Maximal quadratic-free sets: basic constructions and steps towards a full characterization

Gonzalo Muñoz - Universidad de O'Higgins, Chile February 28, 2023 @ ICERM

Intersection cuts in a nutshell

Feasible set, S (blue); \bar{s} vertex of LP relaxation (black)

S-free set (green) (Dey and Wolsey 2010)

Intersection cut (red) (Balas 1971)

Larger *S*-free set (purple)

Deeper intersection cut (black)

C is maximal S-free if it is not contained in another S-free set

An important case: quadratic set

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}}As + b^{\mathsf{T}}s + c \leq 0\}.$$

with $\overline{s} \notin S$.

An important case: quadratic set

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}}As + b^{\mathsf{T}}s + c \leq 0\}.$$

with $\overline{s} \notin S$.

Important:

• This does not mean it only applies to problems with a single quadratic.

$$ar{s}
ot\in igcap_{i=1}^m \{s \in \mathbb{R}^p \, : \, s^{\mathsf{T}} A_i s + b_i^{\mathsf{T}} s + c_i \leq 0\}$$

implies there is *some* quadratic violated.

An important case: quadratic set

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}}As + b^{\mathsf{T}}s + c \leq 0\}.$$

with $\overline{s} \notin S$.

Important:

• This does not mean it only applies to problems with a single quadratic.

$$ar{s}
ot \in igcap_{i=1}^m \{s \in \mathbb{R}^p \, : \, s^{\mathsf{T}} A_i s + b_i^{\mathsf{T}} s + c_i \leq 0\}$$

implies there is *some* quadratic violated.

• An LP relaxation of a QCQP carries info of all constraints, thus an intersection cut would do so too.

Related work

Intersection cuts in non-convex settings

- Fischetti, Ljubić, Monaci and Sinnl (2016) \rightarrow bilevel-free sets
- Fischetti and Monaci (2019) \rightarrow bilinear-free sets
- Serrano (2019) \rightarrow concave underestimators of factorable functs
- Bienstock, Chen and M. (2019, 2020) \rightarrow maximal outer-product-free sets

Beyond intersection cuts

- Kılınç-Karzan (2015) \rightarrow minimal inequalities for disjunctive conic sets
- Burer and Kılınç-Karzan (2017) \rightarrow second-order cone intersected with quadratic
- Santana and Dey (2018) → convex hull of quadratic constraint ∩ polytope is SOC representable

The agenda for today: to show the basic step in the construction of **maximal quadratic-free sets** and (very) recent extensions

This will cover work with Antonia Chmiela¹, Joseph Paat² and Felipe Serrano³.

¹Zuse Institute Berlin, Germany ²University of British Columbia, Canada ³Cardinal Operations, Germany

Homogeneous quadratics

A canonical form for homogeneous quadratics

In this talk, we consider a set of the form

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}} A s \leq 0\}$$

A canonical form for homogeneous quadratics

In this talk, we consider a set of the form

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}} A s \leq 0\}$$

Without loss of generality (via a diagonalization), it suffices to consider

$$Q = \{(x, y) \in \mathbb{R}^{n+m} : ||x|| - ||y|| \le 0\}$$

A canonical form for homogeneous quadratics

In this talk, we consider a set of the form

$$S = \{s \in \mathbb{R}^p : s^\mathsf{T} A s \leq 0\}$$

Without loss of generality (via a diagonalization), it suffices to consider

 $Q = \{(x, y) \in \mathbb{R}^{n+m} : ||x|| - ||y|| \le 0\}$

Since $\lambda^{\mathsf{T}} x \leq ||x||$ when $||\lambda|| = 1$, we can show that

$$C_{\lambda} = \{(x, y) \in \mathbb{R}^{n+m} : \|y\| \leq \lambda^{\mathsf{T}} x\}$$
 is *Q*-free.

Since $\lambda^{\mathsf{T}} x \leq ||x||$ when $||\lambda|| = 1$, we can show that

$$C_{\lambda} = \{(x, y) \in \mathbb{R}^{n+m} : ||y|| \le \lambda^{\mathsf{T}} x\}$$
 is *Q*-free.

Theorem (M. and Serrano '21)

 C_{λ} is maximal Q-free.

Maximality proof

Maximality proof

Proof sketch. We use an outer-description of C_{λ} :

 $\|y\| \leq \lambda^{\mathsf{T}} x \Leftrightarrow \beta^{\mathsf{T}} y \leq \lambda^{\mathsf{T}} x, \ \forall \beta, \|\beta\| = 1$

Maximality proof

Proof sketch. We use an outer-description of C_{λ} :

 $\|y\| \leq \lambda^{\mathsf{T}} x \Leftrightarrow \beta^{\mathsf{T}} y \leq \lambda^{\mathsf{T}} x, \ \forall \beta, \|\beta\| = 1$

The point (λ, β) is in $Q \cap C_{\lambda}$ (because $||\lambda|| = ||\beta||$) and "exposes" the inequality $-\lambda^{\mathsf{T}}x + \beta^{\mathsf{T}}y \leq 0$.

Having exposing points suffices for maximality

Having exposing points suffices for maximality

Theorem (M. and Serrano '21)

Let S be a closed set and $C = \{x \in \mathbb{R}^n : \alpha^T x \leq \beta, \forall (\alpha, \beta) \in \Gamma\}$ an S-free set. Suppose for every $\alpha^T x \leq \beta$ there is an $\overline{x} \in S \cap C$ such that

$$\underbrace{\alpha^{\mathsf{T}}\bar{x} = \beta \quad \land \quad \tilde{\alpha}^{\mathsf{T}}\bar{x} < \tilde{\beta} \quad (\tilde{\alpha}, \tilde{\beta}) \neq (\alpha, \beta)}_{\bar{x} \text{ exposes } (\alpha, \beta)}$$

Then, C is maximal S-free.

This generalizes the sufficient part of the criterion of Dey and Wolsey (2010) for lattice-free sets.

Option 1: Going from C_{λ} **to the non-homogeneous case**

Option 1: Going from C_{λ} to the non-homogeneous case

If we have a non-homogeneous quadratic

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}}As + b^{\mathsf{T}}s + c \leq 0\}.$$

we can tranform it via homogenization and diagonalization onto

$$\{(x, y) \in \mathbb{R}^{n+m} : ||x|| \le ||y||, a^{\mathsf{T}}x + d^{\mathsf{T}}y = 1\}$$

Option 1: Going from C_{λ} to the non-homogeneous case

If we have a non-homogeneous quadratic

$$S = \{s \in \mathbb{R}^p : s^{\mathsf{T}}As + b^{\mathsf{T}}s + c \leq 0\}.$$

we can tranform it via homogenization and diagonalization onto

$$\{(x, y) \in \mathbb{R}^{n+m} : ||x|| \le ||y||, a^{\mathsf{T}}x + d^{\mathsf{T}}y = 1\}$$

Thus $C_{\lambda} \cap \{(x, y) : a^{\mathsf{T}}x + d^{\mathsf{T}}y = 1\}$ is S-free

However, maximality is not preserved when taking slices

However, maximality is not preserved when taking slices

In M. and Serrano (2021) and Chmiela, M. and Serrano (2022) we show how to grow the slice of C_{λ} onto a maximal *S*-free set:

Option 2: Is C_{λ} all there is for Q?

Option 2: Is C_{λ} all there is for Q?

NO. The following "twisted wedge" *C* is also maximal:

We can prove that each twisted wedge C can be obtained from a C_{λ} through a linear, invertible transformation that

leaves Q invariant!

So far, we have seen that

$$C_{\lambda} = \{ (x, y) \in \mathbb{R}^{n+m} : ||y|| \leq \lambda^{\mathsf{T}} x \}$$

is a simple maximal Q-free set and in a sense, is all there is in 3 dimensions.

So far, we have seen that

$$C_{\lambda} = \{(x, y) \in \mathbb{R}^{n+m} : \|y\| \leq \lambda^{\mathsf{T}} x\}$$

is a simple maximal Q-free set and in a sense, is all there is in 3 dimensions.

In particular, this implies that in 3 dimensions all maximal Q-free sets admit descriptions where every inequality has exposing points.

Let's see what we can do in 4 or more dimensions.

So far, we have seen that

$$C_{\lambda} = \{(x, y) \in \mathbb{R}^{n+m} : \|y\| \leq \lambda^{\mathsf{T}} x\}$$

is a simple maximal Q-free set and in a sense, is all there is in 3 dimensions.

In particular, this implies that in 3 dimensions all maximal Q-free sets admit descriptions where every inequality has exposing points.

Let's see what we can do in 4 or more dimensions.

Why do care? More Q-free sets mean more alternatives for cutting planes.

Beyond C_{λ}

Recall that

$$Q = \{(x, y) \in \mathbb{R}^{n+m} : ||x|| \le ||y||\}$$

Since $\|y\| = \max\{\beta^{\mathsf{T}}y \ : \ \|\beta\| = 1\}$, we have

$$Q = \bigcup_{\|\beta\|=1} \{(x,y) \in \mathbb{R}^{n+m} : \|x\| \le \beta^{\mathsf{T}} y\}$$

Recall that

$$Q = \{(x, y) \in \mathbb{R}^{n+m} : ||x|| \le ||y||\}$$

Since $||y|| = \max\{\beta^{\mathsf{T}}y : ||\beta|| = 1\}$, we have

$$Q = \bigcup_{\|\beta\|=1} \{ (x, y) \in \mathbb{R}^{n+m} : \|x\| \le \beta^{\mathsf{T}} y \}$$

 $\rightarrow Q$ is the union of convex sets.

Separation of convex sets \Rightarrow any *Q*-free set can be separated from each S_{β} :

$$\mathcal{S}_eta := \{(x,y) \in \mathbb{R}^{n+m} \, : \, \|x\| \leq eta^\mathsf{T} y\}$$

A necessary condition for maximality

$$S_{\beta} := \{(x, y) \in \mathbb{R}^{n+m} : ||x|| \leq \beta^{\mathsf{T}}y\}$$

$$\mathcal{S}_eta := \{(x,y) \in \mathbb{R}^{n+m} \, : \, \|x\| \leq eta^\mathsf{T} y\}$$

Note that for any unit vector $\Gamma(\beta)$

 $\Gamma(\beta)^{\mathsf{T}} x \leq \beta^{\mathsf{T}} y$

is a valid inequality for S_{β} . This motivates the definition of

 $C_{\Gamma} = \{(x, y) \in \mathbb{R}^{n+m} : \beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x \ \forall \ \beta \in D^{m}\} \text{ which is always } Q\text{-free.}$

$$\mathcal{S}_eta := \{(x,y) \in \mathbb{R}^{n+m} \, : \, \|x\| \leq eta^\mathsf{T} y\}$$

Note that for any unit vector $\Gamma(\beta)$

 $\Gamma(\beta)^{\mathsf{T}} x \leq \beta^{\mathsf{T}} y$

is a valid inequality for S_{β} . This motivates the definition of

 $C_{\Gamma} = \{ (x, y) \in \mathbb{R}^{n+m} : \beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x \ \forall \ \beta \in D^{m} \} \text{ which is always } Q\text{-free.}$

We can push this idea to show

Theorem (M., Paat and Serrano '23)

Let C be a full-dimensional maximal Q-free set. There exists a function $\Gamma:D^m\to D^n$ such that

 $C = C_{\Gamma}$.

$$C_{\Gamma} = \{ (x, y) \in \mathbb{R}^{n+m} : \beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x \ \forall \ \beta \in D^m \}$$

In the following 3D examples y only has one dimension $\rightarrow \beta = \pm 1$. Thus, $\Gamma(\beta)$ is part of the slopes of the two hyperplanes

Recall that C_{Γ} is always Q-free. It turns out that, if Γ satisfies that

$$||\Gamma(\beta) - \Gamma(\beta')|| < ||\beta - \beta'|| \quad \beta \neq \beta'$$

"strict non-expansiveness"

the set C_{Γ} is maximal *Q*-free.

Recall that C_{Γ} is always Q-free. It turns out that, if Γ satisfies that

"strict non-expansiveness"

the set C_{Γ} is maximal *Q*-free.

Proof sketch.

For each β , consider the point $(x, y) = (\Gamma(\beta), \beta)$. Under the above condition

- $(x, y) \in Q \cap C_{\Gamma}$
- The only inequality of C_{Γ} which is tight at (x, y) is $\beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x$

In other words, every inequality has an exposing point

The simplest case of Γ strictly non-expansive is a constant function, which yields C_λ

The simplest case of Γ strictly non-expansive is a constant function, which yields C_λ

But we are not restricted to constant functions!

Γ strictly non-expansive

For example, for n = m = 2 we can construct a Γ function (from a circle to a circle) using polar coordinates:

Γ strictly non-expansive

For example, for n = m = 2 we can construct a Γ function (from a circle to a circle) using polar coordinates:

A 3D slice of the resulting 4D maximal Q-free set is:

A conjecture

We believe that the "strictly non-expansive" condition can be relaxed.

Conjecture

Consider the Q-free set

$$C_{\Gamma} = \{ (x, y) \in \mathbb{R}^{n+m} : \beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x \ \forall \ \beta \in D^{m} \}.$$

with $\Gamma: D^m \to D^n$. If Γ is non-expansive, then C_{Γ} is maximal Q-free.

A conjecture

We believe that the "strictly non-expansive" condition can be relaxed.

Conjecture

Consider the Q-free set

$$C_{\Gamma} = \{ (x, y) \in \mathbb{R}^{n+m} : \beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x \ \forall \ \beta \in D^{m} \}.$$

with $\Gamma: D^m \to D^n$. If Γ is non-expansive, then C_{Γ} is maximal Q-free.

So far, we have the following partial result

Theorem (M., Paat and Serrano '23) Consider the Q-free set $C_{\Gamma} = \{(x, y) \in \mathbb{R}^{n+m} : \beta^{\mathsf{T}} y \leq \Gamma(\beta)^{\mathsf{T}} x \ \forall \beta \in D^{m}\}.$ with $\Gamma : D^{m} \to D^{n}$. If Γ is non-expansive and C_{Γ} is a polyhedron then C_{Γ} is maximal Q-free.

A polyehdral example

For n = m we can consider a $\Gamma(\beta) = |\beta|$. This function is non-expansive and it can be shown that it yields a polyhedral C_{Γ} . In polar coordinates for n = m = 2:

A polyehdral example

For n = m we can consider a $\Gamma(\beta) = |\beta|$. This function is non-expansive and it can be shown that it yields a polyhedral C_{Γ} . In polar coordinates for n = m = 2:

A 3D slice of the case n = m = 2 is:

Here there's no exposing point!

Maximality proof sketch

The idea of the proof is, for each facet, to construct an exposing sequence

The idea of the proof is, for each facet, to construct an exposing sequence

The sequence is such that every separating hyperplane sequence converges to the desired facet.

Why is this last example polyhedral?

The fact that $\Gamma(\beta) = |\beta|$ yields a polyhedral *Q*-free set may not be obvious. As seen before, in polar coordinates, the Γ function is

Why is this last example polyhedral?

The fact that $\Gamma(\beta) = |\beta|$ yields a polyhedral *Q*-free set may not be obvious. As seen before, in polar coordinates, the Γ function is

It can be shown that each break-point is a facet. Moreover, two consecutive breaking points are always isometries:

$$\|\Gamma(\beta) - \Gamma(\beta')\| = \|\beta - \beta'\|$$

and inequalities that lie "between" isometries are redundant.

Why is this last example polyhedral?

The fact that $\Gamma(\beta) = |\beta|$ yields a polyhedral *Q*-free set may not be obvious. As seen before, in polar coordinates, the Γ function is

It can be shown that each break-point is a facet. Moreover, two consecutive breaking points are always isometries:

$$\|\Gamma(\beta) - \Gamma(\beta')\| = \|\beta - \beta'\|$$

and inequalities that lie "between" isometries are redundant.

In M., Paat and Serrano (2023) we have a full characterization of when C_{Γ} is a polyhedron.

What if we consider the following family of Γ functions? (in polar coordinates)

What if we consider the following family of Γ functions? (in polar coordinates)

They all produce maximal Q-free sets, and only the last one is polyhedral!

What if we consider the following family of Γ functions? (in polar coordinates)

They all produce maximal *Q*-free sets, and only the last one is polyhedral! Maximality of the non-polyhedral sets cannot be shown with the results of this talk

Summary

- We have shown how to construct Q-free via the construction of a (fairly general) function Γ
- When the function is non-expansive, we can provide some maximality guarantees of the resulting set

- We have shown how to construct *Q*-free via the construction of a (fairly general) function Γ
- When the function is non-expansive, we can provide some maximality guarantees of the resulting set
- Our results are accompanied with a generic maximality criterion
- We also have a characterization of when the set C_{Γ} is polyhedral

- We have shown how to construct *Q*-free via the construction of a (fairly general) function Γ
- When the function is non-expansive, we can provide some maximality guarantees of the resulting set
- Our results are accompanied with a generic maximality criterion
- We also have a characterization of when the set C_{Γ} is polyhedral
- Computationally, we have only tested the case of Γ constant and its extension to the non-homogeneous setting

- We have shown how to construct *Q*-free via the construction of a (fairly general) function Γ
- When the function is non-expansive, we can provide some maximality guarantees of the resulting set
- Our results are accompanied with a generic maximality criterion
- We also have a characterization of when the set C_{Γ} is polyhedral
- Computationally, we have only tested the case of Γ constant and its extension to the non-homogeneous setting

Thank you!