A fast combinatorial algorithm for the bilevel knapsack interdiction problem

Ricardo Fukasawa

ICERM - Linear and Non-Linear Mixed Integer Optimization
Feb 28, 2023
Joint work with Noah Weninger
Outline

1 Introduction

2 Our combinatorial algorithm
 - Heuristic
 - Branching
 - Bounding

3 Computational experiments

4 Conclusion
Bilevel optimization

Basic optimization problem:

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad x \in U
\end{align*}
\]

(OPT)
Bilevel optimization

Basic optimization problem:

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad x \in U
\end{align*}
\] (OPT)

Key assumption:
- Decision-maker has total control of ALL decision variables.
Bilevel optimization

Basic optimization problem:

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad x \in \mathcal{U}
\end{align*}
\]

(OPT)

Key assumption:
- Decision-maker has total control of ALL decision variables.
- Often not the case
 - Adversarial settings
 - Multiple (competing) decision makers
 - Not possible to coordinate efforts
Bilevel IP

Two decision-makers (DM):

\[
\begin{align*}
\min & \quad c^T x + d^T y \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \in \mathbb{Z}^n \\
& \quad y \in \arg\min\{f^T y : Gx + Hy \leq g, y \in \mathbb{Z}^p\}
\end{align*}
\]

- \(x\) are upper level decision variables
- \(y\) are lower level decision variables
- (DM) that controls \(x\) acts first, (DM) that controls \(y\) reacts
- Applications in military, economics, transportation, electrical grid, etc.
Knapsack Interdiction

- Interdiction idea: Upper level DM can choose to block some of the decisions from lower level DM
Knapsack Interdiction

- Interdiction idea: Upper level DM can choose to block some of the decisions from lower level DM
- Knapsack interdiction:
 - Given a set of items 1, \ldots, n
 - upper weight, lower weight, profit \((w^U_i, w^L_i, p_i)\)
 - Upper/lower knapsack capacities \(C^U, C^L\)

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{n} p_i y_i \\
\text{s.t.} & \quad \sum_{i=1}^{n} w^U_i x_i \leq C^U \\
& \quad x \in \{0, 1\}^n \\
\end{align*}
\]

\[
y \in \arg \max \left\{ \sum_{i=1}^{n} p_i y_i : \sum_{i=1}^{n} w^L_i y_i \leq C^L, x_i + y_i \leq 1, \forall i = 1, \ldots, n \right\}
\]

(BKP)
Knapsack Interdiction

- Interdiction idea: Upper level DM can choose to block some of the decisions from lower level DM

Knapsack interdiction:
- Given a set of items 1, \ldots, n
- upper weight, lower weight, profit \((w^U_i, w^L_i, p_i)\)
- Upper/lower knapsack capacities \(C^U, C^L\)

\[
\begin{align*}
\text{min} \quad & \sum_{i=1}^{n} p_i y_i \\
\text{s.t.} \quad & \sum_{i=1}^{n} w^U_i x_i \leq C^U \\
& x \in \{0, 1\}^n \\
& y \in \text{arg max} \left\{ \sum_{i=1}^{n} p_i y_i : \sum_{i=1}^{n} w^L_i y_i \leq C^L, x_i + y_i \leq 1, \forall i = 1, \ldots, n \right\} \\
& y \in \{0, 1\}^n
\end{align*}
\]

(BKP)

The “Annoying Sibling Problem”
Knapsack Interdiction

- Interdiction idea: Upper level DM can choose to block some of the decisions from lower level DM

- Knapsack interdiction:
 - Given a set of items 1, . . . , n
 - upper weight, lower weight, profit \((w_i^U, w_i^L, p_i)\)
 - Upper/lower knapsack capacities \(C^U, C^L\)

\[
\begin{align*}
\text{min } & \sum_{i=1}^{n} p_i y_i \\
\text{s.t. } & \sum_{i=1}^{n} w_i^U x_i \leq C^U \\
& x \in \{0, 1\}^n
\end{align*}
\]

\[
y \in \arg \max \left\{ \sum_{i=1}^{n} p_i y_i : \sum_{i=1}^{n} w_i^L y_i \leq C^L, x_i + y_i \leq 1, \forall i = 1, \ldots, n, y \in \{0, 1\}^n \right\}
\]

(BKP)

The “Annoying Sibling Problem”

For each \(x \in \mathcal{U} := \left\{ x \in \{0, 1\}^n : \sum_{i=1}^{n} w_i^U x_i \leq C^U \right\} \), let \(\ell^*(x)\) be an optimizer of the lower level problem.
Knapsack interdiction

- Σ^p_2-complete problem (likely does not admit a poly-sized IP formulation) (Caprara et al., 2014)
- No pseudopolytime algorithm exists (unless $P = NP$)
- *DeNegre (2011) introduced the problem. Solved instances with ≤ 15 items
- Caprara, Carvalho, Lodi and Woeginger (2016): Solved instances with ≤ 50 items
- *Tang, Richard and Smith (2016): Solved instances with ≤ 30 items
- *Fischetti, Ljubic, Monaci, and Sinnl (2019). Solved instances with ≤ 55 items
- Lozano, Bergman and Cire (2022). Solved instances with ≤ 50 items.
- Della Croce and Scatamacchia (2018). Solved instances with ≤ 500 items
Knapsack interdiction

- Σ_2^P-complete problem (likely does not admit a poly-sized IP formulation) (Caprara et al., 2014)
- No pseudopolytime algorithm exists (unless $P = NP$)
- *DeNegre (2011) introduced the problem. Solved instances with ≤ 15 items
- Caprara, Carvalho, Lodi and Woeginger (2016): Solved instances with ≤ 50 items
- *Tang, Richard and Smith (2016): Solved instances with ≤ 30 items
- *Fischetti, Ljubic, Monaci, and Sinnl (2019). Solved instances with ≤ 55 items
- Lozano, Bergman and Cire (2022). Solved instances with ≤ 50 items.
- Della Croce and Scatamacchia (2018). Solved instances with ≤ 500 items

All approaches rely on MIP solvers
Outline

1 Introduction

2 Our combinatorial algorithm
 - Heuristic
 - Branching
 - Bounding

3 Computational experiments

4 Conclusion
Greedy Heuristic

Procedure GREEDY:

1. Obtain x' by solving $\max \{ \sum_{i=1}^{n} p_{i}x_{i} : \sum_{i=1}^{n} w_{i}^{U}x_{i} \leq C^{U} \}$

3. (x', y') is a feasible solution to our problem.

Notation:

$f(S) := \sum_{i \in S} f_{i}$

We will use interchangeably $X := \{ i : x_{i} = 1 \}$ and $x_{T} := \{ 1, \ldots, n \} \setminus T$
Procedure GREEDY:

1. Obtain \(x' \) by solving \(\max \{ \sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i U_i x_i \leq C^U \} \)

2. Obtain \(y' = \ell^*(x') \)
Greedy Heuristic

Procedure GREEDY:

1. Obtain x' by solving $\max\{\sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i^U x_i \leq C^U\}$

2. Obtain $y' = \ell^*(x')$

3. (x', y') is a feasible solution to our problem.
Greedy Heuristic

Procedure GREEDY:

1. Obtain x' by solving \[\max \left\{ \sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i^U x_i \leq C^U \right\} \]

2. Obtain $y' = \ell^*(x')$

3. (x', y') is a feasible solution to our problem.

Notation:

- $f(S) := \sum_{i \in S} f_i$
- We will use interchangeably $X := \{i : x_i = 1\}$ and x
- $\overline{T} := \{1, \ldots, n\} \setminus T$
When is GREEDY optimal?

Della Croce and Scatamacchia (2018) and Caprara, Carvalho, Lodi and Woeginger (2016) note classes of easy instances.

Lemma (Weninger and F. ’22)

GREEDY returns an optimal solution if there exists an optimal solution \((X^, Y^*)\) for BKP where \(Y^* = \overline{X}^*\).*

Proof.

Suppose \(\hat{X} \in U\) with \(p(\hat{X}) > p(X^*)\). Let \(\hat{Y} = \ell^*(\hat{X})\)

\[
p(\hat{Y}) \leq p(\overline{\hat{X}}) < p(\overline{X}^*) = p(Y^*)
\]

which contradicts optimality of \((X^*, Y^*)\).

Moreover,

\[
p(Y') \leq p(\overline{X'}) = p(\overline{X}^*) = p(Y^*) \leq p(Y')
\]
When is GREEDY optimal?

Idea similar from Della Croce and Scatamacchia (2018).

\[
LB(c) = \min \sum_{i=1}^{c-1} p_i (1 - x_i) \\
\text{s.t.} \quad \sum_{i=1}^{c-1} w^U_i x_i \leq C^U \\
C^L - w^L_c + 1 \leq \sum_{i=1}^{c-1} w^L_i (1 - x_i) \leq C^L \\
x \in [0, 1]^n
\]

If the LP is infeasible for some \(c\), we define \(LB(c) = \infty\).

Lemma (Weninger and F. ’22)

Suppose GREEDY returns \((X', Y')\) with value \(z'\). If \(z' \leq \min \{LB(c) : 1 \leq c \leq n\}\) then \((X', Y')\) is optimal for BKP.

Proof.

Let \((X^*, Y^*)\) be an optimal solution to BKP. Let \(k = \min \{c : \sum_{i : i \leq c; x_i^* = 0} w^L_i > C^L\}\)

If \(k = \infty\), then by previous lemma, \((X', Y')\) is optimal for BKP.

Let \(x^* := (x_1^*, \ldots, x_{k-1}^*)\)

Then \(x^*\) is feasible for \(LB(k)\), so \(LB(k) \leq \sum_{i=1}^{k-1} p_i (1 - x^*_i) \leq p(y^*)\)

So \(z' \leq \min \{LB(c) : 1 \leq c \leq n\} \leq LB(k) \leq p(y^*) \leq z'\)
Outline

1 Introduction

2 Our combinatorial algorithm
 - Heuristic
 - Branching
 - Bounding

3 Computational experiments

4 Conclusion
Branching

Assume variables are ordered such that $\frac{p_1^1}{w_1^1} \geq \ldots \geq \frac{p_n^n}{w_n^n}$

- Branch at depth i will be done on variable x_{i+1}
- Done in DFS, branching first on the right branch
- Check for infeasibility before branching
- At leaf (depth n), we get a possible \hat{x}: Use $(\hat{x}, \ell^*(\hat{x}))$ to update primal (upper) bound if needed

\[
\begin{array}{c}
\text{depth } i-1 \\
\end{array}
\]

\[
\begin{array}{c}
\text{depth } i-1 \\
\end{array}
\]

\[
\begin{array}{c}
\text{depth } i-1 \\
\end{array}
\]
Lower bounds

- BB node identified by $X \subseteq \{1, \ldots, i - 1\}$ that has been picked by upper level: Identified as (X, i).
- Compute lower bound on node (X, i) by:
 1. solving a lower-level knapsack on items \(\{1, \ldots, i - 1\} \setminus X\),
 2. computing a lower bound for BKP restricted to items $\{i, \ldots, n\}$, and
 3. combining (1) and (2) into a lower bound for the descendants of (X, i).
Lower bounds

- BB node identified by $X \subseteq \{1, \ldots, i-1\}$ that has been picked by upper level: Identified as (X, i).
- Compute lower bound on node (X, i) by:
 1. solving a lower-level knapsack on items $\{1, \ldots, i-1\} \setminus X$,
 2. computing a lower bound for BKP restricted to items $\{i, \ldots, n\}$, and
 3. combining (1) and (2) into a lower bound for the descendants of (X, i).

Let $K(X, c) := \max \{p(Y) : Y \subseteq \{1, \ldots, n\} \setminus X \text{ and } w^L(Y) \leq c\}$.

Lower bounds

- BB node identified by $X \subseteq \{1, \ldots, i - 1\}$ that has been picked by upper level: Identified as (X, i).
- Compute lower bound on node (X, i) by:
 1. solving $K(X \cup \{i, \ldots, n\}, c)$,
 2. computing a lower bound for BKP restricted to items $\{i, \ldots, n\}$, and
 3. combining (1) and (2) into a lower bound for the descendants of (X, i).

Let $K(X, c) := \max \{p(Y) : Y \subseteq \{1, \ldots, n\} \setminus X \text{ and } w^L(Y) \leq c\}$.
Lower bounds

- BB node identified by $X \subseteq \{1, \ldots, i - 1\}$ that has been picked by upper level:
 Identified as (X, i).
- Compute lower bound on node (X, i) by:
 1. solving $K(X \cup \{i, \ldots, n\}, c)$,
 2. computing a lower bound for BKP restricted to items $\{i, \ldots, n\}$, and
 3. combining (1) and (2) into a lower bound for the descendants of (X, i).

Let $K(X, c) := \max \{ p(Y) : Y \subseteq \{1, \ldots, n\} \setminus X \text{ and } w^L(Y) \leq c \}.$

Let $\omega(i, c^U, c^L) \leq \min \{ K(X' \cup \{1, \ldots, i - 1\}, c^L) : X' \subseteq \{i, \ldots, n\}, w^U(X') \leq c^U \}. $
Lower bounds

- BB node identified by $X \subseteq \{1, \ldots, i-1\}$ that has been picked by upper level: Identified as (X, i).

- Compute lower bound on node (X, i) by:
 1. solving $K(X \cup \{i, \ldots, n\}, c)$,
 2. computing $\omega(i, c^U, c^L)$, and
 3. combining (1) and (2) into a lower bound for the descendants of (X, i).

Let $K(X, c) := \max \{ p(Y) : Y \subseteq \{1, \ldots, n\} \setminus X \text{ and } w^L(Y) \leq c \}$.

Let $\omega(i, c^U, c^L) \leq \min \{ K(X' \cup \{1, \ldots, i-1\}, c^L) : X' \subseteq \{i, \ldots, n\}, w^U(X') \leq c^U \}$.
Combining (1) and (2)

Lemma

Let \((X, i)\) be a subproblem. For all \(c \in \{0, \ldots, C^L\}\),

\[
K(X \cup \{i, \ldots, n\}, c) + \omega\left(i, C^U - w^U(X), C^L - c\right) \leq \\
\min \left\{ p(Y') : (X', Y') \text{ is feasible for BKP and } X' \cap \{1, \ldots, i - 1\} = X \right\}.
\]
Combining (1) and (2)

Lemma

Let \((X, i)\) be a subproblem. For all \(c \in \{0, \ldots, C^L\}\),

\[
K(X \cup \{i, \ldots, n\}, c) + \omega\left(i, C^U - w^U(X), C^L - c\right) \leq \\
\min \{p(Y') : (X', Y') \text{ is feasible for BKP and } X' \cap \{1, \ldots, i - 1\} = X\}.
\]

Proof:

Fix \(X \subseteq \{1, \ldots, i - 1\}\) and \(X' \subseteq \{i, \ldots, n\}\)

\[
\{1, \ldots, i - 1\} \quad \{i, \ldots, n\}
\]

Then

\[
K(X \cup \{i, \ldots, n\}, c) + K(X' \cup \{1, \ldots, i\}, C^L - c) \leq K(X \cup X', C^L)
\]
Combining (1) and (2)

Lemma

Let \((X, i)\) be a subproblem. For all \(c \in \{0, \ldots, C^L\}\),

\[
K(X \cup \{i, \ldots, n\}, c) + \omega\left(i, C^U - w^U(X), C^L - c\right) \leq \\
\min \left\{p(Y') : (X', Y') \text{ is feasible for BKP and } X' \cap \{1, \ldots, i - 1\} = X\right\}.
\]

Proof:

Fix \(X \subseteq \{1, \ldots, i - 1\} \) and \(X' \subseteq \{i, \ldots, n\}\)

\[
K(X \cup \{i, \ldots, n\}, c) + K(X' \cup \{1, \ldots, i\}, C^L - c) \leq K(X \cup X', C^L)
\]

So:

\[
K(X \cup \{i, \ldots, n\}, c) + \min\{K(X' \cup \{1, \ldots, i\}, C^L - c) : X' \subseteq \{i, \ldots, n\}\} \leq \\
\leq \min\{K(X \cup X', C^L) : X' \subseteq \{i, \ldots, n\}\}
\]
Obtaining ω

Recall: $\omega(i, c^U, c^L) \leq \min\{K(X' \cup \{1, \ldots, i - 1\}, c^L) : X' \subseteq \{i, \ldots, n\}, w^U(X') \leq c^U\}$
Obtaining ω

Recall: $\omega(i, c^U, c^L) \leq \min\{K(X' \cup \{1, \ldots, i - 1\}, c^L) : X' \subseteq \{i, \ldots, n\}, w^U(X') \leq c^U\}

Idea: Apply greedy policy to both children nodes, and pick the lowest.
Obtaining ω

Recall: $\omega(i, c^U, c^L) \leq \min\{K(X' \cup \{1, \ldots, i - 1\}, c^L) : X' \subseteq \{i, \ldots, n\}, w^U(X') \leq c^U\}$

Idea: Apply greedy policy to both children nodes, and pick the lowest.

$$
\omega_g(i, c^U, c^L) = \begin{cases}
\infty & \text{if } c^U < 0, \\
0 & \text{if } c^U \geq 0, c^L \geq 0 \text{ and } i > n, \\
\omega_g(i + 1, c^U, c^L) & \text{if } c^U \geq 0, w_i^L > c^L \text{ and } i \leq n, \\
\min \left\{ \omega_g(i + 1, c^U - w_i^U, c^L), \omega_g(i + 1, c^U, c^L - w_i^L) + p_i \right\} & \text{if } c^U \geq 0, w_i^L \leq c^L \text{ and } i \leq n.
\end{cases}
$$
Improving ω_g

Greedy: Follower always takes item i if possible.
Improving ω_g

Greedy: Follower always takes item i if possible.

Improvement: Allow follower a different choice

$$
\omega(i, c^U, c^L) = \begin{cases}
+\infty, \\
\ldots \\
\min \left\{ \begin{array}{l}
\omega(i + 1, c^U - w_i^U, c^L) \\
\max \left\{ \omega(i + 1, c^U, c^L), \\
\omega(i + 1, c^U, c^L - w_i^L) + p_i \right\} \end{array} \right. \\
\right.
\right.
\right.
$$

if $c^U < 0$

$\omega(i, c^U, c^L) = \begin{cases}
+\infty, \\
\ldots \\
ymin \left\{ \begin{array}{l}
\omega(i + 1, c^U - w_i^U, c^L) \\
\max \left\{ \omega(i + 1, c^U, c^L), \\
\omega(i + 1, c^U, c^L - w_i^L) + p_i \right\} \end{array} \right. \\
\right.
\right.
\right.
$$

if \ldots

$x_i = 0$

$x_i = 1$
Validity of lower bound

Theorem

For all $1 \leq i \leq n$, $c^U \geq 0$ and $c^L \geq 0$,

$$
\omega(i, c^U, c^L) \leq \min_{X' \subseteq \{i, \ldots, n\} : w^U(X') \leq c^U} K(X \cup \{1, \ldots, i - 1\}, c^L).
$$

Another interpretation of what is happening:

Leader and follower are taking turns:

After leader chooses $x_i = 0$ or 1, follower reacts.

Becomes a $2n$-stage game (where each stage is very simple).
Validity of lower bound

Theorem

For all $1 \leq i \leq n$, $c^U \geq 0$ and $c^L \geq 0$,

$$\omega(i, c^U, c^L) \leq \min_{X' \subseteq \{i, \ldots, n\} : w(U(X')) \leq c^U} K(X \cup \{1, \ldots, i - 1\}, c^L).$$

Another interpretation of what is happening:

- Leader and follower are taking turns:
 - After leader chooses $x_i = 0$ or 1, follower reacts

Becomes a $2n$-stage game (where each stage is very simple).
How to use good solutions for the follower?

Consider the problem

\[z^* := \min_{x \in U} \max_{y \in \mathcal{L}(x)} c(x, y) \quad (1) \]

For each \(x \in U \), let \(\ell^*(x) \) be an optimizer of \(c(x, y) \) for \(y \in \mathcal{L}(x) \) (we assume it exists).

Lemma (Weninger and F., 22)

Suppose we have a function \(f(x) \) such that for all \(x \in U \):

- \(f(x) \in \mathcal{L}(x) \)
- \(c(x, f(x)) \leq c(x, \ell^*(x)) \leq \alpha c(x, f(x)), \text{ for some } \alpha \geq 1 \)

Let \(\tilde{x} \in \arg \min c(x, f(x)) \).

Then

\[c(\tilde{x}, \ell^*(\tilde{x})) \leq \alpha z^* \]
How to use good solutions for the follower?

Consider the problem

\[z^* := \min_{x \in U} \max_{y \in L(x)} c(x, y) \] (1)

For each \(x \in U \), let \(\ell^*(x) \) be an optimizer of \(c(x, y) \) for \(y \in L(x) \) (we assume it exists).

Lemma (Weninger and F., 22)

Suppose we have a function \(f(x) \) such that for all \(x \in U \):

1. \(f(x) \in L(x) \)
2. \(c(x, f(x)) \leq c(x, \ell^*(x)) \leq \alpha c(x, f(x)), \text{ for some } \alpha \geq 1 \)

Let \(\tilde{x} \in \arg \min c(x, f(x)) \).

Then

\[c(\tilde{x}, \ell^*(\tilde{x})) \leq \alpha z^* \]

Proof:

Let \((x^*, \ell^*(x^*))\) be the optimal solution to (1).

\[\frac{1}{\alpha} c(\tilde{x}, \ell^*(\tilde{x})) \leq c(\tilde{x}, f(\tilde{x})) \leq c(x^*, f(x^*)) \leq c(x^*, \ell^*(x^*)) = z^* \]
Instances from the literature

Instances:

- **CCLW**: From Caprara et al (2016). \(n \in [35, 55] \)
- **DCS**: From DellaCroce and Scatamacchia (2020). \(n \in [100, 500] \)
- **DeNegre**: From DeNegre (2011). \(n \in [10, 50] \)
- **FMS**: From Fischetti et al (2018). \(n \in [100, 500] \)
- **TRS**: Tang et al (2016). \(n \in [15, 30] \)

Algorithms:

- **DCS**: Previous best from literature
- **Comb**: Ours

<table>
<thead>
<tr>
<th>Group</th>
<th>#Inst</th>
<th>#Opt</th>
<th>#Best</th>
<th>DCS Avg</th>
<th>DCS Max</th>
<th>#Opt</th>
<th>#Best</th>
<th>Comb Avg</th>
<th>Comb Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1,340</td>
<td>1,271</td>
<td>55</td>
<td>200.49</td>
<td>3,600</td>
<td>1,324</td>
<td>1,269</td>
<td>44.11</td>
<td>3,600</td>
</tr>
<tr>
<td>CCLW</td>
<td>50</td>
<td>50</td>
<td>2</td>
<td>0.21</td>
<td>1.27</td>
<td>50</td>
<td>48</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>DCS</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>3.87</td>
<td>15.73</td>
<td>500</td>
<td>500</td>
<td>0.7</td>
<td>8.59</td>
</tr>
<tr>
<td>DeNegre</td>
<td>160</td>
<td>160</td>
<td>50</td>
<td>0.17</td>
<td>1.62</td>
<td>160</td>
<td>110</td>
<td>0.08</td>
<td>1.73</td>
</tr>
<tr>
<td>FMS-easy</td>
<td>150</td>
<td>150</td>
<td>0</td>
<td>13.35</td>
<td>79.85</td>
<td>150</td>
<td>150</td>
<td>0.38</td>
<td>7.1</td>
</tr>
<tr>
<td>FMS-hard</td>
<td>300</td>
<td>231</td>
<td>0</td>
<td>882.2</td>
<td>3,600</td>
<td>284</td>
<td>284</td>
<td>195.61</td>
<td>3,600</td>
</tr>
<tr>
<td>TRS</td>
<td>180</td>
<td>180</td>
<td>3</td>
<td>0.14</td>
<td>2.04</td>
<td>180</td>
<td>177</td>
<td>0.04</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table: Summary of results for all instances from the literature.
Results per instance type

<table>
<thead>
<tr>
<th>Group</th>
<th>#Inst</th>
<th>DCS</th>
<th>Avg</th>
<th>Max</th>
<th>Comb</th>
<th>Root</th>
<th>Nodes</th>
<th>Root gap (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#Opt</td>
<td>#Best</td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Max</td>
<td>Root</td>
</tr>
<tr>
<td>uncorrelated</td>
<td>940</td>
<td>940</td>
<td>64</td>
<td>2.32</td>
<td>15.73</td>
<td>0.31</td>
<td>6.74</td>
<td>0.3</td>
</tr>
<tr>
<td>weak correlated</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>13.49</td>
<td>72.64</td>
<td>0.26</td>
<td>3.59</td>
<td>0.25</td>
</tr>
<tr>
<td>strong correlated</td>
<td>50</td>
<td>41</td>
<td>0</td>
<td>689.58</td>
<td>3,600</td>
<td>0.34</td>
<td>3.89</td>
<td>0.26</td>
</tr>
<tr>
<td>inverse strong corr.</td>
<td>50</td>
<td>38</td>
<td>0</td>
<td>919.91</td>
<td>3,600</td>
<td>1.06</td>
<td>34.24</td>
<td>0.38</td>
</tr>
<tr>
<td>almost strong corr.</td>
<td>50</td>
<td>40</td>
<td>0</td>
<td>815.4</td>
<td>3,600</td>
<td>0.24</td>
<td>3.17</td>
<td>0.24</td>
</tr>
<tr>
<td>subset-sum</td>
<td>50</td>
<td>35</td>
<td>0</td>
<td>1,087.18</td>
<td>3,600</td>
<td>42</td>
<td>586.33</td>
<td>0.29</td>
</tr>
<tr>
<td>even-odd subset-sum</td>
<td>50</td>
<td>36</td>
<td>0</td>
<td>1,033.98</td>
<td>3,600</td>
<td>42</td>
<td>581.43</td>
<td>0.29</td>
</tr>
<tr>
<td>even-odd strong corr.</td>
<td>50</td>
<td>41</td>
<td>0</td>
<td>747.12</td>
<td>3,600</td>
<td>50</td>
<td>0.6</td>
<td>16.86</td>
</tr>
<tr>
<td>similar weight uncorr.</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>22.89</td>
<td>79.85</td>
<td>50</td>
<td>4.64 \cdot 10^{-2}</td>
<td>7.92 \cdot 10^{-2}</td>
</tr>
</tbody>
</table>

Table: Results on all instances, by instance type
Variations of the algorithm

<table>
<thead>
<tr>
<th></th>
<th>Solution to (K(X \cup {i, \ldots, n}, c))</th>
<th>Lower bound on (K(X' \cup {1, \ldots, i - 1}, c^L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb</td>
<td>Exact</td>
<td>(\omega)</td>
</tr>
<tr>
<td>Comb-weak</td>
<td>Exact</td>
<td>(\omega_g)</td>
</tr>
<tr>
<td>Comb-greedy</td>
<td>Greedy</td>
<td>(\omega)</td>
</tr>
</tbody>
</table>

Figure: Performance profile for all instances from the literature.
Influence of threads

Figure: Performance profile for all instances from the literature, different numbers of threads.

(DCS ran with 16 threads)
New instances

\(n \in [10, 10000] \), both easy and hard, also allowing correlation with \(w_i^U \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>#Inst</th>
<th>#Opt</th>
<th>#Best</th>
<th>Avg</th>
<th>Max</th>
<th>#Opt</th>
<th>#Best</th>
<th>Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>250</td>
<td>250</td>
<td>101</td>
<td>0.13</td>
<td>3.41</td>
<td>250</td>
<td>149</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>238</td>
<td>8</td>
<td>58.36</td>
<td>900</td>
<td>250</td>
<td>242</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
<td>203</td>
<td>1</td>
<td>178.63</td>
<td>900</td>
<td>247</td>
<td>246</td>
<td>17.83</td>
<td>900</td>
</tr>
<tr>
<td>100</td>
<td>250</td>
<td>184</td>
<td>3</td>
<td>253.42</td>
<td>900</td>
<td>222</td>
<td>219</td>
<td>104.77</td>
<td>900</td>
</tr>
<tr>
<td>1000</td>
<td>167</td>
<td>109</td>
<td>12</td>
<td>302.26</td>
<td>900</td>
<td>136</td>
<td>124</td>
<td>169.82</td>
<td>900</td>
</tr>
<tr>
<td>10000</td>
<td>26</td>
<td>23</td>
<td>0</td>
<td>357.43</td>
<td>900</td>
<td>26</td>
<td>26</td>
<td>12.55</td>
<td>25.21</td>
</tr>
</tbody>
</table>

Class

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>uncorrelated</td>
<td>241</td>
<td>239</td>
<td>25</td>
<td>12.37</td>
<td>900</td>
<td>241</td>
<td>216</td>
<td>0.97</td>
<td>25.21</td>
</tr>
<tr>
<td>lower subset-sum</td>
<td>256</td>
<td>174</td>
<td>13</td>
<td>318.09</td>
<td>900</td>
<td>237</td>
<td>224</td>
<td>70.2</td>
<td>900</td>
</tr>
<tr>
<td>upper subset-sum</td>
<td>232</td>
<td>232</td>
<td>31</td>
<td>2.58</td>
<td>89.25</td>
<td>232</td>
<td>201</td>
<td>0.8</td>
<td>18.29</td>
</tr>
<tr>
<td>both subset-sum</td>
<td>232</td>
<td>130</td>
<td>23</td>
<td>417.68</td>
<td>900</td>
<td>189</td>
<td>166</td>
<td>175.93</td>
<td>900</td>
</tr>
<tr>
<td>equal weights</td>
<td>232</td>
<td>232</td>
<td>33</td>
<td>2.12</td>
<td>120.55</td>
<td>232</td>
<td>199</td>
<td>0.67</td>
<td>14.97</td>
</tr>
</tbody>
</table>

Table: Summary of results for new instances, grouped by \(n \) (upper half) and by class (lower half)
New instances

\(n \in [10, 10000] \), both easy and hard, also allowing correlation with \(w_i^U \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>#Inst</th>
<th>#Opt</th>
<th>#Best</th>
<th>Avg</th>
<th>Max</th>
<th>#Opt</th>
<th>#Best</th>
<th>Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>250</td>
<td>250</td>
<td>101</td>
<td>0.13</td>
<td>3.41</td>
<td>250</td>
<td>149</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>238</td>
<td>8</td>
<td>58.36</td>
<td>900</td>
<td>250</td>
<td>242</td>
<td>0.05</td>
<td>0.33</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
<td>203</td>
<td>1</td>
<td>178.63</td>
<td>900</td>
<td>247</td>
<td>246</td>
<td>17.83</td>
<td>900</td>
</tr>
<tr>
<td>100</td>
<td>250</td>
<td>184</td>
<td>3</td>
<td>253.42</td>
<td>900</td>
<td>222</td>
<td>219</td>
<td>104.77</td>
<td>900</td>
</tr>
<tr>
<td>1000</td>
<td>167</td>
<td>109</td>
<td>12</td>
<td>302.26</td>
<td>900</td>
<td>136</td>
<td>124</td>
<td>169.82</td>
<td>900</td>
</tr>
<tr>
<td>10000</td>
<td>26</td>
<td>23</td>
<td>0</td>
<td>357.43</td>
<td>900</td>
<td>26</td>
<td>26</td>
<td>12.55</td>
<td>25.21</td>
</tr>
</tbody>
</table>

Class

<table>
<thead>
<tr>
<th>(n)</th>
<th>#Inst</th>
<th>#Opt</th>
<th>#Best</th>
<th>Avg</th>
<th>Max</th>
<th>#Opt</th>
<th>#Best</th>
<th>Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncorrelated</td>
<td>241</td>
<td>239</td>
<td>25</td>
<td>12.37</td>
<td>900</td>
<td>241</td>
<td>216</td>
<td>0.97</td>
<td>25.21</td>
</tr>
<tr>
<td>lower subset-sum</td>
<td>256</td>
<td>174</td>
<td>13</td>
<td>318.09</td>
<td>900</td>
<td>237</td>
<td>224</td>
<td>70.2</td>
<td>900</td>
</tr>
<tr>
<td>upper subset-sum</td>
<td>232</td>
<td>232</td>
<td>31</td>
<td>2.58</td>
<td>89.25</td>
<td>232</td>
<td>201</td>
<td>0.8</td>
<td>18.29</td>
</tr>
<tr>
<td>both subset-sum</td>
<td>232</td>
<td>130</td>
<td>23</td>
<td>417.68</td>
<td>900</td>
<td>189</td>
<td>166</td>
<td>175.93</td>
<td>900</td>
</tr>
<tr>
<td>equal weights</td>
<td>232</td>
<td>232</td>
<td>33</td>
<td>2.12</td>
<td>120.55</td>
<td>232</td>
<td>199</td>
<td>0.67</td>
<td>14.97</td>
</tr>
</tbody>
</table>

Table: Summary of results for new instances, grouped by \(n \) (upper half) and by class (lower half)

NOTE: Some instances we ran out of memory (excluded from this table)
Figure: Left: scatter plot of the lower bound approximation ratio $\omega(1, C^U, C^L)/\text{OPT}$ for all instances (sorted by approximation ratio). Right: running time of Comb (darker = longer time) as a function of C^U and C^L, for an uncorrelated instance with 100 items.
1. Introduction

2. Our combinatorial algorithm
 - Heuristic
 - Branching
 - Bounding

3. Computational experiments

4. Conclusion
Conclusion

Key ideas:
- Exploit strong lower bounds via good heuristics to lower level
- Idea of using $2n$ rounds of a simpler game
- Lower bounds that are extendable from each other (DP)
- Synchronization with how we branch

Challenges / future research:
- Memory intensive
- Parallelization
- Extension to other problems

Code and new instances available at
https://github.com/nwoeanhinnogaehr/bkpsolver
Conclusion

Key ideas:
- Exploit strong lower bounds via good heuristics to lower level
- Idea of using $2n$ rounds of a simpler game
- Lower bounds that are extendable from each other (DP)
- Synchronization with how we branch

Challenges / future research:
- Memory intensive
- Parallelization
- Extension to other problems

Code and new instances available at https://github.com/nwoeanhinnogaehr/bkpsolver

THANK YOU!