
Minimizing quadratics over integers

Alberto Del Pia

University of Wisconsin-Madison

Linear and Non-Linear Mixed Integer Optimization
Institute for Computational and Experimental Research in Mathematics

(ICERM)
March 1, 2023

Part I

The problem

Mixed Integer Quadratic Programming

minimize xTQx + cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p
(MIQP)

▶ Q symmetric
▶ Rational data

Mixed Integer Quadratic Programming

minimize xTQx + cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p
(MIQP)

▶ With Q = 0: Mixed Integer Linear Programming (MILP)
▶ With p = 0: Quadratic Programming (QP)
▶ Prototypical Mixed Integer Nonlinear Programming (MINLP)

Geometry

b

b

b

b b

b b

b

b

b

b b

b

bb

b b b b b

b

b

b

b

bb b

b b

b

b

b

b

b

b

Basic knowledge

minimize xTQx + cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p
(MIQP)

Some fundamental properties: [DP Dey Molinaro 14]
▶ ∃ optimal solutions of polynomial size

⇒ Feasibility problem in NP
▶ Infima are always achieved
▶ Unbounded ⇔ ∃ unbounded ray

Size of solutions

minimize xTQx + cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p
(MIQP)

Theorem ([DP Dey Molinaro 14])
If MIQP has optimal solutions, then it has an optimal solution of
polynomial size

Size of solutions: quadratic inequalities

What if we consider also quadratic inequalities?

▶ Integer feasibility of a set defined by a fixed number of
quadratic inequalities is undecidable [Jeroslow 73]
⇒ It is not possible to bound the size of smallest optimal
solution

▶ Consequence of solution of Hilbert’s 10th problem
[Matiyasevich 70]

Size of solutions: one convex quadratic inequality

And if we restrict to one convex quadratic?

▶ The Trust Region Problem can have a unique optimal solution
that is irrational

minimize xTQx + cTx
subject to xTx ≤ 1

x ∈ Rn
(TRP)

Size of solutions: one quadratic inequality
What about integral solutions?

Consider Pell’s equation x2 − Ny2 = 1, for x, y ∈ Z, x, y ≥ 1

▶ For N = 52k+1, k ∈ N, the smallest solution has size Ω(5k)

Size of solutions: one quadratic inequality

▶ Consider the following MIQP, with just one quadratic
inequality:

minimize x2 − Ny2

subject to x2 − Ny2 ≥ 1
x, y ≥ 1
(x, y) ∈ Z2

▶ For N = 52k+1, k ∈ N, all optimal solutions have exponential
size

▶ This problem is just in dimension 2!

Known polynomial-time algorithms: fixed dimension n

Exact algorithms:
▶ n ∈ {1, 2} [DP Weismantel 14]
▶ n fixed, convex objective [Khachiyan 83]
▶ n fixed, concave objective

[Cook Hartman Kannan McDiarmid 92]
[Hildebrand Oertel Weismantel 15]

▶ n fixed, unary encoding [Zemmer 17] [Lokshtanov 17]

Approximation algorithms:
▶ n fixed [De Loera Hemmecke Köppe Weismantel 08]
▶ n fixed, homogeneous objective “almost convex/concave”

[Hildebrand Weismantel Zemmer 16] (stronger notion of
approximation)

Known polynomial-time algorithms: variable dimension

Exact algorithms:
▶ ∆ ≤ 1, separable convex objective

[Hochbaum Shanthikumar 90]

Approximation algorithms:
▶ ∆ ≤ 2, separable concave objective of fixed rank [DP 19]
▶ p fixed, concave objective of fixed rank [DP 18]
▶ p fixed, objective of fixed rank [DP 22]

In particular, we need to be able to find a feasible solution in
polynomial time!

ϵ-approximate solution

Definition
For ϵ ∈ [0, 1], a feasible x⋄ is an ϵ-approximate solution if

obj(x⋄)− objmin ≤ ϵ · (objmax− objmin)

▶ obj(x) := objective value of x
▶ objmin := minimum of obj on the feasible region
▶ objmax := maximum of obj on the feasible region

ϵ-approximate solution

Definition
For ϵ ∈ [0, 1], a feasible x⋄ is an ϵ-approximate solution if

obj(x⋄)− objmin ≤ ϵ · (objmax− objmin)

▶ Any feasible point is a 1-approximate solution
▶ Only optimal solutions are 0-approximate solutions

ϵ-approximate solution

Definition
For ϵ ∈ [0, 1], a feasible x⋄ is an ϵ-approximate solution if

obj(x⋄)− objmin ≤ ϵ · (objmax− objmin)

Useful invariance properties:
▶ Preserved under dilation and translation of the objective

function
▶ Insensitive to affine transformations of the objective

function and of the feasible region, like changes of basis

ϵ-approximate solution

Definition
For ϵ ∈ [0, 1], a feasible x⋄ is an ϵ-approximate solution if

obj(x⋄)− objmin ≤ ϵ · (objmax− objmin)

Definition used in earlier works, including:
▶ [Nemirovsky Yudin 83]
▶ [Vavasis 90 92 93]
▶ [Belldare Rogaway 93]
▶ [de Klerk Laurent Parrilo 06]

Main result

minimize xTQx + cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p
(MIQP)

Theorem
For every ϵ ∈ (0, 1], there is an algorithm that finds an
ϵ-approximate solution to a bounded MIQP. The running time of
the algorithm is polynomial in the size of the input and in 1/ϵ,
provided that the rank k of the matrix Q and the number of
integer variables p are fixed numbers.

▶ First known polynomial-time approximation algorithm for
indefinite MIQP with n not fixed

Main result

minimize xTQx + cTx
subject to Ax ≤ b

x ∈ Zp × Rn−p
(MIQP)

Theorem
For every ϵ ∈ (0, 1], there is an algorithm that finds an
ϵ-approximate solution to a bounded MIQP. The running time of
the algorithm is polynomial in the size of the input and in 1/ϵ,
provided that the rank k of the matrix Q and the number of
integer variables p are fixed numbers.

▶ Running time is best possible unless P=NP
▶ Boundedness assumption cannot be removed unless P=NP

Part II

The algorithm

Spherical form MIQP (up to some technicalities…)

minimize
d∑

i=1
Dix2

i + cTx

subject to Ax ≤ b
x ∈ Λ

(S-MIQP)

▶ d ≤ p + k is a fixed number
▶ Λ is a mixed integer lattice of rank p
▶ For a constant r:

B(a, 1) ⊂ {x ∈ Rn : Ax ≤ b} ⊂ B(a, r)

▶ |D1| ≥ · · · ≥ |Dd|

Key technique: mesh partition and linear underestimators

b

b

b

b b

b b

b

b

b

b b

b

bb

b b b b b

b

b

b

b

bb b

b b

b

b

b

b

b

b

Key technique: mesh partition and linear underestimators

b

b

b

b b

b b

b

b

b

b b

b

bb

b b b b b

b

b

b

b

bb b

b b

b

b

b

b

b

b

B(a, 1)

B(a, r)

Key technique: mesh partition and linear underestimators

b

b

b

b b

b b

b

b

b

b b

b

bb

b b b b b

b

b

b

b

bb b

b b

b

b

b

b

b

b

B(a, r)

Partition B(a, r)
into φd cubes

Approximation
▶ For each cube C, we construct an affine function g(x) s.t.

g(x) ≤
d∑

i=1
Dix2

i ≤ g(x) + |D1|dr2

φ2 ∀x ∈ C

Approximation
▶ For each cube C, we construct an affine function g(x) s.t.

g(x) ≤
d∑

i=1
Dix2

i ≤ g(x) + |D1|dr2

φ2 ∀x ∈ C

▶ For each cube C, we solve the MILP

minimize g(x) + cTx
subject to Ax ≤ b

x ∈ C
x ∈ Λ

▶ Return the vector x⋄ that achieves the minimum objective
among all φd MILPs

Approximation

Definition
x⋄ is an ϵ-approximate solution if

obj(x⋄)− objmin ≤ ϵ · (objmax− objmin)

To prove that x⋄ is an ϵ-approximation, we need two bounds:
▶ Upper bound: obj(x⋄)− objmin is small
▶ Lower bound: objmax− objmin is large

Approximation: upper bound

▶ Upper bound: obj(x⋄)− objmin is small

How do we do it?

Using underestimator g(x):

g(x) ≤
d∑

i=1
Diy2

i ≤ g(x) + |D1|dr2

φ2 ∀y ∈ C

⇒ obj(x⋄)− objmin ≤ |D1|dr2

φ2

Approximation: lower bound

▶ Lower bound: objmax− objmin is large

How do we do it?

We can give a nice lower bound if there exist two aligned vectors

Definition
Two vectors x+, x− ∈ P are aligned if

1. x+1 − x−1 ≥ 1
2.

∑d
i=2(x+i − x−i)2 ≤ 1/4

3. x+, x−, 1
2(x+ + x−) feasible

If ∃ aligned vectors ⇒ objmax− objmin ≥ 3
16 |D1|

Approximation
We have obtained the two bounds:

obj(x⋄)− objmin ≤ |D1|dr2

φ2

objmax− objmin ≥ 3
16 |D1|

x⋄ is an ϵ-approximate solution provided that

���|D1|dr2

φ2 ≤ ϵ · 3
16�

��|D1|

Just choose φ :=
⌈
4r
√

d/(3ϵ)
⌉

For the approximation, we solved
⌈
4r
√

d/(3ϵ)
⌉d

MILPs

Aligned vectors
We have found an ϵ-approximate solution for S-MIQP if there exist
two aligned vectors
▶ How do we check if there exist two aligned vectors?
▶ And what do we do otherwise?

Proposition
There is a polynomial-time algorithm which either finds two
aligned vectors, or partitions S-MIQP in a constant number of
S-MIQPs with one less integer variable

We obtain a recursive algorithm!
▶ The best approximate solution found is an ϵ-approximate

solution for the original S-MIQP
▶ Runtime: In total, we solved constantd ·

⌈
4r
√

d/(3ϵ)
⌉d

MILPs

Aligned vectors
We have found an ϵ-approximate solution for S-MIQP if there exist
two aligned vectors
▶ How do we check if there exist two aligned vectors?
▶ And what do we do otherwise?

Proposition
There is a polynomial-time algorithm which either finds two
aligned vectors, or partitions S-MIQP in a constant number of
S-MIQPs with one less integer variable

We obtain a recursive algorithm!
▶ The best approximate solution found is an ϵ-approximate

solution for the original S-MIQP
▶ Runtime: In total, we solved constantd ·

⌈
4r
√

d/(3ϵ)
⌉d

MILPs

Aligned vectors
We have found an ϵ-approximate solution for S-MIQP if there exist
two aligned vectors
▶ How do we check if there exist two aligned vectors?
▶ And what do we do otherwise?

Proposition
There is a polynomial-time algorithm which either finds two
aligned vectors, or partitions S-MIQP in a constant number of
S-MIQPs with one less integer variable

We obtain a recursive algorithm!
▶ The best approximate solution found is an ϵ-approximate

solution for the original S-MIQP
▶ Runtime: In total, we solved constantd ·

⌈
4r
√

d/(3ϵ)
⌉d

MILPs

Proof of Proposition

b

a

B(a, 1)

We need:
1. x+1 − x−1 ≥ 1
2.

∑d
i=2(x+i − x−i)2 ≤ 1/4

3. x+, x−, 1
2(x+ + x−) feasible

Proof of Proposition

b

a

B(a, 1)

1

We need:
1. x+1 − x−1 ≥ 1
2.

∑d
i=2(x+i − x−i)2 ≤ 1/4

3. x+, x−, 1
2(x+ + x−) feasible

Proof of Proposition

b

a

B(a, 1)

1

a+
bb

a−

B(a−, 1/4) B(a+, 1/4)

We need:
1. x+1 − x−1 ≥ 1
2.

∑d
i=2(x+i − x−i)2 ≤ 1/4

3. x+, x−, 1
2(x+ + x−) feasible

a− := a − 3/4e1, a+ := a + 3/4e1

Proof of Proposition

b

a

B(a, 1)

1

a+
bb

a−

B(a−, 1/4) B(a+, 1/4)

We need:
1. x+1 − x−1 ≥ 1
2.

∑d
i=2(x+i − x−i)2 ≤ 1/4

3. x+, x−, 1
2(x+ + x−) feasible

a− := a − 3/4e1, a+ := a + 3/4e1

Lenstra:
▶ ∃x+ ∈ B(a+, 1/4)∩2Λ
▶ or B(a+, 1/4) is flat

Proof of Proposition

b

a

B(a, 1)

1

a+
bb

a−

B(a−, 1/4) B(a+, 1/4)

We need:
1. x+1 − x−1 ≥ 1
2.

∑d
i=2(x+i − x−i)2 ≤ 1/4

3. x+, x−, 1
2(x+ + x−) feasible

a− := a − 3/4e1, a+ := a + 3/4e1

Lenstra:
▶ ∃x+ ∈ B(a+, 1/4)∩2Λ
▶ or B(a+, 1/4) is flat

Lenstra:
▶ ∃x− ∈ B(a−, 1/4)∩2Λ
▶ or B(a−, 1/4) is flat

Proof of Proposition

b

b

b

b b

b b

b

b

b

b b

b

bb

b b b b b

b

b

b

b

bb b

b b

b

b

b

b

b

b

B(a, r)

B(a, 1)

Main result

Theorem
For every ϵ ∈ (0, 1], there is an algorithm that finds an
ϵ-approximate solution to a bounded MIQP. The running time of
the algorithm is polynomial in the size of the input and in 1/ϵ,
provided that the rank k of the matrix Q and the number of
integer variables p are fixed numbers.

MIQP ?
=⇒ S-MIQP !

=⇒ ϵ-approximate solution

Part III

The spherical form MIQP

Spherical form MIQP (up to some technicalities…)

minimize
d∑

i=1
Dix2

i + cTx

subject to Ax ≤ b
x ∈ Λ

(S-MIQP)

▶ d ≤ p + k is a fixed number
▶ Λ is a mixed integer lattice of rank p
▶ For a constant r:

B(a, 1) ⊂ {x ∈ Rn : Ax ≤ b} ⊂ B(a, r)

▶ |D1| ≥ · · · ≥ |Dd|

Diagonalization

▶ In particular, S-MIQP has a separable objective function

xTQx ⇝ xTDx, D diagonal

Definition
A symmetric decomposition of Q is a decomposition of the form

Q = LDLT,

where L is nonsingular and D is diagonal

▶ We can then make the change of variables y = LTx

xTQx = xT(LDLT)x = (xTL)D(LTx) = yTDy

Diagonalization
Known algorithms:
▶ Cholesky decomposition
▶ Spectral decomposition
▶ LDLT decomposition

▶ Schur decomposition
▶ Takagi’s factorization
▶ …

Our goal:
▶ Polynomial-time algorithm for any symmetric matrix Q

Properties of known algorithms:
▶ Polynomial number of operations 3

▶ Numerical stability 3

▶ Only applicable to semidefinite matrices 7

▶ Unknown size of numbers obtained 7

▶ Square roots 7

Symmetric decomposition algorithm

Algorithm: [Dax Kaniel 77] with γ ∈ ±1

▶ Input matrix: Q = Q(0)

▶ Iteration 1: Q(0) → Q(1)

▶ Iteration 2: Q(1) → Q(2)

…
▶ Iteration n − 1: Q(n−2) → Q(n−1) = D

Q(k) symmetric with off-diagonal elements in the first k
rows/columns equal zero

Q(0) =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 Q(1) =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 Q(2) =

∗ 0 0
0 ∗ 0
0 0 ∗



Symmetric decomposition algorithm

Consider iteration k: Q(k−1) → Q(k)

Two stages:

▶ Pivoting. Ensures that the pivotal element, which is the
element in the (k, k) position, is one with largest absolute
value among rows/columns k, . . . , n

▶ Elimination. Obtains zeros in the off-diagonal elements of
row/column k

A numerical example

Q(0) =

1 3 1
3 2 4
1 4 2



A numerical example

Q(0) =

1 3 1
3 2 4
1 4 2


Iteration k = 1: Pivoting
▶ Element with largest absolute value is 4 in position (2, 3)
▶ Interchange rows/columns 1 and 2:0 1 0

1 0 0
0 0 1

1 3 1
3 2 4
1 4 2

0 1 0
1 0 0
0 0 1

T

=

2 3 4
3 1 1
4 1 2


▶ Add row/column 3 to row/column 1:1 0 1

0 1 0
0 0 1

2 3 4
3 1 1
4 1 2

1 0 1
0 1 0
0 0 1

T

=

12 4 6
4 1 1
6 1 2



A numerical example

Q(0) =

1 3 1
3 2 4
1 4 2


Iteration k = 1: Pivoting
▶ Element with largest absolute value is 4 in position (2, 3)
▶ Interchange rows/columns 1 and 2:0 1 0

1 0 0
0 0 1

1 3 1
3 2 4
1 4 2

0 1 0
1 0 0
0 0 1

T

=

2 3 4
3 1 1
4 1 2


▶ Add row/column 3 to row/column 1:1 0 1

0 1 0
0 0 1

2 3 4
3 1 1
4 1 2

1 0 1
0 1 0
0 0 1

T

=

12 4 6
4 1 1
6 1 2



→

12 4 6
4 1 1
6 1 2



A numerical example

Q(0) =

1 3 1
3 2 4
1 4 2

 →

12 4 6
4 1 1
6 1 2


Iteration k = 1: Elimination

▶ Row/column elimination is done as in Gaussian elimination: 1 0 0
− 4

12 1 0
− 6

12 0 1

12 4 6
4 1 1
6 1 2

 1 0 0
− 4

12 1 0
− 6

12 0 1

T

=

12 0 0
0 −1

3 −1
0 −1 −1



A numerical example

Q(0) =

1 3 1
3 2 4
1 4 2

 →

12 4 6
4 1 1
6 1 2


Iteration k = 1: Elimination

▶ Row/column elimination is done as in Gaussian elimination: 1 0 0
− 4

12 1 0
− 6

12 0 1

12 4 6
4 1 1
6 1 2

 1 0 0
− 4

12 1 0
− 6

12 0 1

T

=

12 0 0
0 −1

3 −1
0 −1 −1



→

12 0 0
0 −1

3 −1
0 −1 −1

 = Q(1)

A numerical example

Q(1) =

12 0 0
0 −1

3 −1
0 −1 −1



A numerical example

Q(1) =

12 0 0
0 −1

3 −1
0 −1 −1


Iteration k = 2: Pivoting

▶ Element with largest absolute value in rows/columns 2 and
3 is −1 in position (3, 3)

▶ Interchange rows/columns 2 and 3:1 0 0
0 0 1
0 1 0

12 0 0
0 −1

3 −1
0 −1 −1

1 0 0
0 0 1
0 1 0

T

=

12 0 0
0 −1 −1
0 −1 −1

3



A numerical example

Q(1) =

12 0 0
0 −1

3 −1
0 −1 −1


Iteration k = 2: Pivoting

▶ Element with largest absolute value in rows/columns 2 and
3 is −1 in position (3, 3)

▶ Interchange rows/columns 2 and 3:1 0 0
0 0 1
0 1 0

12 0 0
0 −1

3 −1
0 −1 −1

1 0 0
0 0 1
0 1 0

T

=

12 0 0
0 −1 −1
0 −1 −1

3



→

12 0 0
0 −1 −1
0 −1 −1

3



A numerical example

Q(1) =

12 0 0
0 −1

3 −1
0 −1 −1

→

12 0 0
0 −1 −1
0 −1 −1

3


Iteration k = 2: Elimination

▶ Row/column elimination is done as in Gaussian elimination:1 0 0
0 1 0
0 −1 1

12 0 0
0 −1 −1
0 −1 −1

3

1 0 0
0 1 0
0 −1 1

T

=

12 0 0
0 −1 0
0 0 2

3



A numerical example

Q(1) =

12 0 0
0 −1

3 −1
0 −1 −1

→

12 0 0
0 −1 −1
0 −1 −1

3


Iteration k = 2: Elimination

▶ Row/column elimination is done as in Gaussian elimination:1 0 0
0 1 0
0 −1 1

12 0 0
0 −1 −1
0 −1 −1

3

1 0 0
0 1 0
0 −1 1

T

=

12 0 0
0 −1 0
0 0 2

3



→

12 0 0
0 −1 0
0 0 2

3

 = Q(2)

A numerical example

B :=

1 0 0
0 1 0
0 −1 1

1 0 0
0 0 1
0 1 0

 1 0 0
− 4

12 1 0
− 6

12 0 1

1 0 1
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1


=

0 1 1
0 −1

2
1
2

1 1
6 −5

6



⇒ BQBT = D

L := B−1 =

1
3 1 1
1
2 −1 0
1
2 1 0


⇒ Q = LDLT

Symmetric decomposition algorithm

▶ The number of arithmetic operations performed is O(n3)

▶ We only need to show that the size of each matrix constructed
during the execution is polynomial in the size of Q

▶ Similar to Edmonds’ proof for Gaussian elimination
[Edmonds 67]

▶ More involved due to the pivoting stage

Theorem
Let Q be a rational symmetric n × n matrix. There is a strongly
polynomial algorithm that finds matrices L, D such that Q = LDLT

is a symmetric decomposition of Q

A numerical example: back to MIQP
▶ Original objective function:

xT

1 3 1
3 2 4
1 4 2

x

▶ Change of variables:

y = LTx =

1
3 1 1
1
2 −1 0
1
2 1 0

T

x

▶ New objective function:

xT

1 3 1
3 2 4
1 4 2

x = xTLDLTx = yT

12 0 0
0 −1 0
0 0 2

3

y

Minimizing quadratics over integers

Alberto Del Pia

University of Wisconsin-Madison

Linear and Non-Linear Mixed Integer Optimization
Institute for Computational and Experimental Research in Mathematics

(ICERM)
March 1, 2023

	The problem
	The algorithm
	The spherical form MIQP

