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Supervised Learning

Problem Formulation
Learn an unknown function f : X → Y from pointwise evaluations

(x1, y1), . . . , (xN , yN)

Image Recognition - MNIST data set
X is the set of all images Y is the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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Convolutional Neural Networks

Basic Structure
Front end: Learns a representation of input through many
convolutional layers

Each convolutional layer consists of a linear transformation and
a pointwise nonlinearity, e.g. ReLU(x) = max{x , 0}.

Back end: Uses this representation to classify the input
The convolutional layers and the linear classifier are jointly
optimized using back propagation.

.

Drawbacks and Challenges
Interpretability?
Data Hungry
Why are many layers better than one gigantic layer?
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The (Euclidean) Scattering Transform - S. Mallat (2012)

Overview:
Model of Convolutional Neural Networks.
Predefined (wavelet) filters.

Advantages:
Provable stability and invariance properties.
Near state of the art numerical results in certain
situations.
Needs less training data.
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Characterizing a function

Collect measurements:
Given a signal f (x), collect measurements that encode information.

The Fourier Series: cn(f ) =
∫ 1

0 f (x)e−2πinxdx ,
The Wavelet Transform: Wj f (x) = (ψj ⋆ f )(x),
ψj(x) = 1

2j ψ
(

x
2j

)
for some mean zero “mother wavelet” ψ.
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The Scattering Transform

The Scattering Transform:
Multilayered cascade of nonlinear measurements.
Each “layer” uses a wavelet transform WJ and a nonlinearity,
Uj f (x) = σ((ψj ⋆ f )(x)), j ≤ J , σ(x) = M(x) = |x |.
Uj1,j2f (x) = Uj2Uj1f (x)
Uj1,...,jm f (x) = Ujm . . .Uj1f (x)
Sj1,...jm f (x) = ϕJ ⋆ Uj1,...,jm f (x), ϕJ(x) = 1

2J ϕ
(

x
2J

)
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Scattering vs. CNNs for Classification

How they work:
Iterative cascade of convolutions and nonlinearities.
Scattering uses predesigned wavelet filters. CNNs find their
filters by solving a (highly nonconvex) optimization problem.
Scattering uses M(x) = |x | rather than more common choices
such as ReLu.

Situations where scattering is appropriate:
Limited amounts of (labeled, trustworthy) training data.
Want to account for the underlying physics.
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Why a Nonlinear Structure?

A good representation should be:
Stable on L2

Invariant to translations (or rotations etc.)
Sufficiently descriptive

The limits of linearity:
A linear network can be invariant or descriptive, but not both.

f̂ (0) =
∫
Rd f (x)dx is invariant, but throws away all

high-frequency information.
Filters which focus in on high-frequency information are
unstable to translations.

The wavelet transform captures high-frequency information, and
the modulus operator pushes this information down to lower
frequencies.
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Theoretical Properties

Theorem (Mallat 2012)
The scattering transform has the following properties

Nonexpansiveness: i.e..,

∥Sf1 − Sf2∥ ≤ ∥f1 − f2∥, ∀f1, f2 ∈ L2

Invariance to translations
Stability to small deformations
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Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?
Scattering Transform and Sparse Linear Classifiers for Art
Authentication (Leonarduzzi, Liu, and Wang)
Dataset of 64 real Van Gogh’s and 15 fakes.
Scattering achieves state-of-the-art (96%) accuracy.
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Scattering for Quantum Chemistry
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Same Power Spectrum, Different Scattering
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Coefficients of Common Stochastic Processes

Informal Theorem: (Bruna, Mallat, Bacry, Muzy)
Bruna et al. compute (in asymptotic limits) the scattering
coefficients of common stochastic processes

Poisson Process
Fractional Brownian motion
α-stable

First-order scattering coefficients can distinguish Poisson vs
fractional Brownian motion or α-stable
Second-order coefficients can distinguish fBM vs stable

Central Limit Theorems
Works by G.R. Liu, Y.C Sheu, and H.T. Wu prove central
limit theorem type results for higher-order moments
Use more general activation functions
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Synthesis of random textures
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Geometric Deep Learning
Goal:

Extend Deep Learning methods to data with non-Euclidean
Structure such as graphs and manifolds

Geometric Scattering:
Key challenge is defining wavelets
Probabilistic Methods: Heat semi-group on a manifold or
random walk on a graph.
Spectral Methods: Eigenfunctions / eigenvectors of an
appropriate Laplacian.
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Notation

G = (V ,E ) is a graph, V = {v1, . . . , vN}, E ⊆ V × V
Adjacency matrix A

A(j , k) =
{

1 if (vj , vk) ∈ E
0 otherwise

Degree vector and matrix

D = diag(d), d(j) = degree of vertex j

Lazy Random Walk Matrix P = I + AD−1

Lazy Symmetric Diffusion Matrix T = I + D−1/2AD−1/2

Normalized Self-Loop Adjacency Matrix (GCN)

Â = (D + I)−1/2(A + I)(D + I)−1/2
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Semi-Supervised Node Classification

Setup
- Entire Graph Structure is

known (all Vertices and
Edges)

- Node feature matrix
X = X 0 = (x1, . . . , xC ) is
known for all nodes

- Labels are known for some
nodes (≤5%)

- Goal: Predict the labels of
the remaining nodes. Figure: Visualizations of Common

Data sets
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Graph Convolutional Network (Kipf and Welling)
Layer-Wise Update Rule

Sequentially transform node features via layerwise updates

X t+1 = σ(ÂX tΘ)

Θ is a trainable weight matrix.
The matrix Â acts a local-averaging operator.
Promotes smoothness, i.e. similarity amongst neighbors
Θ is learned but Â is designed.

Low-pass filter
Multiplying by Â leaves bottom eigenvector unchanged.
All other frequencies are depressed.
Repeated applications increasingly depress high-frequencies.
“Deep” Graph Neural Nets typically use 2 layers.
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Geometric Wavelets

Detects changes rather than local-averages
How is my four-step neighborhood different than my two-step
neighborhood?

Band-pass filter rather than low-pass
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Spatial Geometric Wavelets

Definition
Let X be a graph or a manifold and let {Pt}t≥0 be the
heat-semigroup of random walk diffusion.

W(2)
J f (x) = {Ψ(2)

j f (x),Φ(2)
J f (x)}0≤j≤J ,

where
Ψ(2)

j = P2J+1 − P2J , Φ(2)
J = P2J+1 ,

Theorem: P., Gao, Wolf, Hirn
W(2)

J is a non-expansive frame on a suitable weighted space, i.e.,

c∥f ∥2 ≤
∑

j
∥Ψ(2)

j f ∥2 + ∥Φ(2)
J f ∥2 ≤ ∥f ∥2.
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Spectral Geometric Wavelets

Setup - Spectral Representation of the Heat Semigroup
Let ∆ be the Laplace-Beltrami operator on a manifold M with
eigenvectors φk , ∆φk = λkφk .

Pt f (x) =
∞∑

k=0
g(λk)t⟨f , φk⟩φk , g(λ) = e−λ

Spectral Wavelets

W(2)
J f (x) = {Ψ(2)

j f (x),Φ(2)
J f (x)}0≤j≤J ,

where Φ(1)
J = P2J and

Ψ(1)
j = (P2j+1 − P2j )1/2 =

∞∑
k=0

[g(λk)2j+1 − g(λk)2j ]1/2⟨f , φk⟩φk .
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Spectral Wavelet’s Continued

Theorem: P., Gao, Wolf, Hirn
W(1)

J is an isometry, i.e.,∑
j

∥Ψ(1)
j f ∥2 + ∥Φ(1)

J f ∥2 = ∥f ∥2.
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Geometric Scattering

Theorem: (P., Gao, Wolf, Hirn)
The graph and manifold scattering transforms constructed with
these wavelets have similar theoretical guarantees to the Euclidean
scattering transform:

Non-expansiveness (Lipschitz continuity on L2)
Invariance to manifold isometries of graph permutations
Stability to perturbations which are close to being isometries /
permutations
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Trainable Graph Scattering Transform

Scattering Channels
Use many paths of the form p = (j1, . . . , jm):

Upx := Ψjmσ(Ψjm−1σ(. . . σ(Ψj2σ(Ψj1x)) . . . ).

Layer-wise update rule:

X ℓ
sct := σ

(
UpX ℓ−1Θ + B

)
.

Hybrid Network
Min, Wenkel, and Wolf (2021) use both GCN chanels and
Scattering channels of each layer.
GCN channels focus on low-frequency information.
Scattering Channels retain high-frequency information.
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Overcoming oversmoothing

Theorem: (Wenkel, Min, P., Wolf, and Hirn) (forthcoming)
The Hybrid GCN - Scattering network has strictly greater
discriminatory power than just GCN

Introduce a geometric characterization of situations GCN is
guaranteed to fail
Produce a substantial sub-class where scattering will succeed
with overwhelming probability.

Repeated applications of a low-pass filter cause a signal to
converge to its projection onto the bottom eigenvector which is
either constant or a function of the degree vector.
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Graph Scattering Transforms

Untrained Variations
Zou and Lerman (2020) - Original - spectral wavelets
Gama, Bruna, and Riberio (2018)- Diffusion wavelets based
on T , invariance and stability analysis
Gao, Wolf, and Hirn (2019)- Diffusion wavelets based on P,
statistical moments, graph classification (no theoretical
guarantees)
P. Gao, Wolf, and Hirn (2019)- Invariance and Stability
analysis for general diffusion wavelets

Trained Networks
Min, Wenkel, and Wolf (2020,2020)- Hybrid network,
Attention Mechanism
Tong et al. (2020) - Learns scales based on data
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Graph Generation

Problem:
Given a dataset of graphs, can you generate a new graph that
looks like it was a member of the original dataset
Motivating Application - Drug Development

28 Perlmutter(UCLA) Geometric Scattering And Applications



Encoding robust representation for graph generation
(Zou and Lerman 2019)

Encoder E = Graph Scattering Transform
Decoder D = Fully Connected Network
D ◦ E = Id
Generate new graphs by adding noise in latent space

Figure: Scattering Encoder-Decoder Network
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Molecular Graph Generation via Geometric Scattering
(GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network
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GRASSY Explained

First compute scattering moments to produce a preliminary
latent representation.
Then train a regularized autoencoder on top of the scattering
coefficients to produce a compressed latent representation.
Autoencoder is penalized by a regression network that that
aims to predict chemical properties of the molecules.

Quantitative Estimate of Drug-likeliness, Molecular Weight,
Number of Rings, etc

Then train a generator / descriminator to generate realistic
adjacency matrices.
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GRASSY - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network
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Regularized Autoencoder
Loss Functions

Reconstruction Loss: Want F ◦ E ≈ Id

Lr = ∥S − F (E (S))∥

Properties Loss: Want to be able to accurately predict
Chemical Properties from E (S)

Lp = ∥p − R(E (S))∥

Figure: Regularized AutoEncoder
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Molecule Generation
Generative Adversarial Network

Generator proposes new graphs
Discriminator decides if they are “real” or “fake”
Trained in an alternating fashion “against” each other

Figure: Generator and Discriminator
34 Perlmutter(UCLA) Geometric Scattering And Applications



Molecule Generation (Cont’d)

Notation
zi = E (S(Gi))= Latent representation of Gi = (Vi ,Ei ,Wi)
zi→j(α) = (1 − α)zi + αzj

Ŵi ,j(α) = M(zi→j(α)) = Matrix generated from zi→j

Losses
Matrix Loss: Lm = ∥Wi − Ŵi∥ + ∥Ŵj − Wj∥
Adversarial Loss: La = −

∫
log(D(Ŵi ,j(α))dα

Smoothness Loss: Ls ≈
∫

∥ ∂
∂α

F (zi ,j(α))∥2dα

Graphs of Different Sizes
Pad with zeros
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Results
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Graph Trajectories

Figure: Trajectories
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Latent Space Trajectories

Figure: Latent Representation of molecules from ZINC dataset via the
PHATE dimension reduction algorithm
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Conclusion

The Euclidean scattering transform is a model of CNNs.
Provable Stability / Invariance Guarantees
Designed filters - useful for low-data environments
Can be used to synthesize textures

The graph scattering transform is model of GNNs
Similar theoretical guarantees to the Euclidean scattering
transform

The graph scattering transform can be used to synthesize
molecules as part of the GRASSY framework

Regularized Autoencoder produces compressed representation
which respects chemical properties
Generator and Discriminator produce new, realistic molecules
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THANK YOU!
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