Minimizing quadratics over integers

Alberto Del Pia
University of Wisconsin-Madison

Linear and Non-Linear Mixed Integer Optimization
Institute for Computational and Experimental Research in Mathematics
(ICERM)
March 1, 2023

Part I

The problem

Mixed Integer Quadratic Programming

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & A x \leq b \tag{MIQP}\\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{align*}
$$

- Q symmetric
- Rational data

Mixed Integer Quadratic Programming

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & A x \leq b \tag{MIQP}\\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{align*}
$$

- With $Q=0$: Mixed Integer Linear Programming (MILP)
- With $p=0$: Quadratic Programming (QP)
- Prototypical Mixed Integer Nonlinear Programming (MINLP)

Geometry

Basic knowledge

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & A x \leq b \tag{MIQP}\\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{align*}
$$

Some fundamental properties: [DP Dey Molinaro 14]

- \exists optimal solutions of polynomial size \Rightarrow Feasibility problem in $\mathcal{N P}$
- Infima are always achieved
- Unbounded $\Leftrightarrow \exists$ unbounded ray

Size of solutions

$$
\begin{aligned}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{aligned}
$$

Theorem ([DP Dey Molinaro 14])
If MIQP has optimal solutions, then it has an optimal solution of polynomial size

Size of solutions: quadratic inequalities

What if we consider also quadratic inequalities?

- Integer feasibility of a set defined by a fixed number of quadratic inequalities is undecidable [Jeroslow 73] \Rightarrow It is not possible to bound the size of smallest optimal solution
- Consequence of solution of Hilbert's $10^{\text {th }}$ problem [Matiyasevich 70]

Size of solutions: one convex quadratic inequality

And if we restrict to one convex quadratic?

- The Trust Region Problem can have a unique optimal solution that is irrational

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x^{\top} x \leq 1 \tag{TRP}\\
& x \in \mathbb{R}^{n}
\end{align*}
$$

Size of solutions: one quadratic inequality

What about integral solutions?

Consider Pell's equation $x^{2}-N y^{2}=1$, for $x, y \in \mathbb{Z}, x, y \geq 1$

- For $N=5^{2 k+1}, k \in \mathbb{N}$, the smallest solution has size $\Omega\left(5^{k}\right)$

Size of solutions: one quadratic inequality

- Consider the following MIQP, with just one quadratic inequality:

$$
\begin{aligned}
\operatorname{minimize} & x^{2}-N y^{2} \\
\text { subject to } & x^{2}-N y^{2} \geq 1 \\
& x, y \geq 1 \\
& (x, y) \in \mathbb{Z}^{2}
\end{aligned}
$$

- For $N=5^{2 k+1}, k \in \mathbb{N}$, all optimal solutions have exponential size
- This problem is just in dimension 2!

Known polynomial-time algorithms: fixed dimension n

Exact algorithms:

- $n \in\{1,2\}$ [DP Weismantel 14]
- n fixed, convex objective [Khachiyan 83]
- n fixed, concave objective
[Cook Hartman Kannan McDiarmid 92]
[Hildebrand Oertel Weismantel 15]
- n fixed, unary encoding [Zemmer 17] [Lokshtanov 17]

Approximation algorithms:

- n fixed [De Loera Hemmecke Köppe Weismantel 08]
- n fixed, homogeneous objective "almost convex/concave" [Hildebrand Weismantel Zemmer 16] (stronger notion of approximation)

Known polynomial-time algorithms: variable dimension

Exact algorithms:

- $\Delta \leq 1$, separable convex objective [Hochbaum Shanthikumar 90]

Approximation algorithms:

- $\Delta \leq 2$, separable concave objective of fixed rank [DP 19]
- p fixed, concave objective of fixed rank [DP 18]
- p fixed, objective of fixed rank [DP 22]

In particular, we need to be able to find a feasible solution in polynomial time!

ϵ-approximate solution

Definition

For $\epsilon \in[0,1]$, a feasible x^{\diamond} is an ϵ-approximate solution if

$$
o b j\left(x^{\diamond}\right)-o b j_{\min } \leq \epsilon \cdot\left(o b j_{\max }-o b j_{\min }\right)
$$

- obj(x): objective value of x
- obj ${ }_{\text {min }}:=$ minimum of obj on the feasible region
- obj ${ }_{\max }:=$ maximum of obj on the feasible region

ϵ-approximate solution

Definition
For $\epsilon \in[0,1]$, a feasible x^{\diamond} is an ϵ-approximate solution if

$$
o \mathrm{obj}\left(x^{\diamond}\right)-\mathrm{obj} \min ^{\max } \leq \epsilon \cdot(\mathrm{obj} \max -\mathrm{obj} \mathrm{~min})
$$

- Any feasible point is a 1-approximate solution
- Only optimal solutions are 0-approximate solutions

ϵ-approximate solution

Definition

For $\epsilon \in[0,1]$, a feasible x^{\diamond} is an ϵ-approximate solution if

$$
o b j\left(x^{\diamond}\right)-o b j_{\min } \leq \epsilon \cdot\left(o b j_{\max }-o b j_{\min }\right)
$$

Useful invariance properties:

- Preserved under dilation and translation of the objective function
- Insensitive to affine transformations of the objective function and of the feasible region, like changes of basis

ϵ-approximate solution

Definition
For $\epsilon \in[0,1]$, a feasible x^{\diamond} is an ϵ-approximate solution if

$$
o \mathrm{obj}\left(x^{\diamond}\right)-\mathrm{obj} \mathrm{~min} \leq \epsilon \cdot\left(\mathrm{obj} \mathrm{max}-\mathrm{obj} j_{\min }\right)
$$

Definition used in earlier works, including:

- [Nemirovsky Yudin 83]
- [Vavasis 9092 93]
- [Belldare Rogaway 93]
- [de Klerk Laurent Parrilo 06]

Main result

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & A x \leq b \tag{MIQP}\\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{align*}
$$

Theorem
For every $\epsilon \in(0,1]$, there is an algorithm that finds an ϵ-approximate solution to a bounded MIQP. The running time of the algorithm is polynomial in the size of the input and in $1 / \epsilon$, provided that the rank k of the matrix Q and the number of integer variables p are fixed numbers.

- First known polynomial-time approximation algorithm for indefinite MIQP with n not fixed

Main result

$$
\begin{align*}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & A x \leq b \tag{MIQP}\\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{align*}
$$

Theorem
For every $\epsilon \in(0,1]$, there is an algorithm that finds an ϵ-approximate solution to a bounded MIQP. The running time of the algorithm is polynomial in the size of the input and in $1 / \epsilon$, provided that the rank k of the matrix Q and the number of integer variables p are fixed numbers.

- Running time is best possible unless $\mathcal{P}=\mathcal{N} \mathcal{P}$
- Boundedness assumption cannot be removed unless $\mathcal{P}=\mathcal{N} \mathcal{P}$

Part II

The algorithm

Spherical form MIQP (up to some technicalities...)

$$
\begin{align*}
\operatorname{minimize} & \sum_{i=1}^{d} D_{i} x_{i}^{2}+c^{\top} x \tag{S-MIQP}\\
\text { subject to } & A x \leq b \\
& x \in \Lambda
\end{align*}
$$

- $d \leq p+k$ is a fixed number
- Λ is a mixed integer lattice of rank p
- For a constant r.

$$
\mathcal{B}(a, 1) \subset\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} \subset \mathcal{B}(a, r)
$$

$-\left|D_{1}\right| \geq \cdots \geq\left|D_{d}\right|$

Key technique: mesh partition and linear underestimators

Key technique: mesh partition and linear underestimators

Key technique: mesh partition and linear underestimators

Partition $\mathcal{B}(a, r)$ into φ^{d} cubes

Approximation

- For each cube \mathcal{C}, we construct an affine function $g(x)$ s.t.

$$
g(x) \leq \sum_{i=1}^{d} D_{i} x_{i}^{2} \leq g(x)+\frac{\left|D_{1}\right| d r^{2}}{\varphi^{2}} \quad \forall x \in \mathcal{C}
$$

Approximation

- For each cube \mathcal{C}, we construct an affine function $g(x)$ s.t.

$$
g(x) \leq \sum_{i=1}^{d} D_{i} x_{i}^{2} \leq g(x)+\frac{\left|D_{1}\right| d r^{2}}{\varphi^{2}} \quad \forall x \in \mathcal{C}
$$

- For each cube \mathcal{C}, we solve the MILP

$$
\begin{aligned}
\operatorname{minimize} & g(x)+c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \in \mathcal{C} \\
& x \in \Lambda
\end{aligned}
$$

- Return the vector x^{\diamond} that achieves the minimum objective among all φ^{d} MILPs

Approximation

Definition

x^{\diamond} is an ϵ-approximate solution if

$$
\mathrm{obj}\left(x^{\diamond}\right)-\mathrm{obj}_{\min } \leq \epsilon \cdot\left(\mathrm{obj}_{\max }-\text { obj }_{\min }\right)
$$

To prove that x^{\diamond} is an ϵ-approximation, we need two bounds:

- Upper bound: $\operatorname{obj}\left(x^{\diamond}\right)-o b j_{\text {min }}$ is small
- Lower bound: obj $_{\max }-$ obj $_{\text {min }}$ is large

Approximation: upper bound

- Upper bound: $\operatorname{obj}\left(x^{\diamond}\right)-o b j_{\min }$ is small

How do we do it?

Using underestimator $g(x)$:

$$
\begin{aligned}
g(x) & \leq \sum_{i=1}^{d} D_{i} y_{i}^{2} \leq g(x)+\frac{\left|D_{1}\right| d r^{2}}{\varphi^{2}} \quad \forall y \in \mathcal{C} \\
& \Rightarrow \quad o b j\left(x^{\diamond}\right)-\text { obj }_{\min } \leq \frac{\left|D_{1}\right| d r^{2}}{\varphi^{2}}
\end{aligned}
$$

Approximation: lower bound

- Lower bound: obj $_{\text {max }}-$ obj $_{\text {min }}$ is large

How do we do it?

We can give a nice lower bound if there exist two aligned vectors

Definition
Two vectors $x^{+}, x^{-} \in \mathcal{P}$ are aligned if

1. $x_{1}^{+}-x_{1}^{-} \geq 1$
2. $\sum_{i=2}^{d}\left(x_{i}^{+}-x_{i}^{-}\right)^{2} \leq 1 / 4$
3. $x^{+}, x^{-}, \frac{1}{2}\left(x^{+}+x^{-}\right)$feasible

If \exists aligned vectors \Rightarrow obj $_{\text {max }}-$ obj $_{\text {min }} \geq \frac{3}{16}\left|D_{1}\right|$

Approximation

We have obtained the two bounds:

$$
\begin{aligned}
o b j\left(x^{\diamond}\right)-\text { obj }_{\min } & \leq \frac{\left|D_{1}\right| d r^{2}}{\varphi^{2}} \\
\text { obj }_{\max }-\text { obj }_{\min } & \geq \frac{3}{16}\left|D_{1}\right|
\end{aligned}
$$

x^{\diamond} is an ϵ-approximate solution provided that

$$
\left.\left.\frac{\left.\mid D_{1}\right\rceil d r^{2}}{\varphi^{2}} \leq \epsilon \cdot \frac{3}{16} \right\rvert\, D_{1}\right\rceil
$$

Just choose $\varphi:=\lceil 4 r \sqrt{d /(3 \epsilon)}\rceil$
For the approximation, we solved $\lceil 4 r \sqrt{d /(3 \epsilon)}\rceil^{d}$ MILPs

Aligned vectors

We have found an ϵ-approximate solution for S-MIQP if there exist two aligned vectors

- How do we check if there exist two aligned vectors?
- And what do we do otherwise?

Aligned vectors

We have found an ϵ-approximate solution for S-MIQP if there exist two aligned vectors

- How do we check if there exist two aligned vectors?
- And what do we do otherwise?

Proposition

There is a polynomial-time algorithm which either finds two aligned vectors, or partitions S-MIQP in a constant number of S-MIQPs with one less integer variable

Aligned vectors

We have found an ϵ-approximate solution for S-MIQP if there exist two aligned vectors

- How do we check if there exist two aligned vectors?
- And what do we do otherwise?

Proposition

There is a polynomial-time algorithm which either finds two aligned vectors, or partitions S-MIQP in a constant number of S-MIQPs with one less integer variable

We obtain a recursive algorithm!

- The best approximate solution found is an ϵ-approximate solution for the original S-MIQP
\rightarrow Runtime: In total, we solved constant ${ }^{d} \cdot\lceil 4 r \sqrt{d /(3 \epsilon)}\rceil^{d}$ MILPs

Proof of Proposition

We need:

1. $x_{1}^{+}-x_{1}^{-} \geq 1$
2. $\sum_{i=2}^{d}\left(x_{i}^{+}-x_{i}^{-}\right)^{2} \leq 1 / 4$
3. $x^{+}, x^{-}, \frac{1}{2}\left(x^{+}+x^{-}\right)$feasible

Proof of Proposition

We need:

1. $x_{1}^{+}-x_{1}^{-} \geq 1$
2. $\sum_{i=2}^{d}\left(x_{i}^{+}-x_{i}^{-}\right)^{2} \leq 1 / 4$
3. $x^{+}, x^{-}, \frac{1}{2}\left(x^{+}+x^{-}\right)$feasible

Proof of Proposition

We need:

1. $x_{1}^{+}-x_{1}^{-} \geq 1$
2. $\sum_{i=2}^{d}\left(x_{i}^{+}-x_{i}^{-}\right)^{2} \leq 1 / 4$
3. $x^{+}, x^{-}, \frac{1}{2}\left(x^{+}+x^{-}\right)$feasible

$$
a^{-}:=a-3 / 4 e^{1}, \quad a^{+}:=a+3 / 4 e^{1}
$$

Proof of Proposition

We need:

$$
a^{-}:=a-3 / 4 e^{1}, \quad a^{+}:=a+3 / 4 e^{1}
$$

Proof of Proposition

We need:

1. $x_{1}^{+}-x_{1}^{-} \geq 1$
2. $\sum_{i=2}^{d}\left(x_{i}^{+}-x_{i}^{-}\right)^{2} \leq 1 / 4$
3. $x^{+}, x^{-}, \frac{1}{2}\left(x^{+}+x^{-}\right)$feasible

Lenstra:

- $\exists x^{+} \in \mathcal{B}\left(a^{+}, 1 / 4\right) \cap 2 \wedge$
- or $\mathcal{B}\left(a^{+}, 1 / 4\right)$ is flat

Lenstra:

- $\exists x^{-} \in \mathcal{B}\left(a^{-}, 1 / 4\right) \cap 2 \Lambda$
- or $\mathcal{B}\left(a^{-}, 1 / 4\right)$ is flat

$$
a^{-}:=a-3 / 4 e^{1}, \quad a^{+}:=a+3 / 4 e^{1}
$$

Proof of Proposition

Main result

Theorem
For every $\epsilon \in(0,1]$, there is an algorithm that finds an ϵ-approximate solution to a bounded MIQP. The running time of the algorithm is polynomial in the size of the input and in $1 / \epsilon$, provided that the rank k of the matrix Q and the number of integer variables p are fixed numbers.

MIQP $\stackrel{?}{\Rightarrow}$ S-MIQP $\stackrel{!}{\Rightarrow} \epsilon$-approximate solution

Part III

The spherical form MIQP

Spherical form MIQP (up to some technicalities...)

$$
\begin{align*}
\operatorname{minimize} & \sum_{i=1}^{d} D_{i} x_{i}^{2}+c^{\top} x \tag{S-MIQP}\\
\text { subject to } & A x \leq b \\
& x \in \Lambda
\end{align*}
$$

- $d \leq p+k$ is a fixed number
- Λ is a mixed integer lattice of rank p
- For a constant r.

$$
\mathcal{B}(a, 1) \subset\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} \subset \mathcal{B}(a, r)
$$

$-\left|D_{1}\right| \geq \cdots \geq\left|D_{d}\right|$

Diagonalization

- In particular, S-MIQP has a separable objective function

$$
x^{\top} Q x \quad \rightsquigarrow \quad x^{\top} D x, \quad D \text { diagonal }
$$

Definition

A symmetric decomposition of Q is a decomposition of the form

$$
Q=L D L^{\top},
$$

where L is nonsingular and D is diagonal

- We can then make the change of variables $y=L^{\top} x$

$$
x^{\top} Q x=x^{\top}\left(L D L^{\top}\right) x=\left(x^{\top} L\right) D\left(L^{\top} x\right)=y^{\top} D y
$$

Diagonalization

Known algorithms:

- Cholesky decomposition
- Spectral decomposition
- $L D L^{\top}$ decomposition
- Schur decomposition
- Takagi's factorization
- ...

Our goal:

- Polynomial-time algorithm for any symmetric matrix Q

Properties of known algorithms:

- Polynomial number of operations
- Numerical stability
- Only applicable to semidefinite matrices
- Unknown size of numbers obtained X
- Square roots

Symmetric decomposition algorithm

Algorithm: [Dax Kaniel 77] with $\gamma \in \pm 1$

- Input matrix: $Q=Q^{(0)}$
- Iteration 1: $Q^{(0)} \rightarrow Q^{(1)}$
- Iteration 2: $Q^{(1)} \rightarrow Q^{(2)}$
- Iteration $n-1: Q^{(n-2)} \rightarrow Q^{(n-1)}=D$
$Q^{(k)}$ symmetric with off-diagonal elements in the first k rows/columns equal zero

$$
Q^{(0)}=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \quad Q^{(1)}=\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right) \quad Q^{(2)}=\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right)
$$

Symmetric decomposition algorithm

Consider iteration $k: Q^{(k-1)} \rightarrow Q^{(k)}$
Two stages:

- Pivoting. Ensures that the pivotal element, which is the element in the (k, k) position, is one with largest absolute value among rows/columns k, \ldots, n
- Elimination. Obtains zeros in the off-diagonal elements of row/column k

A numerical example

$$
Q^{(0)}=\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right)
$$

A numerical example

$$
Q^{(0)}=\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right)
$$

Iteration $k=1$: Pivoting

- Element with largest absolute value is 4 in position $(2,3)$
- Interchange rows/columns 1 and 2:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{\top}=\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 1 \\
4 & 1 & 2
\end{array}\right)
$$

- Add row/column 3 to row/column 1:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 1 \\
4 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right)
$$

A numerical example

$$
Q^{(0)}=\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right)
$$

Iteration $k=1$: Pivoting

- Element with largest absolute value is 4 in position $(2,3)$
- Interchange rows/columns 1 and 2:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{\top}=\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 1 \\
4 & 1 & 2
\end{array}\right)
$$

- Add row/column 3 to row/column 1:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 1 \\
4 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right)
$$

A numerical example

$$
Q^{(0)}=\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right)
$$

Iteration $k=1$: Elimination

- Row/column elimination is done as in Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{4}{12} & 1 & 0 \\
-\frac{6}{12} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{4}{12} & 1 & 0 \\
-\frac{6}{12} & 0 & 1
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)
$$

A numerical example

$$
Q^{(0)}=\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)=Q^{(1)}
$$

Iteration $k=1$: Elimination

- Row/column elimination is done as in Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{4}{12} & 1 & 0 \\
-\frac{6}{12} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
12 & 4 & 6 \\
4 & 1 & 1 \\
6 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{4}{12} & 1 & 0 \\
-\frac{6}{12} & 0 & 1
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)
$$

A numerical example

$$
Q^{(1)}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)
$$

A numerical example

$$
Q^{(1)}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)
$$

Iteration $k=2$: Pivoting

- Element with largest absolute value in rows/columns 2 and 3 is -1 in position $(3,3)$
- Interchange rows/columns 2 and 3:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right)
$$

A numerical example

$$
Q^{(1)}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right)
$$

Iteration $k=2$: Pivoting

- Element with largest absolute value in rows/columns 2 and 3 is -1 in position $(3,3)$
- Interchange rows/columns 2 and 3:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right)
$$

A numerical example

$$
Q^{(1)}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right)
$$

Iteration $k=2$: Elimination

- Row/column elimination is done as in Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right)
$$

A numerical example

$$
Q^{(1)}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -\frac{1}{3} & -1 \\
0 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right)=Q^{(2)}
$$

Iteration $k=2$: Elimination

- Row/column elimination is done as in Gaussian elimination:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right)
$$

A numerical example

$$
\begin{aligned}
B & :=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{4}{12} & 1 & 0 \\
-\frac{6}{12} & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & -\frac{1}{2} & \frac{1}{2} \\
1 & \frac{1}{6} & -\frac{5}{6}
\end{array}\right) \\
& \Rightarrow B Q B^{\top}=D
\end{aligned}
$$

$$
L:=B^{-1}=\left(\begin{array}{ccc}
\frac{1}{3} & 1 & 1 \\
\frac{1}{2} & -1 & 0 \\
\frac{1}{2} & 1 & 0
\end{array}\right)
$$

$$
\Rightarrow Q=L D L^{\top}
$$

Symmetric decomposition algorithm

- The number of arithmetic operations performed is $O\left(n^{3}\right)$
- We only need to show that the size of each matrix constructed during the execution is polynomial in the size of Q
- Similar to Edmonds' proof for Gaussian elimination [Edmonds 67]
- More involved due to the pivoting stage

Theorem
Let Q be a rational symmetric $n \times n$ matrix. There is a strongly polynomial algorithm that finds matrices L, D such that $Q=L D L^{\top}$ is a symmetric decomposition of Q

A numerical example: back to MIQP

- Original objective function:

$$
x^{\top}\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right) x
$$

- Change of variables:

$$
y=L^{\top} x=\left(\begin{array}{ccc}
\frac{1}{3} & 1 & 1 \\
\frac{1}{2} & -1 & 0 \\
\frac{1}{2} & 1 & 0
\end{array}\right)^{\top} x
$$

- New objective function:

$$
x^{\top}\left(\begin{array}{lll}
1 & 3 & 1 \\
3 & 2 & 4 \\
1 & 4 & 2
\end{array}\right) x=x^{\top} L D L^{\top} x=y^{\top}\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right) y
$$

Minimizing quadratics over integers

Alberto Del Pia
University of Wisconsin-Madison

Linear and Non-Linear Mixed Integer Optimization
Institute for Computational and Experimental Research in Mathematics
(ICERM)
March 1, 2023

