Number of inequalities in integer-programming descriptions of a set

Gennadiy Averkov – Brandenburg Technical University

Joint work with:
Manuel Aprile – University of Padua
Marco Di Summa – University of Padua
Christopher Hojny – University of Eindhoven
Matthias Schymura – Brandenburg Technical University
INTRODUCTION
High-level messages

We could reflect more about:

- choices of the coefficient field for MIP,
High-level messages

We could reflect more about:

• choices of the coefficient field for MIP,
• different ways and limitations of modeling within a given modeling approach
High-level messages

We could reflect more about:

- choices of the coefficient field for MIP,
- different ways and limitations of modeling within a given modeling approach
High-level messages

We could reflect more about:

- choices of the coefficient field for MIP,
- different ways and limitations of modeling within a given modeling approach

Furthermore:

- Some modeling-related problems might surpass NP-completeness in their hardness.
Real relaxation complexity $rc(X)$ of a finite set $X \subseteq \mathbb{Z}^d$ is the smallest number of facets in a relaxation P of X, where a relaxation is a polyhedron P satisfying $P \cap \mathbb{Z}^d = X$.

Remark: $rc(X) < \infty \iff rc_Q(X) < \infty \iff \text{conv}(X) \cap \mathbb{Z}^d = X$ (we call such sets lattice-convex)

Generalization $\mathbb{Z}^d \Rightarrow Y$: $X \subseteq Y \Rightarrow rc(X, Y) := \min \{ |\text{facets}(P)| : P \cap Y = X \}$
Real relaxation complexity $\text{rc}(X)$ of a finite set $X \subseteq \mathbb{Z}^d$ is the smallest number of facets in a relaxation P of X, where a relaxation is a polyhedron P satisfying $P \cap \mathbb{Z}^d = X$.

Rational relaxation complexity $\text{rc}_\mathbb{Q}(X)$: the same but w.r.t. rational polyhedra.
Real relaxation complexity $rc(X)$ of a finite set $X \subseteq \mathbb{Z}^d$ is the smallest number of facets in a relaxation P of X, where a relaxation is a polyhedron P satisfying $P \cap \mathbb{Z}^d = X$.

Rational relaxation complexity $rc_Q(X)$: the same but w.r.t. rational polyhedra.

Remark:
$rc(X) < \infty \iff rc_Q(X) < \infty \iff \text{conv}(X) \cap \mathbb{Z}^d = X$
(we call such sets lattice-convex)
Real relaxation complexity $rc(X)$ of a finite set $X \subseteq \mathbb{Z}^d$ is the smallest number of facets in a relaxation P of X, where a relaxation is a polyhedron P satisfying $P \cap \mathbb{Z}^d = X$.

Rational relaxation complexity $rc_Q(X)$: the same but w.r.t. rational polyhedra.

Remark:
$rc(X) < \infty \iff rc_Q(X) < \infty \iff \text{conv}(X) \cap \mathbb{Z}^d = X$

(we call such sets **lattice-convex**)

Generalization $\mathbb{Z}^d \leadsto Y$:

$X \subseteq Y \Rightarrow$

$rc(X, Y) := \min \{ |\text{facets}(P)| : P \cap Y = X \}$
Applications:

1. Integer programming:
 limitations on the number of inequalities in modeling
Applications:

1. Integer programming: limitations on the number of inequalities in modeling
2. Theory of social choice $\sim \text{rc}(X, \{0, 1\}^d)$
Applications:

1. Integer programming:
 limitations on the number of inequalities in modeling

2. Theory of social choice $\rightsquigarrow \text{rc}(X, \{0, 1\}^d)$

3. Cryptography $\rightsquigarrow \text{rc}(X, \{0, 1\}^d)$

Potential applications in AI/ML:

• separate X (rabbits) from $Y \setminus X$ (non-rabbits) by a system $Ax \leq b$ of k inequalities.
• $k = 1 \rightsquigarrow \text{support-vector machine}$
• Try using larger k for better separation.
Applications:

1. Integer programming:
 limitations on the number of inequalities in modeling
2. Theory of social choice \(\rightsquigarrow \text{rc}(X, \{0, 1\}^d) \)
3. Cryptography \(\rightsquigarrow \text{rc}(X, \{0, 1\}^d) \)
4. Potential applications in AI/ML:

- separate \(X \) (rabbits) from \(Y \backslash X \) (non-rabbits) by a system \(Ax \leq b \) of \(k \) inequalities.
- \(k = 1 \) \(\rightsquigarrow \) support-vector machine
- Try using larger \(k \) for better separation.
Applications:

1. **Integer programming:**
 limitations on the number of inequalities in modeling

2. **Theory of social choice** \(\sim rc(X, \{0, 1\}^d) \)

3. **Cryptography** \(\sim rc(X, \{0, 1\}^d) \)

4. **Potential applications in AI/ML:**
 - separate \(X \) (rabbits) from \(Y \setminus X \) (non-rabbits) by a system \(Ax \leq b \) of \(k \) inequalities.
Applications:

1. **Integer programming:**
 limitations on the number of inequalities in modeling

2. **Theory of social choice** $\rightsquigarrow \text{rc}(X, \{0, 1\}^d)$

3. **Cryptography** $\rightsquigarrow \text{rc}(X, \{0, 1\}^d)$

4. **Potential applications in AI/ML:**
 - separate X (rabbits) from $Y \setminus X$ (non-rabbits) by a system $Ax \leq b$ of k inequalities.
 - $k = 1 \rightsquigarrow$ support-vector machine
Applications:

1. Integer programming: limitations on the number of inequalities in modeling

2. Theory of social choice \(\rightsimeq \text{rc}(X, \{0, 1\}^d) \)

3. Cryptography \(\rightsimeq \text{rc}(X, \{0, 1\}^d) \)

4. Potential applications in AI/ML:
 - separate \(X \) (rabbits) from \(Y \setminus X \) (non-rabbits) by a system \(Ax \leq b \) of \(k \) inequalities.
 - \(k = 1 \rightsimeq \) support-vector machine
 - Try using larger \(k \) for better separation.
Questions of Kaibel & Weltge (2015)

1. \(\text{rc}(X) \) and \(\text{rc}_\mathbb{Q}(X) \) computable? We don’t know even this!
Questions of Kaibel & Weltge (2015)

1. $rc(X)$ and $rc_Q(X)$ computable? We don’t know even this!
2. $rc(X) = rc_Q(X)$? Does the field matter for modeling?
Questions of Kaibel & Weltge (2015)

1. \(\text{rc}(X) \) and \(\text{rc}_\mathbb{Q}(X) \) computable? We don’t know even this!
2. \(\text{rc}(X) = \text{rc}_\mathbb{Q}(X) \)? Does the field matter for modeling?
3. A simple set to test our understanding:

\[
\Delta_d := \{0, e_1, \ldots, e_d\} \subseteq \mathbb{Z}^d,
\]

the vertex set of the standard simplex.

What is \(\text{rc}(\Delta_d) \) for every \(d \)?
Yes, we don’t know this either! For every \(d \geq 6 \).
Observation on Question 3:

\(rc \mathbb{Q}(\Delta_d) = d + 1, \)

because every rational relaxation of \(\Delta_d \) is bounded
and so has least \(d + 1 \) facets, and

\(\text{conv}(\Delta_d) \) has \(d + 1 \) facets.
Problem with the computability comes from $|\mathbb{Z}^d| = \infty$

Kaibel & Weltge 2015: $d = 2 \implies \text{rc}(X) = \text{rc}_{\mathbb{Q}}(X)$ and it is computable.

Idea: If $d = 2 = \dim(X)$, there is a finite set $Y \subseteq \mathbb{Z}^d$ that observes X such that separating of X from Y is already enough to separate $\mathbb{Z}^d \setminus X$.
Problem with the computability comes from $|\mathbb{Z}^d| = \infty$.

But for $d = 2$, we can replace \mathbb{Z}^d by an appropriate finite set.
Problem with the computability comes from $|\mathbb{Z}^d| = \infty$

But for $d = 2$, we can replace \mathbb{Z}^d by an appropriate finite set.

Kaibel & Weltge 2015:

$d = 2 \implies \text{rc}(X) = \text{rc}_\mathbb{Q}(X)$ and it is computable.
Problem with the computability comes from $|\mathbb{Z}^d| = \infty$

But for $d = 2$, we can replace \mathbb{Z}^d by an appropriate finite set.

Kaibel & Weltge 2015:

$d = 2 \implies \text{rc}(X) = \text{rc}_\mathbb{Q}(X)$ and it is computable.

Idea: If $d = 2 = \text{dim}(X)$, there is a finite set $Y \subseteq \mathbb{Z}^d$ that observes X such that separating of X from Y is already enough to separate $\mathbb{Z}^d \setminus X$.

![Diagram of a grid with a shaded triangle]
\[d = 2 \rightsquigarrow d = 3 \]
\(d = 2 \implies d = 3 \)

A. & Schymura 2021:
\(d = 3 \implies \text{rc}(X) = \text{rc}_\mathbb{Q}(X) \) and it is computable.
\(d = 2 \Rightarrow d = 3 \)

A. & Schymura 2021:
\[d = 3 \Rightarrow rc(X) = rc_Q(X) \] and it is computable.

\(d = 2 \Rightarrow d = 3: \text{ small step for man, one giant leap for MIP } 😊 \)
\[d = 3 \quad \leadsto \quad d = 4 \]
\[d = 3 \rightarrow d = 4 \]

A. & Schymura 2021:
\[d = 4 \Rightarrow \text{rc}(X) = \text{rc}_\mathbb{Q}(X) \]

and so
\[\text{rc}(\Delta_d) = \text{rc}_\mathbb{Q}(\Delta_d) = d + 1 \text{ for } d \leq 4. \]

But we don't know about computability, and there are good reasons for this:

A. & Hojny & Schymura 2021:
\[\Delta_4 \text{ can be separated by 4 linear inequalities from any finite subset of } \mathbb{Z}^4 \setminus \Delta_4, \text{ but not from the whole } \mathbb{Z}^4 \setminus \Delta_4. \]

These kind of weird phenomena make deciding computability a hard problem.
\(d = 3 \Rightarrow d = 4 \)

A. & Schymura 2021:

\(d = 4 \Rightarrow \text{rc}(X) = \text{rc}_\mathbb{Q}(X) \)

and so

\[\text{rc}(\Delta_d) = \text{rc}_\mathbb{Q}(\Delta_d) = d + 1 \text{ for } d \leq 4. \]

But we don’t know about computability, and there are good reasons for this:
\[d = 3 \not\Rightarrow d = 4 \]

A. & Schymura 2021:
\[d = 4 \Rightarrow rc(X) = rc_\mathbb{Q}(X) \]
and so
\[rc(\Delta_d) = rc_\mathbb{Q}(\Delta_d) = d + 1 \text{ for } d \leq 4. \]

But we don’t know about computability, and there are good reasons for this:

A. & Hojny & Schymura 2021:
\[\Delta_4 \text{ can be separated by } 4 \text{ linear inequalities from any finite subset of } \mathbb{Z}^4 \setminus \Delta_4, \text{ but not from the whole } \mathbb{Z}^4 \setminus \Delta_4. \]
\[d = 3 \implies d = 4 \]

A. & Schymura 2021:
\[d = 4 \implies rc(X) = rc_Q(X) \]
and so
\[rc(\Delta_d) = rc_Q(\Delta_d) = d + 1 \text{ for } d \leq 4. \]

But we don’t know about computability, and there are good reasons for this:

A. & Hojny & Schymura 2021:
\[\Delta_4 \] can be separated by 4 linear inequalities from any finite subset of \(\mathbb{Z}^4 \setminus \Delta_4 \), but not from the whole \(\mathbb{Z}^4 \setminus \Delta_4 \).

These kind of weird phenomena make deciding computability a hard problem.
$d = 4 \iff d = 5$ and higher.
$d = 4 \leadsto d = 5 \text{ and higher.}$

Aprile & A. & Di Summa & Hojny 2022+:

$rc(\Delta_d) < rc_{\mathbb{Q}}(\Delta_d)$ for every $d \geq 5$.

 Choice of the field matters! How big is the discrepancy?
\[d = 4 \leftrightarrow d = 5 \text{ and higher.} \]

Aprile & A. & Di Summa & Hojny 2022+:
\[
\text{rc}(\Delta_d) < \text{rc}_\mathbb{Q}(\Delta_d) \text{ for every } d \geq 5.
\]

CHOICE OF THE FIELD MATTERS!
\[d = 4 \Leftrightarrow d = 5 \text{ and higher.} \]

Aprile & A. & Di Summa & Hojny 2022+:
\[\text{rc}(\Delta_d) < \text{rc}_\mathbb{Q}(\Delta_d) \text{ for every } d \geq 5. \]

CHOICE OF THE FIELD MATTERS!

HOW BIG IS THE DISCREPANCY?
\(d = 4 \implies d = 5 \text{ and higher.} \)

Aprile & A. & Di Summa & Hojny 2022+:
\[\text{rc}(\Delta_d) < \text{rc}_\mathbb{Q}(\Delta_d) \text{ for every } d \geq 5.\]

CHOICE OF THE FIELD MATTERS!
HOW BIG IS THE DISCREPANCY?

Aprile & A. & Di Summa & Hojny:
\[
\frac{\text{rc}(\Delta_d)}{\text{rc}_\mathbb{Q}(\Delta_d)} \rightarrow 0 \quad (d \to \infty)
\]
Recall: $rc_Q(\Delta_d) = d + 1$. We show:
Recall: \(rc_{\mathbb{Q}}(\Delta_d) = d + 1 \). We show:

Aprile & A. & Di Summa & Hojny:

\[
rc(\Delta_d) = \mathcal{O} \left(\frac{d}{\sqrt{\log d}} \right)
\]

Apart from \(\mathbb{Q} \), at most \(d \) irrational numbers are enough:

\[
rc_F(\Delta_d) \leq \mathcal{O} \left(\frac{d}{\sqrt{\log d}} \right)
\]

holds for the relaxation complexity with respect to a coefficient field \(F \) with \(\mathbb{Q} \subseteq F \subseteq \mathbb{R} \) and

\[
\dim_{\mathbb{Q}}(F) \leq d
\]
TOOL: MIP RELAXATIONS OF FINITE SETS
Consider the set $\mathbb{Z}^n \times \mathbb{R}$ of mixed-integer points.
Consider the set $\mathbb{Z}^n \times \mathbb{R}$ of mixed-integer points.

This is a union of vertical lines arranged in a grid according to \mathbb{Z}^n.
• Consider the set $\mathbb{Z}^n \times \mathbb{R}$ of mixed-integer points.
• This is a union of vertical lines arranged in a grid according to \mathbb{Z}^n.
• Consider the set $\mathbb{Z}^n \times \mathbb{R}$ of mixed-integer points.
• This is a union of vertical lines arranged in a grid according to \mathbb{Z}^n.

\[
\begin{align*}
\{−1\} \times \mathbb{R} & \quad \{0\} \times \mathbb{R} & \quad \{1\} \times \mathbb{R} & \quad \{2\} \times \mathbb{R}
\end{align*}
\]
Define **mixed-integer relaxation** of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ as a polyhedron Q with
Define **mixed-integer relaxation** of a finite set $S \subset \mathbb{Z}^n \times \mathbb{R}$ as a polyhedron Q with

$$Q \cap (\mathbb{Z}^n \times \mathbb{R}) = S$$
Define **mixed-integer relaxation** of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ as a polyhedron Q with

$$Q \cap (\mathbb{Z}^n \times \mathbb{R}) = S$$
Define **mixed-integer relaxation** of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ as a polyhedron Q with

$$Q \cap (\mathbb{Z}^n \times \mathbb{R}) = S$$

Remark: Not every finite $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ has a mixed-integer relaxation, but some do.
A full-dimensional polytope $Q \subseteq \mathbb{R}^{n+1}$ has upper, lower and lateral facets, corresponding to inequalities of the form

$$\begin{align*}
 x_{n+1} &\leq u_i(x_1, \ldots, x_n) & i \in I \\
 x_{n+1} &\geq l_j(x_1, \ldots, x_n) & j \in J \\
 0 &\leq a_k(x_1, \ldots, x_n) & k \in K
\end{align*}$$
Observation:
A full-dimensional polytope Q is a mixed-integer relaxation of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ if and only if
Observation:
A full-dimensional polytope \(Q \) is a mixed-integer relaxation of a finite set \(S \subseteq \mathbb{Z}^n \times \mathbb{R} \) if and only if

1. The projection of \(Q \) on the space of the \(n \) integer variables is an integer relaxation of the projection of \(S \).
 (That is, \(Q \) hits exactly the lines in \(\mathbb{Z}^d \times \mathbb{R} \) on which points of \(S \) sit.)
Observation:
A full-dimensional polytope Q is a mixed-integer relaxation of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ if and only if

1. The projection of Q on the space of the n integer variables is an integer relaxation of the projection of S. (That is, Q hits exactly the lines in $\mathbb{Z}^d \times \mathbb{R}$ on which points of S sit.)

2. Every point of S is contained in an upper and a lower facet of Q.

\[\{z\} \times \mathbb{R}, \text{ with } z \in \mathbb{Z}^n \]
Observation:
A full-dimensional polytope Q is a mixed-integer relaxation of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ if and only if

1. The projection of Q on the space of the n integer variables is an integer relaxation of the projection of S. (That is, Q hits exactly the lines in $\mathbb{Z}^d \times \mathbb{R}$ on which points of S sit.)

2. Every point of S is contained in an upper and a lower facet of Q.

Observation:
A full-dimensional polytope Q is a mixed-integer relaxation of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ if and only if

1. The projection of Q on the space of the n integer variables is an integer relaxation of the projection of S. (That is, Q hits exactly the lines in $\mathbb{Z}^d \times \mathbb{R}$ on which points of S sit.)

2. Every point of S is contained in an upper and a lower facet of Q.

Straightforward to check:

1. Fourier-Motzkin elimination for $Q = \{x \in \mathbb{R}^{n+1} : Ax \leq b\}$,
Observation:
A full-dimensional polytope Q is a mixed-integer relaxation of a finite set $S \subseteq \mathbb{Z}^n \times \mathbb{R}$ if and only if

1. The projection of Q on the space of the n integer variables is an integer relaxation of the projection of S. (That is, Q hits exactly the lines in $\mathbb{Z}^d \times \mathbb{R}$ on which points of S sit.)
2. Every point of S is contained in an upper and a lower facet of Q.

Straightforward to check:

1. Fourier-Motzkin elimination for $Q = \{x \in \mathbb{R}^{n+1} : Ax \leq b\}$,
2. Verification of the equality cases on points of S.
PROOF IDEA OF $rc(\Delta_5) \leq 5$.
What can irrational numbers do?
What can irrational numbers do?

With the irrational numbers one can “fold” \mathbb{Z}^2 into \mathbb{R}:

$$(a, b) \in \mathbb{Z}^2 \mapsto a - \frac{1}{\sqrt{2}} b \in \mathbb{R} \quad \text{injective.}$$

That means: $a - \frac{1}{\sqrt{2}} b$ “remembers” the two values $a, b \in \mathbb{Z}$.
What can irrational numbers do?

With the irrational numbers one can “fold” \mathbb{Z}^2 into \mathbb{R}:

$$(a, b) \in \mathbb{Z}^2 \mapsto a - \frac{1}{\sqrt{2}}b \in \mathbb{R} \quad \text{injective.}$$

That means: $a - \frac{1}{\sqrt{2}}b$ “remembers” the two values $a, b \in \mathbb{Z}$.

Our choice of the rational number $-\frac{1}{\sqrt{2}}$ here actually does not matter much (we use it for historical reasons).
Change Δ_5 to an equivalent set X
Change Δ_5 to an equivalent set X

Write \simeq for unimodular equivalence, equivalence up to unimodular transformations $x \mapsto Ux + v$, with $U \in \mathbb{Z}^{d \times d}, |\det(U)| = 1, v \in \mathbb{Z}^d$.

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} = \Delta_5
\begin{pmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} \subseteq \mathbb{Z}_5
\]
Change Δ_5 to an equivalent set X

Write \simeq for unimodular equivalence, equivalence up to unimodular transformations $x \mapsto Ux + \nu$, with $U \in \mathbb{Z}^{d \times d}, |\det(U)| = 1, \nu \in \mathbb{Z}^d$.

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} = \Delta_5 \simeq X := \\
\begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \subseteq \mathbb{Z}^5$$
Apply a skew irrational projection to X:

$$
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
\end{bmatrix} \mapsto
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 - \frac{1}{\sqrt{2}} x_5 \\
\end{bmatrix}
$$

injective as $\mathbb{Z}^5 \rightarrow \mathbb{Z}^3 \times \mathbb{R}$
Apply a skew irrational projection to X:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5
\end{bmatrix} \mapsto \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 - \frac{1}{\sqrt{2}} x_5
\end{bmatrix}
\]

injective as $\mathbb{Z}^5 \rightarrow \mathbb{Z}^3 \times \mathbb{R}$

This gives

$$X = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \rightarrow S = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$S \subseteq \mathbb{Z}^3 \times \mathbb{R}$
Project out the last component, $\mathbb{Z}^3 \times \mathbb{R} \rightarrow \mathbb{Z}^3$:

\[
S = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}}
\end{bmatrix} \rightarrow T := \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

T is a vertex set of a triangular prism:

\[
\text{Crucial property: } \text{conv}(T) \cap \mathbb{Z}^3 = \text{vert(\text{conv}(T))}.
\]
Summary. From dimension 5 to dimension 4 to dimension 3:

\[
\Delta_5 \cong X \to S \to T
\]

\[
\mathbb{Z}^5 = \mathbb{Z}^5 \to \mathbb{Z}^3 \times \mathbb{R} \to \mathbb{Z}^3
\]
Summary. From dimension 5 to dimension 4 to dimension 3:

\[\Delta_5 \cong X \rightarrow S \rightarrow T \]

\[\mathbb{Z}^5 = \mathbb{Z}^5 \rightarrow \mathbb{Z}^3 \times \mathbb{R} \rightarrow \mathbb{Z}^3 \]

We will also follow this path backwards in our arguments:

- \(T \) – vertices of the prism
Summary. From dimension 5 to dimension 4 to dimension 3:

\[\Delta_5 \cong X \rightarrow S \rightarrow T \]

\[\mathbb{Z}^5 = \mathbb{Z}^5 \rightarrow \mathbb{Z}^3 \times \mathbb{R} \rightarrow \mathbb{Z}^3 \]

We will also follow this path backwards in our arguments:

- \(T \) – vertices of the prism
- \(S \) – lifted vertices of the prism
Summary. From dimension 5 to dimension 4 to dimension 3:

\[\Delta_5 \xrightarrow{\cong} X \rightarrow S \rightarrow T \]

\[\mathbb{Z}^5 = \mathbb{Z}^5 \rightarrow \mathbb{Z}^3 \times \mathbb{R} \rightarrow \mathbb{Z}^3 \]

We will also follow this path backwards in our arguments:

- \(T \) – vertices of the prism
- \(S \) – lifted vertices of the prism
- \(X \) – lifting of \(S \), unimodular copy of \(\Delta_5 \)
$Q := \text{conv}(S) = \text{conv} \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}} \end{bmatrix}$

This polytope has three upper facets, three lower facets and three lateral facets.
That is, the inequality description has the form:

\[x_4 \leq u_i(x_1, x_2, x_3) \quad i = 1, 2, 3 \]
\[x_4 \geq l_j(x_1, x_2, x_3) \quad j = 1, 2, 3 \]
\[x_1 \geq 0 \]
\[x_2 \geq 0 \]
\[x_1 + x_2 \leq 1 \]

You may use SageMath to calculate this description: it can do exact polyhedral computations over fields like $\mathbb{Q}[^2]$.
In the ambient set $\mathbb{Z}^3 \times \mathbb{R}$, the Q is a mixed-integer relaxation of S:

$$Q \cap (\mathbb{Z}^3 \times \mathbb{R}) = S = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}}
\end{bmatrix}.$$
In the ambient set $\mathbb{Z}^3 \times \mathbb{R}$, the Q is a mixed-integer relaxation of S:

$$Q \cap (\mathbb{Z}^3 \times \mathbb{R}) = S = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Verifiable directly (see the discussion of MIP relaxations of finite sets).
Q is lifted to the unbounded relaxation of $X \simeq \Delta_5$

$$X = \left\{ x \in \mathbb{Z}^5 : \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 - \frac{1}{\sqrt{2}} x_5 \end{bmatrix} \in Q \right\}$$

given by 9 inequalities.
Q is lifted to the unbounded relaxation of $X \simeq \Delta_5$

$$X = \left\{ x \in \mathbb{Z}^5 : \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 - \frac{1}{\sqrt{2}} x_5 \end{bmatrix} \in Q \right\}$$

given by 9 inequalities. **Justification:**

Q is a mixed-integer relaxation of $S \Rightarrow p \in S \iff$
Q is lifted to the unbounded relaxation of $X \simeq \Delta_5$

$$X = \left\{ x \in \mathbb{Z}^5 : \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 - \frac{1}{\sqrt{2}} x_5 \end{bmatrix} \in Q \right\}$$

given by 9 inequalities. **Justification:**

Q is a mixed-integer relaxation of $S \Rightarrow p \in S \iff$

$$p = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 - \frac{1}{\sqrt{2}} x_5 \end{bmatrix} \in S = \begin{cases} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}} \end{cases}$$

$$\Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \in X = \begin{cases} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{cases}$$
From 9 to 5 inequalities:
Move from

\[Q = \{ x \in \mathbb{R}^4 : Ax \leq b \} \]

with \(Ax \leq b \) being a system of 9 inequalities to

\[Q' = \{ x \in \mathbb{R}^4 : A'x \leq b' \} \]

where \(Q \subseteq Q' \) and \(A' \leq b' \) is a system of 5 inequalities only with:
From 9 to 5 inequalities:
Move from
\[Q = \{ x \in \mathbb{R}^4 : Ax \leq b \} \]
with \(Ax \leq b \) being a system of 9 inequalities to
\[Q' = \{ x \in \mathbb{R}^4 : A'x \leq b' \} \]
where \(Q \subseteq Q' \) and \(A' \leq b' \) is a system of 5 inequalities only with:
- We borrow one upper-facet and two lower-facet inequalities from \(Ax \leq b \).
From 9 to 5 inequalities:
Move from
\[Q = \{ x \in \mathbb{R}^4 : Ax \leq b \} \]
with \(Ax \leq b \) being a system of 9 inequalities to
\[Q' = \{ x \in \mathbb{R}^4 : A'x \leq b' \} \]
where \(Q \subseteq Q' \) and \(A' \leq b' \) is a system of 5 inequalities only with:

- We borrow one upper-facet and two lower-facet inequalities from \(Ax \leq b \).
- Each of the two remaining inequalities is a combination of two facet inequalities for \(Q \).
From 9 to 5 inequalities:

Move from

\[Q = \{ x \in \mathbb{R}^4 : Ax \leq b \} \]

with \(Ax \leq b \) being a system of 9 inequalities to

\[Q' = \{ x \in \mathbb{R}^4 : A'x \leq b' \} \]

where \(Q \subseteq Q' \) and \(A' \leq b' \) is a system of 5 inequalities only with:

- We borrow one upper-facet and two lower-facet inequalities from \(Ax \leq b \).
- Each of the two remaining inequalities is a combination of two facet inequalities for \(Q \).
- We need to make sure that \(Q' \) is a mixed-integer relaxation of \(S \). Once \(Q' \) is found, that can be done in a straightforward manner (tedious computation for mixed-integer relaxation of the finite set \(S \)).
Q' is lifted to the relaxation of $X \simeq \Delta_5$:

$$X = \left\{ x \in \mathbb{Z}^5 : \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 - \frac{1}{\sqrt{2}} x_5 \end{bmatrix} \in Q' \right\}$$

by 5 inequalities.
Q' is lifted to the relaxation of $X \simeq \Delta_5$:

$$X = \left\{ x \in \mathbb{Z}^5 : \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 - \frac{1}{\sqrt{2}} x_5 \end{bmatrix} \in Q' \right\}$$

by 5 inequalities.

$\Rightarrow \text{rc}(\Delta_5) \leq 5.$
“As a mathematical subject, it is a rich combination of aspects of geometry, algebra, number theory, and combinatorics. The interplay between the mathematics, modeling, and algorithmics makes it a deep and fascinating subject of applied mathematics.”
Introduction

MIP relaxations of finite sets

Proof idea of $\text{rc}(\Delta_5) \leq 5$

Asymptotic estimate for $\text{rc}(\Delta_d)$
Thanks!

May the MIP be with you!
BONUS MATERIAL:
ASYMPTOTIC ESTIMATE FOR $rc(\Delta_d)$
• Use the same process $\Delta_d \simeq X \rightarrow S \rightarrow T$, where $T = \{0, 1\}^k$ and $k = \mathcal{O}(\log d)$, which we turn around and do backwards.
• Use the same process $\Delta_d \simeq X \to S \to T$, where $T = \{0, 1\}^k$ and $k = \mathcal{O}(\log d)$, which we turn around and do backwards.

• Lift $T = \{0, 1\}^k$ to $S \subseteq \mathbb{Z}^k \times \mathbb{R}$ by supplying heights such that $Q := \text{conv}(S)$ has the following properties:
• Use the same process $\Delta_d \cong X \to S \to T$, where $T = \{0, 1\}^k$ and $k = O(\log d)$, which we turn around and do backwards.

• Lift $T = \{0, 1\}^k$ to $S \subseteq \mathbb{Z}^k \times \mathbb{R}$ by supplying heights such that $Q := \text{conv}(S)$ has the following properties:

• S can be covered by $O\left(\frac{d}{\sqrt{\log d}}\right)$ simplicial upper facets of Q and also
• Use the same process $\Delta_d \simeq X \rightarrow S \rightarrow T$, where $T = \{0, 1\}^k$ and $k = O(\log d)$, which we turn around and do backwards.
• Lift $T = \{0, 1\}^k$ to $S \subseteq \mathbb{Z}^k \times \mathbb{R}$ by supplying heights such that $Q := \text{conv}(S)$ has the following properties:
 • S can be covered by $O\left(\frac{d}{\sqrt{\log d}}\right)$ simplicial upper facets of Q and also
 • by $O\left(\frac{d}{\sqrt{\log d}}\right)$ simplicial lower facets of Q.

The arguments rely on the combinatorics of regular subdivisions of $\text{conv}(T) = [0, 1]^k$. We use the probabilistic method to show the existence of the above coverings.
• Use the same process $\Delta_d \simeq X \to S \to T$, where $T = \{0, 1\}^k$ and $k = \mathcal{O}(\log d)$, which we turn around and do backwards.

• Lift $T = \{0, 1\}^k$ to $S \subseteq \mathbb{Z}^k \times \mathbb{R}$ by supplying heights such that $Q := \text{conv}(S)$ has the following properties:

• S can be covered by $\mathcal{O}(\frac{d}{\sqrt{\log d}})$ simplicial upper facets of Q and also

• by $\mathcal{O}(\frac{d}{\sqrt{\log d}})$ simplicial lower facets of Q.

• The arguments rely on the combinatorics of regular subdivisions of $\text{conv}(T) = [0, 1]^k$.
• Use the same process $\Delta_d \simeq X \to S \to T$, where $T = \{0, 1\}^k$ and $k = O(\log d)$, which we turn around and do backwards.

• Lift $T = \{0, 1\}^k$ to $S \subseteq \mathbb{Z}^k \times \mathbb{R}$ by supplying heights such that $Q := \text{conv}(S)$ has the following properties:

• S can be covered by $O\left(\frac{d}{\sqrt{\log d}}\right)$ simplicial upper facets of Q and also

• by $O\left(\frac{d}{\sqrt{\log d}}\right)$ simplicial lower facets of Q.

• The arguments rely on the combinatorics of regular subdivisions of $\text{conv}(T) = [0, 1]^k$.

• We use the probabilistic method to show the existence of the above coverings.