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B
ChatGPT To The Rescue

l Write a limerick apologizing for this math talk being work in progress

B

There once was a math talk | gave,
But progress had not been fully made,
It was work in progress,

Please don't digress,

I'm sorry for the points left unweighed!
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Outline

@ Matrix completion

@ Binary matrix factorization and
completion

WORK
IN
PROGRESS

i

@ Index coding

@ Three IP Formulations
@ McCormick + Integer Variable
@ McCormick + Parity Disjunction
© McCormick-Free
@ Less than impressive computational
results
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B
Jeff Wants In On The Action

Soni et. al (UW ISyE)



I
Low-Rank Matrix Completion: Netflix Problem

@ There exists a matrix X € R4*X™ whose entries are only known for a
fraction of the elements Q C [d] x [n]

@ To complete the matrix, we must assume some structure.

@ Here we assume X is low-rank: X = UV for some U € R4xT,
V 6 RT‘XT\.
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I
0-1 Matrix Completion?

@ In some earlier work sponsored by American Family, we did a
combination of matrix completion and clustering—Subspace
clustering with missing data

@ They asked us to try it out on their data matrix—which was a 0-1
matrix (?!)

@ Doing “normal” low-rank matrix completion, say using nuclear norm,
or any other very powerful methods, is not going to give 0-1 values
for the missing entries

@ Even if you fill in unknowns with real values, the points typically don't
lie on a (low dimensional) hyperplane in R

What to do?

@ Don't do it over R.

@ What about Boolean Algebra (1 + 1 = 1)— natural for revealing
“low-dimensional” characteristics
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Boolean Algebra: 1+1 = 1. (Logical Or)

‘!r. I
%
=

Simge Jim Jeff
Long Hair 1 1 0
X= Loves MIP | 1 1T
Cheesehead 0 1 1

Two Groups of People, Two Traits

@ Simge and Jim have long hair and love MIP

@ Jim and Jeff love MIP and are cheeseheads
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Two Factors

Simge Jim Jeff T1 T2 Simge Jim  Jeff

Long Hair 1 1 0 1 0 1 1 0
X' = Loves MIP 1 1 1]2[1 1 O[ 0 1 1
Cheesehead 0 1 1 0 1

e Writing X = VI_;uf(v¥)T reveals the fundamental “traits”, and
classifies individuals depending on which traits they have

@ So we started working on integer programming approaches to matrix
factorization and completion in Boolean algebra
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| Hate This Guy

Binary Matrix Factorisation and Completion via
Integer Programming

Raphael A. Hauser, Réka A. Kovics

University of Oxford, The Alan Turing Tnstitute, hasermaths.o.ac.uk, rekn ks Gmaths.oc.ac. 1l

Binary matrix factorisation is an essential tool for identifying o patterns in binary data. In this paper
we consider the rank-k hinary matrix factorisation problem (E-BMF) under Boolean arithmetic: we are given
b Ao B of
et of
ize integer pmn(anl
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Oktay Ruined It—Nothing Left To Do

@ |IP Formulations
@ Strong Formulations

@ Column Generation Approaches.
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Binary Matrix Factorization/Completion

Matrix Factorization

@ Boolean: Find smallest r such that X = \/Lzluk(vk)—r, where
uk € {0,114,V € {0, 1)™. This is hard

o F,: Find smallest T such that X = @] _;uf(v¥) T, where
uk € {0,1}4,v* € {0, 1}™. This is easy

Matrix Completion. Given Q C [d] x [n], X;; € {0,1} Vij € Q, r € Z,

e Find u* € {0,114, vk € {0, 1™ to min | X35 — \/ﬂzluk(vk)T)HQ.
This is hard.

e Find uk € {0,1}4,v* € {0, 1} to min X5 — @iz]uk(vk)T)HQ.
This is hard.
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I
What Oktay Said

“Matrix Completion in F,?717!
Why on earth would anyone want
to solve that problem?”
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e
Index Coding (with Side Information)

@ We have a collection of n messages/packets, each in {0, 1}, and a
collection of n receivers.
e Each receiver wants to know one of the messages
o Each receiver "knows” (has cached) some subset of the packets—Just
not the one it wants to know

o Central broadcaster knows which packets are cached at each receiver

Index Coding

Broadcast a minimum number of messages so that each receiver can
recover its message using its local information

Send a basis of “known” information = each receiver can compute their
own message. Min rank is minimum number of messages
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NS
Index Coding: Example

. Has RL R2 R3 R4 RS
Receiver Messages
ML 1l — O O —
1 2,5
5 15 M2 |— 1 — — 0
3 2’4 X=M3|0 0 1 — —
4 2’3 M4 |10 o — 1 -
5 134 M5 L— — 0 0 1
1T 1 0 0 1 10
1T 1110 11
X=10 01 1 1| =101 [(]) (1) (1) ? ”
001 11 0
11 0 0 1 10

@ Broadcast two messages: (M1 + M2 + M5, M2 + M3 + M4)
@ All receivers can reconstruct their desired message
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Matrix Completion in F,?—State of the Art?

@ No exact method in literature for matrix completion in F, (1?)

@ Heuristic pruning-based enumeration method in Esfahanizadeh,
Lahuoti, and Hassibi, able to find (known) min rank solution for 7 by
7 instance every time in around 1 second.

e For 14 by 14 instance, in 30 min, they (sometimes) find rank 5
solution, sometimes find rank 6 solution.

MIP People Do It Exactly

Or at least up to floating point accuracy?

@ We aim to build first(?) exact solver for this class of problems

Soni et. al (UW ISyE) MC-GF2 ICERM 14 /36



MIP Formulations for Matrix Completion in [F;

@ Some sets we will use

={(u,v,2) € {0, ¥ | z = B}_wevic}
={(y,2) €{0, 1" |z =] _ yi}
={(u,v,y) €{0, 1" | yx = wewx Vk € [r]}

e Note that proj,,, (P N M) =
@ Matrix Completion in [Fy:

min Z |Xij_Zij|

(jleQ
(U v, zi) € Ty Vij € Q

e Note that ut,v € {0, 1}
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I
Writing M as MIP

@ Everyone (at least at this meeting) knows how to write M as the set
of {0,1}-points inside a polyhedron. (M is for McCormick.)
M = {(UN,U) € {O) ]}3T | Yk < Wiy Yk < Vky Yk > uk+Vk—] Vk € [T]}

@ Oktay told me that

LP(M) = {(u,v,y) € [0, 11" | yx < w,yx < vk
Yk > w + vk — 1 Vk € [r]} = conv(M)

@ It is also true (by separability) that

conv(P N M) = conv(P) N conv(M).
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I
Writing P as MIP

o Consider the general integer set:

Z:={y,z,t) €O, xZ| Y y—2t=2
k=1

@ It is easy to see that Z =P

@ So we have our “first” MILP formulation for matrix completion in FF5:

min Z |Xij — Zij|

(e

(W ViyT) e My VijeQ
(yij)zij)tij) € Zij Yij € Q
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Computational Experiments

WO{I;K_ INPROGRESS
1 o S e

Q..

oy 3

EVERYWHERE!

e X €{0,1}19%10 will have F>-rank 4.
@ Use MIP formulation to find “closest” rank r matrix for r < 4

o Let O be all matrix elements, and then start to (randomly) remove a
fraction of the entries
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Computational Results

% Missing Rank Time Nodes | Opt
0 1 0.05 1] 36
0 2 41.81 70237 | 24
0 3 7184.56 10437394 | 12
0 4 0.49 1 0
10 1 0.03 1] 31
10 2 14.04 27757 | 17
10 3 320.59 996422 7
10 4 0.03 1 0

20 1 0.01 1] 26
20 2 2.91 5872 | 14
20 3 4106.07 13393830 8
20 4 2.55 2430 0

Results are a Pig!
@ 460 binary vars, 100 integer vars > 10M nodes?
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How to Improve?

@ The LP relaxation of the parity condition:

LP(2) :={(y,2,t) € [0, x Ry |2t = ) yi—2)

i=1
is very far from the convex hull of the true parity conditions:
projy, LP(Z) C conv(P)

@ But lots is known about how to model parity conditions
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Parity Polyhedra

Pg = conv{x € {0, 1}"" | in is even }

i=1

n
Po = convix € {0,11* | Y x; is odd }

i=1
PE={xecl0,") xi—) % <IS|—1,VoddSC [n}
ies ¢S
Po={xel0, "> xi—) % <[S|—1,Veven S C [n]}
ies ¢S

@ There are also small (even linear-size) extended formulations for P¢
and Po

@ From these, and using disjunctive programming, we can give an
extended formulation for conv(P)
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One Extended Formulation for conv(P)

o Let D € [0,1]3*! be the set of points satisfying bound constraints
and the inequalities

Z‘Jk Zyk (IS[=1)z YV even S C [r]
keS K¢S

S ui-Y e <(SI-1(1-2) VYoddSC
kes k¢S

Yk = Yp +Yx vk € [1]

Yy <z vk € [1]
yp<l—z Vk € [1]

conv(P) = proj, , D conv(PNM)=DNLP(M)
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MIP Formulation 2

min Z Xy — zy]

(ijleQ

(ui,vj)yij) € Mij V(l]) €Q
(yij)yo,ij’ye,ij’zij) € Dij V(l]) €Q
z; €{0,1} VijeQ
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NS
Computational Results: MIP1 v MIP2

MIP % Missing Rank Time Nodes | Opt
1 0 2 41.81 70237 | 24
2 0 2 9.42 13746 | 24
1 0 3 718456 10437394 | 12
2 0 3 2137.15 1272534 | 12
1 10 2 14.04 27757 | 17
2 10 2 6.63 20296 | 17
1 10 3 320.59 996422 7
2 10 3 357.02 353021 7
1 20 2 2.91 5872 | 14
2 20 2 3.64 8927 | 14
1 20 3 4106.07 13393830 | 8
2 20 3 2199.89 2366186 | 8
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Team Reactions

“Why do you all keep talking about
putting lipstick on a pig?”

“Aunque la mona se vista de seda,
e mona se queda”
q g
A
\ y (You can dress a monkey in silk, but it's still a
A iy = monkey)
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%

197




NS
Keep Trying!
@ Can we directly model the set
T ={(w,v,2) € {0, """ | z = Dy}

without using auxiliary variables?
@ Yes! Let T be the set of all tri-partitions of [r]

T={SCh,QCH,TCH|SUQUT =]
SNQ=0,SNT=0,QNT =0}
@ Consider families of inequalities

z4+u(S)+v(S) —u(Q) —v(T) <2ISIV(S,Q,T) € T with |S| even (1)
z—u(S) —v(S) +u(Q) +v(T) >1—2IS| ¥ (S,Q,T) € T with |S| odd
(2)
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Theorems

@ These (exponentially many in ) inequalities give a direct
formulation of Z:

F ={(u,v,2) € {0,171 | (1), (2)}

o All inequalities are necessary

@ The LP relaxation of the set is the convex hull

conv(Z) = {(u,v,z) € [0, 17| (1), (2)}

@ “Theorem” because Jim hasn't proved it yet
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B
MIP Formulation 3

min Z IXij — zij

(ij)eq

(W, zy) € Ty V(i) € Q
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Computational Results

MIP % Missing Rank Time Nodes Opt
1 0 2 41.81 70237 24
2 0 2 9.42 13746 24
3 0 2 5.00 12588 24
1 0 3 7184.56 10437394 12
2 0 3 2137.15 1272534 12
3 0 3 1765.4 1962326 12
1 10 2 14.04 27757 17
2 10 2 6.63 20296 17
3 10 2 3.65 22560 17
1 10 3 320.59 996422 7
2 10 3 357.02 353021 7
3 10 3 188.81 332773 7
1 20 2 291 5872 14
2 20 2 3.64 8927 14
3 20 2 4.28 3357 14
1 20 3 4106.07 13393830 8
2 20 3 2199.89 2366186 8
3 20 3 381.94 645413 8
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Discussion

@ Frankly, the computational results are not where we want them to be.
@ We can now only “reliably” solve linear index coding problems of sizes
up to around 12 by 12.

@ And worse, the “monkey in silk" formulation or the “pig in lipstick
formulation” aren't typically any better than the “pig” formulation

A Word on Separation
@ We don't do it—Our computational results (to this point) just
explicitly enumerate all inequalities
@ However, separation of the inequalities is “trivial” (linear time)
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Can we do more?

e MIP3 (Silk Monkey) formulation is

(ui,vj,zij) € conv(Zy) V(ij) € Q

(ui,vj, Zij) c {O, ]}dr+rn+|Q|

@ We know the intersection of the convex hulls

o If it were only true that
conv < Nijeq Iﬁ) = Nijen conv(Zi)

we wouldn’t need integer variables.
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B
ChatGPT To the Rescue!

l Prove that the convex hull of the intersection of sets is equal to the intersection of the sets'
convex hulls

To prove that the convex hull of the intersection of sets is equal to the intersection of the

sets' convex hulls, we need to show that both contain the same set of points.

Let S1, S2, .., Sn be a collection of sets, and let C1, C2, ..., Cn be their respective convex hulls.

We want to show that:
convex hull (S1TnS2n..nSn)=C1nC2n..nCn

To prove this, we need to show that any point that belongs to one set also belongs to the

other set.

First, let us consider the left-hand side of the equation. The convex hull of the intersection of
sets, convex hull (S1 n S2 n ... n Sn), is the smallest convex set that contains all the points in
S1nS2n..nSn.
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BN
ChatGPT Proves conv(Ni(X;)) = Nconv(X;)

Soni et. al

Since the intersection of sets is a subset of each set, any point in the intersection must be in
each set. Therefore, the convex hull of the intersection contains all the points in each set's

convex hull.

Now, let us consider the right-hand side of the equation. The intersection of the convex

hulls, C1 n C2 n ... n Cn, is the set of all points that belong to all the convex hulls.

Since each convex hull contains all the points in its corresponding set, any point that
belongs to all the convex hulls must belong to the intersection of the sets. Therefore, the

intersection of the convex hulls contains all the points in the convex hull of the intersection.
Combining these two facts, we can conclude that:

convex hull (S1nS2n..nSn)cC1nC2n..nCn

and

C1nC2n..nCn ¢ convex hull (S1 nS2n ..n Sn)

Hence, we have shown that the convex hull of the intersection of sets is equal to the

intersection of the sets' convex hulls.
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I
Next Steps: Two Rows of U

2 2 2
T ={(u',u?v,z1,25) € {0,172 | z; = @Lﬂullvk,zz = Bp_ WiV}

Always Leave the Audience
Wanting More

@ Sorry, those will have to
wait until next time

@ | actually think there is
a good chance we will
get inequalities for all
of the rows and just
one column.

o "l
_ INEQUALITIES TODAY
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Any Questions?

@ Three MIP Formulation for Matrix Completion in [F;
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I
Another ChatGPT Apology Limerick

l Write a limerick apologizing for a bad math talk

There once was a talk full of math,
But the speaker was quite in a bath,
The graphs were all skewed,
The theorems were crude,

I'm sorry for causing your wrath!
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