Minimizing quadratics over integers

Alberto Del Pia

University of Wisconsin-Madison

Linear and Non-Linear Mixed Integer Optimization Institute for Computational and Experimental Research in Mathematics (ICERM) March 1, 2023

Part I

The problem

Mixed Integer Quadratic Programming

minimize
$$x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$$

subject to $Ax \leq b$ (MIQP)
 $x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$

Mixed Integer Quadratic Programming

minimize
$$x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$$

subject to $Ax \leq b$ (MIQP)
 $x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$

- With Q = 0: Mixed Integer Linear Programming (MILP)
- With p = 0: Quadratic Programming (QP)
- Prototypical Mixed Integer Nonlinear Programming (MINLP)

Geometry

Basic knowledge

$$\begin{array}{ll} \text{minimize} & x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ \text{subject to} & A x \leq b \\ & x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \end{array} \tag{MIQP}$$

Some fundamental properties: [DP Dey Molinaro 14]

- ▶ \exists optimal solutions of polynomial size
 - \Rightarrow Feasibility problem in \mathcal{NP}
- Infima are always achieved
- ► Unbounded ⇔ ∃ unbounded ray

Size of solutions

minimize $x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$ subject to $Ax \leq b$ (MIQP) $x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$

Theorem ([DP Dey Molinaro 14])

If MIQP has optimal solutions, then it has an optimal solution of polynomial size

Size of solutions: quadratic inequalities

What if we consider also quadratic inequalities?

- Integer feasibility of a set defined by a fixed number of quadratic inequalities is undecidable [Jeroslow 73]
 It is not possible to bound the size of smallest optimal solution
- Consequence of solution of Hilbert's 10th problem [Matiyasevich 70]

Size of solutions: one convex quadratic inequality

And if we restrict to one convex quadratic?

The Trust Region Problem can have a unique optimal solution that is irrational

minimize
$$x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$$

subject to $x^{\mathsf{T}}x \le 1$ (TRP)
 $x \in \mathbb{R}^{n}$

Size of solutions: one quadratic inequality

What about integral solutions?

Consider Pell's equation $x^2 - Ny^2 = 1$, for $x, y \in \mathbb{Z}$, $x, y \ge 1$

► For $N = 5^{2k+1}$, $k \in \mathbb{N}$, the smallest solution has size $\Omega(5^k)$

Size of solutions: one quadratic inequality

Consider the following MIQP, with just one quadratic inequality:

minimize
$$x^2 - Ny^2$$

subject to $x^2 - Ny^2 \ge 1$
 $x, y \ge 1$
 $(x, y) \in \mathbb{Z}^2$

- ▶ For $N = 5^{2k+1}$, $k \in \mathbb{N}$, all optimal solutions have exponential size
- This problem is just in dimension 2!

Known polynomial-time algorithms: fixed dimension n

Exact algorithms:

- ▶ $n \in \{1, 2\}$ [DP Weismantel 14]
- n fixed, convex objective [Khachiyan 83]
- n fixed, concave objective
 [Cook Hartman Kannan McDiarmid 92]
 [Hildebrand Oertel Weismantel 15]
- n fixed, unary encoding [Zemmer 17] [Lokshtanov 17]

Approximation algorithms:

- n fixed [De Loera Hemmecke Köppe Weismantel 08]
- n fixed, homogeneous objective "almost convex/concave" [Hildebrand Weismantel Zemmer 16] (stronger notion of approximation)

Known polynomial-time algorithms: variable dimension

Exact algorithms:

 Δ ≤ 1, separable convex objective [Hochbaum Shanthikumar 90]

Approximation algorithms:

- $\Delta \leq 2$, separable concave objective of fixed rank [DP 19]
- p fixed, concave objective of fixed rank [DP 18]
- p fixed, objective of fixed rank [DP 22]

In particular, we need to be able to find a feasible solution in polynomial time!

Definition For $\epsilon \in [0, 1]$, a feasible x^{\diamond} is an ϵ -approximate solution if $obj(x^{\diamond}) - obj_{min} \leq \epsilon \cdot (obj_{max} - obj_{min})$

•
$$obi(x) := objective value of x$$

- obj_{min} := minimum of obj on the feasible region
- obj_{max} := maximum of obj on the feasible region

Definition For $\epsilon \in [0, 1]$, a feasible x^{\diamond} is an ϵ -approximate solution if $obj(x^{\diamond}) - obj_{min} \leq \epsilon \cdot (obj_{max} - obj_{min})$

- Any feasible point is a 1-approximate solution
- Only optimal solutions are 0-approximate solutions

```
Definition
For \epsilon \in [0, 1], a feasible x^{\diamond} is an \epsilon-approximate solution if
obj(x^{\diamond}) - obj_{min} \leq \epsilon \cdot (obj_{max} - obj_{min})
```

Useful invariance properties:

- Preserved under dilation and translation of the objective function
- Insensitive to affine transformations of the objective function and of the feasible region, like changes of basis

```
Definition
For \epsilon \in [0, 1], a feasible x^{\diamond} is an \epsilon-approximate solution if
obj(x^{\diamond}) - obj_{min} \leq \epsilon \cdot (obj_{max} - obj_{min})
```

Definition used in earlier works, including:

- [Nemirovsky Yudin 83]
- [Vavasis 90 92 93]
- [Belldare Rogaway 93]
- [de Klerk Laurent Parrilo 06]

Main result

 $\begin{array}{ll} \text{minimize} & x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ \text{subject to} & A x \leq b \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{array} \tag{MIQP}$

Theorem

For every $\epsilon \in (0, 1]$, there is an algorithm that finds an ϵ -approximate solution to a bounded MIQP. The running time of the algorithm is polynomial in the size of the input and in $1/\epsilon$, provided that the rank k of the matrix Q and the number of integer variables p are fixed numbers.

 First known polynomial-time approximation algorithm for indefinite MIQP with n not fixed

Main result

 $\begin{array}{ll} \text{minimize} & x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ \text{subject to} & A x \leq b \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{array} \tag{MIQP}$

Theorem

For every $\epsilon \in (0, 1]$, there is an algorithm that finds an ϵ -approximate solution to a bounded MIQP. The running time of the algorithm is polynomial in the size of the input and in $1/\epsilon$, provided that the rank k of the matrix Q and the number of integer variables p are fixed numbers.

- Running time is best possible unless $\mathcal{P}=\mathcal{NP}$
- ▶ Boundedness assumption cannot be removed unless $\mathcal{P}=\mathcal{NP}$

Part II The algorithm

Spherical form MIQP (up to some technicalities...)

minimize
$$\sum_{i=1}^{d} D_{i}x_{i}^{2} + c^{\mathsf{T}}x$$
subject to $Ax \leq b$
 $x \in \Lambda$
(S-MIQP)

•
$$d \le p + k$$
 is a fixed number

For a constant r:

$$\mathcal{B}(a,1) \subset \{ extbf{x} \in \mathbb{R}^n : A extbf{x} \leq b \} \subset \mathcal{B}(a,r)$$

 $\blacktriangleright |D_1| \geq \cdots \geq |D_d|$

Key technique: mesh partition and linear underestimators

Key technique: mesh partition and linear underestimators

Key technique: mesh partition and linear underestimators

Partition $\mathcal{B}(a, r)$ into φ^d cubes

Approximation

For each cube C, we construct an affine function g(x) s.t.

$$g(x) \leq \sum_{i=1}^{d} D_i x_i^2 \leq g(x) + \frac{|D_1| dr^2}{\varphi^2} \qquad \forall x \in C$$

Approximation

For each cube C, we construct an affine function g(x) s.t.

$$g(x) \leq \sum_{i=1}^{d} D_i x_i^2 \leq g(x) + \frac{|D_1|dr^2}{\varphi^2} \qquad \forall x \in C$$

For each cube C, we solve the MILP

minimize
$$g(x) + c^{\mathsf{T}}x$$

subject to $Ax \le b$
 $x \in C$
 $x \in \Lambda$

 Return the vector x^ο that achieves the minimum objective among all φ^d MILPs Definition x^{\diamond} is an ϵ -approximate solution if

$$\mathsf{obj}(x^\diamond) - \mathsf{obj}_{\mathsf{min}} \leq \epsilon \cdot (\mathsf{obj}_{\mathsf{max}} - \mathsf{obj}_{\mathsf{min}})$$

To prove that x^{\diamond} is an ϵ -approximation, we need two bounds:

- ► Upper bound: obj(x[◊]) obj_{min} is small
- Lower bound: obj_{max} obj_{min} is large

Approximation: upper bound

► Upper bound: obj(x²) - obj_{min} is small

How do we do it?

Using underestimator g(x):

$$egin{aligned} g(x) &\leq \sum_{i=1}^d D_i y_i^2 \leq g(x) + rac{|D_1| dr^2}{arphi^2} & orall y \in \mathcal{C} \ \ &\Rightarrow & \operatorname{obj}(x^\diamond) - \operatorname{obj}_{\min} \leq rac{|D_1| dr^2}{arphi^2} \end{aligned}$$

Approximation: lower bound

Lower bound: obj_{max} – obj_{min} is large

How do we do it?

We can give a nice lower bound if there exist two aligned vectors

Definition

Two vectors $x^+, x^- \in \mathcal{P}$ are aligned if

1.
$$x_1^+ - x_1^- \ge 1$$

2. $\sum_{i=2}^d (x_i^+ - x_i^-)^2 \le 1/4$
3. $x^+, x^-, \frac{1}{2}(x^+ + x^-)$ feasible

If \exists aligned vectors \Rightarrow $obj_{max} - obj_{min} \geq \frac{3}{16}|D_1|$

Approximation

We have obtained the two bounds:

$$egin{aligned} \mathsf{obj}(x^\diamond) - \mathsf{obj}_{\mathsf{min}} &\leq rac{|D_1| dr^2}{arphi^2} \ \mathsf{obj}_{\mathsf{max}} - \mathsf{obj}_{\mathsf{min}} &\geq rac{3}{16} |D_1| \end{aligned}$$

 x^{\diamond} is an ϵ -approximate solution provided that

$$\frac{|\mathcal{D}_1| dr^2}{\varphi^2} \le \epsilon \cdot \frac{3}{16} |\mathcal{D}_1|$$

Just choose $\varphi := \left[4r\sqrt{d/(3\epsilon)}\right]$ For the approximation, we solved $\left[4r\sqrt{d/(3\epsilon)}\right]^d$ MILPs

Aligned vectors

We have found an $\epsilon\textsubscript{-approximate solution for S-MIQP}$ if there exist two aligned vectors

- How do we check if there exist two aligned vectors?
- And what do we do otherwise?

Aligned vectors

We have found an $\epsilon\text{-approximate solution for S-MIQP}$ if there exist two aligned vectors

- How do we check if there exist two aligned vectors?
- And what do we do otherwise?

Proposition

There is a polynomial-time algorithm which either finds two aligned vectors, or partitions S-MIQP in a constant number of S-MIQPs with one less integer variable

Aligned vectors

We have found an $\epsilon\text{-approximate solution for S-MIQP}$ if there exist two aligned vectors

- How do we check if there exist two aligned vectors?
- And what do we do otherwise?

Proposition

There is a polynomial-time algorithm which either finds two aligned vectors, or partitions S-MIQP in a constant number of S-MIQPs with one less integer variable

We obtain a recursive algorithm!

The best approximate solution found is an ε-approximate solution for the original S-MIQP

• Runtime: In total, we solved constant^{*d*} · $\left[4r\sqrt{d/(3\epsilon)}\right]^d$ MILPs

We need:

1. $x_1^+ - x_1^- \ge 1$ 2. $\sum_{i=2}^d (x_i^+ - x_i^-)^2 \le 1/4$ 3. $x^+, x^-, \frac{1}{2}(x^+ + x^-)$ feasible

Main result

Theorem

For every $\epsilon \in (0, 1]$, there is an algorithm that finds an ϵ -approximate solution to a bounded MIQP. The running time of the algorithm is polynomial in the size of the input and in $1/\epsilon$, provided that the rank k of the matrix Q and the number of integer variables p are fixed numbers.

 $\mathsf{MIQP} \xrightarrow{?} \mathsf{S}\text{-}\mathsf{MIQP} \xrightarrow{!} \epsilon\text{-}\mathsf{approximate solution}$

Part III

The spherical form MIQP

Spherical form MIQP (up to some technicalities...)

minimize
$$\sum_{i=1}^{d} D_{i}x_{i}^{2} + c^{\mathsf{T}}x$$
subject to $Ax \leq b$
 $x \in \Lambda$
(S-MIQP)

•
$$d \le p + k$$
 is a fixed number

For a constant r:

$$\mathcal{B}(a,1) \subset \{ extbf{x} \in \mathbb{R}^n : A extbf{x} \leq b \} \subset \mathcal{B}(a,r)$$

 $\blacktriangleright |D_1| \geq \cdots \geq |D_d|$

Diagonalization

In particular, S-MIQP has a separable objective function

 $x^{\mathsf{T}}Qx \quad \rightsquigarrow \quad x^{\mathsf{T}}Dx, \quad \mathsf{D} \text{ diagonal}$

Definition A symmetric decomposition of Q is a decomposition of the form

 $Q = LDL^{\mathsf{T}},$

where L is nonsingular and D is diagonal

• We can then make the change of variables $y = L^{T}x$

$$x^{\mathsf{T}} Q x = x^{\mathsf{T}} (L D L^{\mathsf{T}}) x = (x^{\mathsf{T}} L) D (L^{\mathsf{T}} x) = y^{\mathsf{T}} D y$$

Diagonalization

Known algorithms:

- Cholesky decomposition
- Spectral decomposition
- LDL^T decomposition

- Schur decomposition
- Takagi's factorization

Our goal:

Polynomial-time algorithm for any symmetric matrix Q

Properties of known algorithms:

- Polynomial number of operations
- Numerical stability
- Only applicable to semidefinite matrices X
- Unknown size of numbers obtained X
- Square roots X

Symmetric decomposition algorithm

Algorithm: [Dax Kaniel 77] with $\gamma \in \pm 1$

- lnput matrix: $Q = Q^{(0)}$
- ▶ Iteration 1: $Q^{(0)} \rightarrow Q^{(1)}$
- ▶ Iteration 2: $Q^{(1)} \rightarrow Q^{(2)}$

...

• Iteration
$$n-1$$
: $Q^{(n-2)} \rightarrow Q^{(n-1)} = D$

 $Q^{(k)}$ symmetric with off-diagonal elements in the first k rows/columns equal zero

$$Q^{(0)} = \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \quad Q^{(1)} = \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \quad Q^{(2)} = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}$$

Symmetric decomposition algorithm

Consider iteration k: $Q^{(k-1)} \rightarrow Q^{(k)}$

Two stages:

- Pivoting. Ensures that the pivotal element, which is the element in the (k, k) position, is one with largest absolute value among rows/columns k,..., n
- Elimination. Obtains zeros in the off-diagonal elements of row/column k

$$Q^{(0)} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix}$$

$$Q^{(0)} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix}$$

Iteration k = 1: Pivoting

Element with largest absolute value is 4 in position (2,3)

Interchange rows/columns 1 and 2:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 1 \\ 4 & 1 & 2 \end{pmatrix}$$

Add row/column 3 to row/column 1:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 1 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix}$$

$$Q^{(0)} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} \to \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix}$$

Iteration k = 1: Pivoting

Element with largest absolute value is 4 in position (2,3)

Interchange rows/columns 1 and 2:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 1 \\ 4 & 1 & 2 \end{pmatrix}$$

Add row/column 3 to row/column 1:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 1 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix}$$

$$Q^{(0)} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} \to \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix}$$

Iteration k = 1: **Elimination**

Row/column elimination is done as in Gaussian elimination:

$$\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{12} & 1 & 0 \\ -\frac{6}{12} & 0 & 1 \end{pmatrix} \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{12} & 1 & 0 \\ -\frac{6}{12} & 0 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$Q^{(0)} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} \to \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix} \to \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix} = Q^{(1)}$$

Iteration k = 1: Elimination

Row/column elimination is done as in Gaussian elimination:

$$\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{12} & 1 & 0 \\ -\frac{6}{12} & 0 & 1 \end{pmatrix} \begin{pmatrix} 12 & 4 & 6 \\ 4 & 1 & 1 \\ 6 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{12} & 1 & 0 \\ -\frac{6}{12} & 0 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$Q^{(1)} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$Q^{(1)} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

Iteration k = 2: **Pivoting**

Element with largest absolute value in rows/columns 2 and 3 is -1 in position (3,3)

Interchange rows/columns 2 and 3:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix}$$

$$Q^{(1)} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix} \to \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix}$$

Iteration k = 2: Pivoting

Element with largest absolute value in rows/columns 2 and 3 is -1 in position (3,3)

Interchange rows/columns 2 and 3:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix}$$

$$Q^{(1)} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix} \to \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix}$$

Iteration k = 2: **Elimination**

Row/column elimination is done as in Gaussian elimination:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{2}{3} \end{pmatrix}$$

$$Q^{(1)} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -\frac{1}{3} & -1 \\ 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix} \rightarrow \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{2}{3} \end{pmatrix} = Q^{(2)}$$

Iteration k = 2: **Elimination**

Row/column elimination is done as in Gaussian elimination:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{2}{3} \end{pmatrix}$$

$$B := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{12} & 1 & 0 \\ -\frac{6}{12} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{6} & -\frac{5}{6} \end{pmatrix}$$

 $\Rightarrow BQB^{T} = D$

$$L := B^{-1} = \begin{pmatrix} \frac{1}{3} & 1 & 1\\ \frac{1}{2} & -1 & 0\\ \frac{1}{2} & 1 & 0 \end{pmatrix}$$

 $\Rightarrow Q = LDL^{T}$

Symmetric decomposition algorithm

- The number of arithmetic operations performed is $O(n^3)$
- We only need to show that the size of each matrix constructed during the execution is polynomial in the size of Q
- Similar to Edmonds' proof for Gaussian elimination [Edmonds 67]
- More involved due to the pivoting stage

Theorem

Let Q be a rational symmetric $n \times n$ matrix. There is a strongly polynomial algorithm that finds matrices L, D such that $Q = LDL^T$ is a symmetric decomposition of Q

A numerical example: back to MIQP

Original objective function:

$$x^{\mathsf{T}} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} x$$

Change of variables:

$$y = \mathcal{L}^{\mathsf{T}} x = \begin{pmatrix} \frac{1}{3} & 1 & 1\\ \frac{1}{2} & -1 & 0\\ \frac{1}{2} & 1 & 0 \end{pmatrix}^{\mathsf{T}} x$$

New objective function:

$$x^{\mathsf{T}} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 4 & 2 \end{pmatrix} x = x^{\mathsf{T}} L D L^{\mathsf{T}} x = y^{\mathsf{T}} \begin{pmatrix} 12 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{2}{3} \end{pmatrix} y$$

Minimizing quadratics over integers

Alberto Del Pia

University of Wisconsin-Madison

Linear and Non-Linear Mixed Integer Optimization Institute for Computational and Experimental Research in Mathematics (ICERM) March 1, 2023