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Intersection cuts in a nutshell



Intersection cuts in pictures
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Feasible set, S (blue); s̄ vertex of LP relaxation (black)
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S-free set (green) (Dey and Wolsey 2010)
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Intersection cut (red) (Balas 1971)
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Intersection cuts in pictures
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Larger S-free set (purple)
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Intersection cuts in pictures
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Intersection cuts in pictures
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C is maximal S-free if it is not contained in another S-free set
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Our setting

An important case: quadratic set

S = {s ∈ Rp : sTAs + bTs + c ≤ 0}.

with s̄ ̸∈ S .

Important:

• This does not mean it only applies to problems with a single quadratic.

s̄ ̸∈
m⋂
i=1

{s ∈ Rp : sTAi s + bT
i s + ci ≤ 0}

implies there is some quadratic violated.

• An LP relaxation of a QCQP carries info of all constraints, thus an

intersection cut would do so too.
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Related work

Intersection cuts in non-convex settings

• Fischetti, Ljubić, Monaci and Sinnl (2016)→ bilevel-free sets

• Fischetti and Monaci (2019) → bilinear-free sets

• Serrano (2019) → concave underestimators of factorable functs

• Bienstock, Chen and M. (2019, 2020) → maximal outer-product-free

sets

Beyond intersection cuts

• Kılınç-Karzan (2015) → minimal inequalities for disjunctive conic sets

• Burer and Kılınç-Karzan (2017) → second-order cone intersected with

quadratic

• Santana and Dey (2018) → convex hull of quadratic constraint ∩
polytope is SOC representable
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What we’ll talk about today

The agenda for today: to show the basic step in the construction of

maximal quadratic-free sets and (very) recent extensions

This will cover work with Antonia Chmiela1, Joseph Paat2 and Felipe Serrano3.

1Zuse Institute Berlin, Germany
2University of British Columbia, Canada
3Cardinal Operations, Germany
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Homogeneous quadratics



A canonical form for homogeneous quadratics

In this talk, we consider a set of the form

S = {s ∈ Rp : sTAs ≤ 0}

Without loss of generality (via a diagonalization), it suffices to consider

Q = {(x , y) ∈ Rn+m : ∥x∥ − ∥y∥ ≤ 0}

n = 2, m = 1 n = 1, m = 2
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Constructing Q-free sets

Since λTx ≤ ∥x∥ when ∥λ∥ = 1, we can show that

Cλ = {(x , y) ∈ Rn+m : ∥y∥ ≤ λTx} is Q-free.

Theorem (M. and Serrano ’21)

Cλ is maximal Q-free.
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Maximality proof

Proof sketch.
We use an outer-description of Cλ:

∥y∥ ≤ λTx ⇔ βTy ≤ λTx , ∀β, ∥β∥ = 1

The point (λ, β) is in Q ∩ Cλ (because ∥λ∥ = ∥β∥) and “exposes” the

inequality −λTx + βTy ≤ 0.
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Having exposing points suffices for maximality
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Theorem (M. and Serrano ’21)

Let S be a closed set and C = {x ∈ Rn : αT x ≤ β, ∀(α, β) ∈ Γ} an S-free set.

Suppose for every αT x ≤ β there is an x̄ ∈ S ∩ C such that

αTx̄ = β ∧ α̃Tx̄ < β̃ (α̃, β̃) ̸= (α, β)︸ ︷︷ ︸
x̄ exposes (α, β)

Then, C is maximal S-free.

This generalizes the sufficient part of the criterion of Dey and Wolsey (2010)

for lattice-free sets.
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Where do we go from Cλ?

Option 1: Going from Cλ to the non-homogeneous case

If we have a non-homogeneous quadratic

S = {s ∈ Rp : sTAs + bTs + c ≤ 0}.

we can tranform it via homogenization and diagonalization onto

{(x , y) ∈ Rn+m : ∥x∥ ≤ ∥y∥, aTx + dTy = 1}

Thus Cλ ∩ {(x , y) : aTx + dTy = 1} is S-free
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Where do we go from Cλ?

However, maximality is not preserved when taking slices

In M. and Serrano (2021) and Chmiela, M. and Serrano (2022) we show

how to grow the slice of Cλ onto a maximal S-free set:
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Where do we go from Cλ?

Option 2: Is Cλ all there is for Q?

NO. The following “twisted wedge” C is also maximal:
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All maximal Q-free sets in 3D

We can prove that each twisted wedge C can be obtained from a Cλ through a

linear, invertible transformation that

leaves Q invariant!
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Recap before we dive into more technical stuff

So far, we have seen that

Cλ = {(x , y) ∈ Rn+m : ∥y∥ ≤ λTx}

is a simple maximal Q-free set and in a sense, is all there is in 3 dimensions.

In particular, this implies that in 3 dimensions all maximal Q-free sets admit

descriptions where every inequality has exposing points.

Let’s see what we can do in 4 or more dimensions.

Why do care? More Q-free sets mean more alternatives for cutting planes.
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Beyond Cλ



Rewriting Q

Recall that

Q = {(x , y) ∈ Rn+m : ∥x∥ ≤ ∥y∥}

Since ∥y∥ = max{βTy : ∥β∥ = 1}, we have

Q =
⋃

∥β∥=1

{(x , y) ∈ Rn+m : ∥x∥ ≤ βTy}

→ Q is the union of convex sets.

Separation of convex sets ⇒ any Q-free set can be separated from each Sβ :

Sβ := {(x , y) ∈ Rn+m : ∥x∥ ≤ βTy}
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A necessary condition for maximality

Sβ := {(x , y) ∈ Rn+m : ∥x∥ ≤ βTy}

Note that for any unit vector Γ(β)

Γ(β)Tx ≤ βTy

is a valid inequality for Sβ . This motivates the definition of

CΓ = {(x , y) ∈ Rn+m : βTy ≤ Γ(β)Tx ∀ β ∈ Dm} which is always Q-free.

We can push this idea to show

Theorem (M., Paat and Serrano ’23)

Let C be a full-dimensional maximal Q-free set. There exists a function

Γ : Dm → Dn such that

C = CΓ.
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Examples

CΓ = {(x , y) ∈ Rn+m : βTy ≤ Γ(β)Tx ∀ β ∈ Dm}

In the following 3D examples y only has one dimension → β = ±1.

Thus, Γ(β) is part of the slopes of the two hyperplanes

Γ(1) = Γ(−1) Γ(1) ̸= Γ(−1)
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A maximality condition

Recall that CΓ is always Q-free. It turns out that, if Γ satisfies that

∥Γ(β)− Γ(β′)∥ < ∥β − β′∥ β ̸= β′︸ ︷︷ ︸
“strict non-expansiveness”

the set CΓ is maximal Q-free.

Proof sketch.
For each β, consider the point (x , y) = (Γ(β), β). Under the above condition

• (x , y) ∈ Q ∩ CΓ

• The only inequality of CΓ which is tight at (x , y) is βTy ≤ Γ(β)Tx

In other words, every inequality has an exposing point
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Γ strictly non-expansive

The simplest case of Γ strictly non-expansive is a constant function, which

yields Cλ

But we are not restricted to constant functions!
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Γ strictly non-expansive

For example, for n = m = 2 we can construct a Γ function (from a circle to a

circle) using polar coordinates:

3 4 5 6

0.5

1.0

1.5

2.0

A 3D slice of the resulting 4D maximal Q-free set is:
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A conjecture

We believe that the “strictly non-expansive” condition can be relaxed.

Conjecture

Consider the Q-free set

CΓ = {(x , y) ∈ Rn+m : βTy ≤ Γ(β)Tx ∀ β ∈ Dm}.

with Γ : Dm → Dn. If Γ is non-expansive, then CΓ is maximal Q-free.

So far, we have the following partial result

Theorem (M., Paat and Serrano ’23)
Consider the Q-free set

CΓ = {(x , y) ∈ Rn+m : βTy ≤ Γ(β)Tx ∀ β ∈ Dm}.

with Γ : Dm → Dn. If Γ is non-expansive and CΓ is a polyhedron then CΓ is

maximal Q-free.
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A polyehdral example

For n = m we can consider a Γ(β) = |β|. This function is non-expansive and it

can be shown that it yields a polyhedral CΓ. In polar coordinates for n = m = 2:

3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

A 3D slice of the case n = m = 2 is:

Here there’s no exposing point!

22 / 26



A polyehdral example

For n = m we can consider a Γ(β) = |β|. This function is non-expansive and it

can be shown that it yields a polyhedral CΓ. In polar coordinates for n = m = 2:

3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

A 3D slice of the case n = m = 2 is:

Here there’s no exposing point!
22 / 26



Maximality proof sketch

The idea of the proof is, for each facet, to construct an exposing sequence

The sequence is such that every separating hyperplane sequence converges to

the desired facet.
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Why is this last example polyhedral?

The fact that Γ(β) = |β| yields a polyhedral Q-free set may not be obvious. As

seen before, in polar coordinates, the Γ function is

3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

It can be shown that each break-point is a facet. Moreover, two consecutive

breaking points are always isometries:

∥Γ(β)− Γ(β′)∥ = ∥β − β′∥

and inequalities that lie “between” isometries are redundant.

In M., Paat and Serrano (2023) we have a full characterization of when CΓ is

a polyhedron.
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Some last fun observations

What if we consider the following family of Γ functions?

(in polar coordinates)

They all produce maximal Q-free sets, and only the last one is polyhedral!

Maximality of the non-polyhedral sets cannot be shown with the results of this talk
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Summary



Summary and further comments

• We have shown how to construct Q-free via the construction of a (fairly

general) function Γ

• When the function is non-expansive, we can provide some maximality

guarantees of the resulting set

• Our results are accompanied with a generic maximality criterion

• We also have a characterization of when the set CΓ is polyhedral

• Computationally, we have only tested the case of Γ constant and its

extension to the non-homogeneous setting

Thank you!
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