Solution Method

Branch-and-cut + SDDP

Decomposition for the aggregated model:

Candidate solution

[ Y, 71, 2 } Benders cuts [{(ynv xn)}ne./\/\{l}j

Exact algorithm:

B&C tree search

SDDP can be expensive = lighter version to get LBs CO L
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Aggregation Framework Solution Method

Two-stage Linear Decision Rules [B. and Lueditke, 2022]
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Aggregation Framework Solution Method

Our Scenario-tree Version
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2S-LDR Alternatives

Random variable realizations: ¢/, = {¢1+, ..., &1 a(n)s &t}

» Stage-history LDR:
= &,

» Stage-based LDR:
Tn = N;rgt,n

» MC-based LDR:
Tn = sz,(n,)ftvn

COOL}'
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Solving the 2S-LDR Model

Decomposition:

Candidate solution

[yly Zy, ZA? ;uLDR] Benders cuts [{(Un)}ne/\/’\{l}]

Algorithm:

B&C tree search

Integer -~ E Decomposed E
solution ) subproblems: |
-7 ' one per node \

~._! inthe scenario tree

Yields feasible solutions, thus UBs
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Application

Hurricane Disaster Relief Planning
with contingency modality

MC Policies for MSILP



Application

Hurricane Disaster Relief Planning

Produce & distribute resources from distribution centers to shelters

v

» Decision stages: When hurricane originates to its landing

v

Objective: Minimize cost

« Transportation, production, and inventory
« Unsatisfied demand

Decisions:
« Local variables: Production, distribution, unsatisfied demand
« Continuous state variables: Inventory and capacity
« Integer state variables: Contingency modality activation
o Choose only one modality
o Ones active, stays active

v
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Application

Uncertainty Model

Demand is a function of the hurricane’s MC state

[ MC model for the hurricane |

» Region represented by a grid

» States: intensity + location

» Cone-shape movement until landing

» MC for intensity [Pacheco and Batta,
2016]

land

ocean
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0,0

M. Bodur
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Location: (7,0)

Intensity: 4 = ¢
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Application

Proposed Restrictions

For contingency modalities | For inventories |
(PS. mi(n) = (mi°°, m;™)) » LDR-T: Stage-based
» HN: Stage-based
A Tnj = Z Mot (n)jidni
t i€l
> MA: MC'baSid » LDR-TH: Stage + history
ztmn(n)
» MM: Double MC-based T = DD iyl
2 n’€P(n) i€
Zt,mt(n),ml,,l(('1,(77))
> PM: MC + Intensity > LDR-M: MC-based
A
Zt,mt(n),m,“‘l(a(n)) Tnj = Z Htmy(n) jzdnz
» FH: No restriction (2" = 2) e C O . L
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Application Computational Experiments

Experimental Setup

Experiments: Instances:
» CPLEX 20.1 + callback  » Medium size: 4x5 grid and 5 stages
» Single thread » Large size: 5x6 grid and 6 stages
» Time limit: 6 hours » 6 intensity levels
» Initial capacity: 20%, 30% of max
Methods: demand
» Extensive model » Modality options:
» B&C + SDDP « Setting 1: 10%, 20%, 30%, 40%
» 2S-LDR « Setting 2: 15%, 30%, 45%, 60%
» 10 instances per configuration
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Application Computational Experiments

Computational Experiments: Main Findings

» Value of MC-based Policies:
« Inclusion of MC info from the previous stage — significant
improvement (PM and MM policies)
(Closes > %50 gap between HN and FH policies)
« MC intensity info of the previous stage captures the most
needed (PM policy)

» Exact Methods:
« Poor SDDP performance due to large # of subproblems
« Extensive model cannot solve larger instances

» Approximation Methods:
» Lower bounding technique via integrated B&C + SDDP offers
strong bounds
« 2S-LDR generates high-quality feasible solutions with . ., ..
reasonable computational time COL
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Application

Summary

v

Aggregation framework for MSILP with mixed-integer state
variables

Several policies based on the stochastic process (Markov chain)

v

v

B&C framework integrated with SDDP
MC-based 2S-LDR

v

v

Hurricane disaster relief planning application
» Empirical results showing trade-offs

(Preprint of the paper is available online)
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