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The problem



Mixed Integer Quadratic Programming

minimize x' Qx4+ c'x
subject to Ax< b (MIQP)
x € ZP xR"P

> @ symmetric
» Rational data



Mixed Integer Quadratic Programming

minimize x' Qx4+ c'x
subject to Ax< b (MIQP)
x € ZP xR"P

» With Q@ = 0: Mixed Integer Linear Programming (MILP)
» With p = 0: Quadratic Programming (QP)
» Prototypical Mixed Integer Nonlinear Programming (MINLP)






Basic knowledge

minimize x' Qx4+ c'x
subject to Ax< b (MIQP)
x € ZP xR"P

Some fundamental properties:

» J optimal solutions of polynomial size
= Feasibility problem in N'P

» Infima are always achieved
» Unbounded < 3 unbounded ray



Size of solutions

minimize x' Qx4+ c'x
subject to Ax< b (MIQP)
x € ZP xR"P

Theorem ( )

If MIQP has optimal solutions, then it has an optimal solution of
polynomial size



Size of solutions: quadratic inequalities

What if we consider also quadratic inequalities?

P Integer feasibility of a set defined by a fixed number of
quadratic inequalities is undecidable
= It is not possible to bound the size of smallest optimal

solution
» Consequence of solution of Hilbert's 10" problem



Size of solutions: one convex quadratic inequality

And if we restrict to one convex quadratic?

» The Trust Region Problem can have a unique optimal solution
that is irrational

minimize x' Qx+ ¢’ x
subject to x'x <1 (TRP)
xecR"



Size of solutions: one quadratic inequality

What about integral solutions?

Consider Pell's equation x> — Ny?> =1, for x,y € Z, x,y > 1

X
0 1 2 3 4 5 6 7 8

\

» For N =521 k¢ N, the smallest solution has size Q(5%)



Size of solutions: one quadratic inequality

» Consider the following MIQP, with just one quadratic
inequality:
minimize x* — Ny?
subject to  x* — Ny? >1
Xy =1
(xy) € Z°
» For N =521 ke N, all optimal solutions have exponential
size

» This problem is just in dimension 2!



Known polynomial-time algorithms: fixed dimension n

Exact algorithms:
» ne {1,2} [DP Weismantel 14|
» n fixed, convex objective [Khachiyan 83|

» n fixed, concave objective
[Cook Hartman Kannan McDiarmid 92]
[Hildebrand Oertel Weismantel 15]

» n fixed, unary encoding [Zemmer 17] [Lokshtanov 17]

Approximation algorithms:
» 1 fixed [De Loera Hemmecke Képpe Weismantel 08]

» n fixed, homogeneous objective “almost convex/concave”
[Hildebrand Weismantel Zemmer 16] (stronger notion of
approximation)



Known polynomial-time algorithms: variable dimension

Exact algorithms:

> A <1, separable convex objective

Approximation algorithms:
> A < 2, separable concave objective of fixed rank
» p fixed, concave objective of fixed rank

> p fixed, objective of fixed rank

In particular, we need to be able to find a feasible solution in
polynomial time!



e-approximate solution

Definition
For € € [0,1], a feasible x° is an e-approximate solution if

Obj(XQ) - Ob.jmin <e- (Objmax - Objmin)

» obj(x) := objective value of x
» obj,,i, := minimum of obj on the feasible region

» 0bj,.x ;= maximum of obj on the feasible region



e-approximate solution

Definition
For € € [0,1], a feasible x° is an e-approximate solution if

Ob.j(XQ) - Ob.jmin <e- (Objmax - objmin)

» Any feasible point is a 1-approximate solution

» Only optimal solutions are 0-approximate solutions



e-approximate solution

Definition
For € € [0,1], a feasible x° is an e-approximate solution if

Ob.j(XQ) - Ob.jmin <e- (Objmax - Objmin)

Useful invariance properties:
» Preserved under dilation and translation of the objective
function
» Insensitive to affine transformations of the objective
function and of the feasible region, like changes of basis



e-approximate solution

Definition
For € € [0,1], a feasible x° is an e-approximate solution if

Obj(XQ) - Objmin <e- (Objmax - Objmin)

Definition used in earlier works, including:
» [Nemirovsky Yudin 83]
» [Vavasis 90 92 93]
» [Belldare Rogaway 93]
» [de Klerk Laurent Parrilo 06]



Main result

minimize x' Qx+ ¢ x
subject to Ax< b (MIQP)
xXEZP x R"™P

Theorem

For every € € (0,1], there is an algorithm that finds an
e-approximate solution to a bounded MIQP. The running time of
the algorithm is polynomial in the size of the input and in 1/,
provided that the rank k of the matrix Q and the number of
integer variables p are fixed numbers.

» First known polynomial-time approximation algorithm for
indefinite MIQP with n not fixed



Main result

minimize x' Qx+ ¢ x
subject to Ax< b (MIQP)
xXEZP x R"™P

Theorem

For every € € (0,1], there is an algorithm that finds an
e-approximate solution to a bounded MIQP. The running time of
the algorithm is polynomial in the size of the input and in 1/,
provided that the rank k of the matrix Q and the number of
integer variables p are fixed numbers.

» Running time is best possible unless P=NP

» Boundedness assumption cannot be removed unless P=AP
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The algorithm



Spherical form MIQP (up to some technicalities...)

d
minimize Z Dix¢ + c"x

=l (S-MIQP)
subjectto Ax< b

xeN

» d < p+ kis a fixed number
> A is a mixed integer lattice of rank p

» For a constant r:
B(a,1) C {xe R": Ax< b} C B(a,r)

> |Di] > -+ > |Ddl



Key technique: mesh partition and linear underestimators



Key technique: mesh partition and linear underestimators




Key technique: mesh partition and linear underestimators
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Approximation

» For each cube C, we construct an affine function g(x) s.t.

Dy |dr?
+| 1|2

d
g(x) < Z D,-x,2 < g(x) Vx e C

i=1 ¥




Approximation

» For each cube C, we construct an affine function g(x) s.t.

| Dy |dr?
2

d
8(x) <) Did < g(x) + VxeC

i=1 ®
» For each cube C, we solve the MILP
L T
minimize g(x) + ¢ x
subject to Ax< b

xeC
xeN

» Return the vector x° that achieves the minimum objective
among all 9 MILPs



Approximation

Definition
x° is an e-approximate solution if

Obj(XQ) - Ob.jmin <e- (Objmax - Objmin)

To prove that x° is an e-approximation, we need two bounds:
» Upper bound: obj(x°) — obj,;, is small
» Lower bound: obj,,,, — obji, is large



Approximation: upper bound

» Upper bound: obj(x°) — objy,;, is small

How do we do it?

Using underestimator g(x):

d
Dy |dr?
g(x) <> Dy} Sg(X)Jr‘ :02 vyeC
i=1
Dy |dr?
= Obj(XO) - Ob.jmin < | 1|2d




Approximation: lower bound

» Lower bound: obj, . — 0objni, is large

How do we do it?

We can give a nice lower bound if there exist two aligned vectors

Definition
Two vectors x', x~ € P are aligned if
1. Xf —x; >1
d _
2. X6 —x )2 <1/4
3. xT,x7, 5(xt + x7) feasible

If 3 aligned vectors = obj,., — Objin > 1%|D1|



Approximation

We have obtained the two bounds:

D;|dr?
Obj(XQ) - Objmin < | 1|2
¥
obj,.x — Obj i|D |
Jmax Jmin = 16 1

Xx° is an e-approximate solution provided that

1dr2<€ i
02 167 "

Just choose ¢ 1= [4r\/mw

d
For the approximation, we solved {4r\/d/(3e)—‘ MILPs




Aligned vectors
We have found an e-approximate solution for S-MIQP if there exist
two aligned vectors

» How do we check if there exist two aligned vectors?
» And what do we do otherwise?



Aligned vectors

We have found an e-approximate solution for S-MIQP if there exist
two aligned vectors

» How do we check if there exist two aligned vectors?
» And what do we do otherwise?

Proposition

There is a polynomial-time algorithm which either finds two
aligned vectors, or partitions S-MIQP in a constant number of
S-MIQPs with one less integer variable



Aligned vectors

We have found an e-approximate solution for S-MIQP if there exist
two aligned vectors

» How do we check if there exist two aligned vectors?

» And what do we do otherwise?

Proposition

There is a polynomial-time algorithm which either finds two
aligned vectors, or partitions S-MIQP in a constant number of
S-MIQPs with one less integer variable

We obtain a recursive algorithm!

» The best approximate solution found is an e-approximate
solution for the original S-MIQP

d
> Runtime: In total, we solved constant? - {4r\/d/(3e)—‘ MILPs



Proof of Proposition
We need:

Loxi—xg >1
d i
2. 30, (x —x7)2<1/4
3. xT,x7, 5(xt 4+ x7) feasible



Proof of Proposition

T

We need:
1. Xf —-x; =1
2. YL,(¢ —x )2 <1/4
3. xT,x7, 5(xt 4+ x7) feasible



Proof of Proposition
We need:

T Loxi—xg >1

2. S0 - X )? <1/4
3. xT,x7, 5(xt 4+ x7) feasible

B(a*,1/4)

~_

a :=a—3/4et, at:=a+3/4e



Proof of Proposition
We need:

T Loxi—xg >1
2 S P < 18
3. xT,x7, 5(xt 4+ x7) feasible

B(a*,1/4)

Lenstra:
. > Ixt e B(at,1/4)N2A
» or B(a®t,1/4) is flat

~_

a :=a—3/4et, at:=a+3/4e



Proof of Proposition
We need:

T 1Loxi —x >1
2 S P < 18
3. xT,x7, 5(xt 4+ x7) feasible

B(a*,1/4)

Lenstra:
. > Ixt e B(at,1/4)N2A
» or B(a®t,1/4) is flat

Lenstra:
> Ix~ € B(a~,1/4)N2A

~_ > or B(a=,1/4) is flat

a :=a—3/4et, at:=a+3/4e







Main result

Theorem

For every € € (0, 1], there is an algorithm that finds an
e-approximate solution to a bounded MIQP. The running time of
the algorithm is polynomial in the size of the input and in 1/e,
provided that the rank k of the matrix Q and the number of
integer variables p are fixed numbers.

MIQP ?: S-MIQP LN e-approximate solution
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The spherical form MIQP



Spherical form MIQP (up to some technicalities...)

d
minimize Z Dix¢ + c"x

=l (S-MIQP)
subjectto Ax< b

xeN

» d < p+ kis a fixed number
> A is a mixed integer lattice of rank p

» For a constant r:
B(a,1) C {xe R": Ax< b} C B(a,r)

> |Di] > -+ > |Ddl



Diagonalization

» In particular, S-MIQP has a separable objective function

x' Qx s x' X, diagonal

Definition
A symmetric decomposition of @ is a decomposition of the form

Q=LDLT,

where L is nonsingular and 0 is diagonal

> \We can then make the change of variables y = LTx

x"Qx = x"(LDLM)x = (x"L)D(LTx) = y" Dy



Diagonalization

Known algorithms:

» Cholesky decomposition » Schur decomposition
» Spectral decomposition > Takagi's factorization
» LDLT decomposition > .

Our goal:

» Polynomial-time algorithm for any symmetric matrix @

Properties of known algorithms:

» Polynomial number of operations

» Numerical stability

» Only applicable to semidefinite matrices X
» Unknown size of numbers obtained X
>

Square roots X



Symmetric decomposition algorithm
Algorithm: [Dax Kaniel 77| with v € +1

> Input matrix: @ = Q©
> lteration 1: Q) — Q1)
> lteration 2: Q) — Q)

> lteration n— 1. Q"2 — =

Q) symmetric with off-diagonal elements in the first k
rows/columns equal zero

0

*

*

x % %
QO — [+ x « Q) —
x ok %

0
*
*

o O ¥



Symmetric decomposition algorithm

Consider iteration k: Qk—1) — QK

Two stages:

» Pivoting. Ensures that the pivotal element, which is the
element in the (k, k) position, is one with largest absolute
value among rows/columns k..., n

» Elimination. Obtains zeros in the off-diagonal elements of
row/column k



A numerical example

131
QO =(3 2 4
1 4 2



A numerical example
131
QO =13 2 4
1 4 2

Iteration k = 1: Pivoting

» Element with largest absolute value is 4 in position (2, 3)

» Interchange rows/columns 1 and 2:

010\ /131\/010\" /234
1 00 3 2 4 1 00 =(3 11
0 01 1 4 2 0 0 1 4 1 2
» Add row/column 3 to row/column 1:
-

1 01 2 3 4 1 01 4 6
010 311 01 0] =14 11
0 01 4 1 2 0 01 6 1 2



A numerical example

1 3 1 12
QU=(3 2 4| = |4
1 4 2 6

(R
N = O

Iteration k = 1: Pivoting

» Element with largest absolute value is 4 in position (2, 3)

» Interchange rows/columns 1 and 2:

010\ /131\/010\" /234
1 00 3 2 4 1 00 =(3 11
0 01 1 4 2 0 0 1 4 1 2
» Add row/column 3 to row/column 1:
-

1 01 2 3 4 1 01 4 6
010 311 01 0] =14 11
0 01 4 1 2 0 01 6 1 2



A numerical example

1 3 1 12
QU=(3 2 4| = |4
1 4 2 6

(R
N = O

Iteration k = 1: Elimination

» Row/column elimination is done as in Gaussian elimination:

1 0 0\ /12 4 6 1
4 4
5 Lof4 1)
- 01/ \6 12/ \-&

T /12

00
1 0| = —2
01

=il



A numerical example

12

1 3 1 12
QU=(3 2 4| = |4
1 4 2 6

(R

1
3
-1 -1

Iteration k = 1: Elimination

» Row/column elimination is done as in Gaussian elimination:

1 0 0\ /12 4 6 1 0 0\' /12
4 4 1
-85 01/ \6 12/ \-% 01 )

=M

=il



A numerical example

-1 -1



A numerical example

Q(l): _% 1
-1 -1

Iteration k = 2: Pivoting

» Element with largest absolute value in rows/columns 2 and
3is —1 in position (3, 3)

» Interchange rows/columns 2 and 3:

100 100
001 -3 -1|{o o0 1| = -1
010 010



A numerical example

—i il -1 -3

Iteration k = 2: Pivoting

» Element with largest absolute value in rows/columns 2 and
3is —1 in position (3, 3)

» Interchange rows/columns 2 and 3:

100 100
001 -3 -1|{o o0 1| = -1
010 010



A numerical example

Q) —

Iteration k = 2: Elimination

1

=l

-1]—=
-1

-1 -1
1
-1 -1

» Row/column elimination is done as in Gaussian elimination:

1
0
0

0
1

-1

0
0
1

-1
-1

T

0 0
1 0] = =i
1

1
~1| (o
1

-1/ \o -1



A numerical example

QW = -1 1] —1 =4 —1
—i il -1 -3

Iteration k = 2: Elimination

» Row/column elimination is done as in Gaussian elimination:
1 0 0 1 0 0\

0 1 0 -1 -1 0 1 0] = -1
0 1 =i = 0 1

-1 -1

1
3



A numerical example

o O

— O O

o — O

— O -

o~ O

— BQB" =

= Q=LDLT



Symmetric decomposition algorithm

» The number of arithmetic operations performed is O(n%)

> We only need to show that the size of each matrix constructed
during the execution is polynomial in the size of @

» Similar to Edmonds’ proof for Gaussian elimination

» More involved due to the pivoting stage

Theorem

Let @ be a rational symmetric n X n matrix. There is a strongly
polynomial algorithm that finds matrices L, [ such that @ = LDLT
is a symmetric decomposition of @



A numerical example: back to MIQP

» Original objective function:

1 31
x'(3 2 4
1 4 2
» Change of variables:
1
z 1
3
_qT,_ |1
y=L x= ? -1
5 1

> New objective function:

1 1
x'[3 4lx=x"LDLTx=y
1 2

A~ DN W
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