Geometric Scattering And Applications

Michael Perlmutter

Department of Mathematics University of California, Los Angeles

• The Euclidean Scattering Transform

• A wavelet based model of CNNs

Geometric Scattering

- Wavelets on Graphs and Manifolds
- Scattering for Graph Synthesis
 - Generate New Molecules

Supervised Learning

Problem Formulation

Learn an unknown function $f : \mathcal{X} \to \mathcal{Y}$ from pointwise evaluations

 $(x_1, y_1), \ldots, (x_N, y_N)$

Image Recognition - MNIST data set

 \mathcal{X} is the set of all images \mathcal{Y} is the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Geometric Scattering And Applications

Convolutional Neural Networks

Basic Structure

- Front end: Learns a representation of input through many convolutional layers
 - Each convolutional layer consists of a linear transformation and a pointwise nonlinearity, e.g. ReLU(x) = max{x,0}.
- Back end: Uses this representation to classify the input
- The convolutional layers and the linear classifier are jointly optimized using back propagation.

Drawbacks and Challenges

- Interpretability?
- Data Hungry
- Why are many layers better than one gigantic layer?

Overview:

- Model of Convolutional Neural Networks.
- Predefined (wavelet) filters.

Advantages:

- Provable stability and invariance properties.
- Near state of the art numerical results in certain situations.
- Needs less training data.

Characterizing a function

Collect measurements:

Given a signal f(x), collect measurements that encode information.

- The Fourier Series: $c_n(f) = \int_0^1 f(x) e^{-2\pi i n x} dx$,
- The Wavelet Transform: $W_j f(x) = (\psi_j \star f)(x)$,
- $\psi_j(x) = \frac{1}{2^j}\psi\left(\frac{x}{2^j}\right)$ for some mean zero "mother wavelet" ψ .

The Scattering Transform

The Scattering Transform:

- Multilayered cascade of nonlinear measurements.
- Each "layer" uses a wavelet transform W_J and a nonlinearity,
- $U_j f(x) = \sigma((\psi_j \star f)(x)), \ j \leq J, \quad \sigma(x) = M(x) = |x|.$
- $U_{j_1,j_2}f(x) = U_{j_2}U_{j_1}f(x)$

•
$$U_{j_1,...,j_m}f(x) = U_{j_m}...U_{j_1}f(x)$$

• $S_{j_1,...,j_m}f(x) = \phi_J \star U_{j_1,...,j_m}f(x), \quad \phi_J(x) = \frac{1}{2^J}\phi\left(\frac{x}{2^J}\right)$

Geometric Scattering And Applications

How they work:

- Iterative cascade of convolutions and nonlinearities.
- Scattering uses predesigned wavelet filters. CNNs find their filters by solving a (highly nonconvex) optimization problem.
- Scattering uses M(x) = |x| rather than more common choices such as ReLu.

Situations where scattering is appropriate:

- Limited amounts of (labeled, trustworthy) training data.
- Want to account for the underlying physics.

Why a Nonlinear Structure?

A good representation should be:

- Stable on L²
- Invariant to translations (or rotations etc.)
- Sufficiently descriptive

The limits of linearity:

A linear network can be invariant or descriptive, but not both.

- *f*(0) = ∫_{ℝ^d} f(x)dx is invariant, but throws away all high-frequency information.
- Filters which focus in on high-frequency information are unstable to translations.

The wavelet transform captures high-frequency information, and the modulus operator pushes this information down to lower frequencies.

Theorem (Mallat 2012)

The scattering transform has the following properties

Nonexpansiveness: i.e..,

$$||Sf_1 - Sf_2|| \le ||f_1 - f_2||, \quad \forall f_1, f_2 \in \mathbf{L}^2$$

- Invariance to translations
- Stability to small deformations

Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?

- Scattering Transform and Sparse Linear Classifiers for Art Authentication (Leonarduzzi, Liu, and Wang)
- Dataset of 64 real Van Gogh's and 15 fakes.
- Scattering achieves state-of-the-art (96%) accuracy.

Scattering for Quantum Chemistry

3s

Same Power Spectrum, Different Scattering

Figure 9: Two different textures having the same Fourier power spectrum. (a) Textures X(u). Top: Brodatz texture. Bottom: Gaussian process. (b) Same estimated power spectrum $\Re X(\omega)$. (c) Nearly same scattering coefficients $S_J[p]X$ for m = 1 and 2^J equal to the image width. (d) Different scattering coefficients $S_J[p]X$ for m = 2.

Coefficients of Common Stochastic Processes

Informal Theorem: (Bruna, Mallat, Bacry, Muzy)

- Bruna et al. compute (in asymptotic limits) the scattering coefficients of common stochastic processes
 - Poisson Process
 - Fractional Brownian motion
 - α -stable
- First-order scattering coefficients can distinguish Poisson vs fractional Brownian motion or α -stable
- Second-order coefficients can distinguish fBM vs stable

Central Limit Theorems

- Works by G.R. Liu, Y.C Sheu, and H.T. Wu prove central limit theorem type results for higher-order moments
- Use more general activation functions

Synthesis of random textures

(a): Original texture. (b): texture synthesized with wavelet 1^2 norms. (c): synthesized with wavelet 1^1 norms. (d): synthesized with scattering coefficients.

Geometric Deep Learning

Goal:

• Extend Deep Learning methods to data with non-Euclidean Structure such as graphs and manifolds

Geometric Scattering:

- Key challenge is defining wavelets
- Probabilistic Methods: Heat semi-group on a manifold or random walk on a graph.
- Spectral Methods: Eigenfunctions / eigenvectors of an appropriate Laplacian.

Notation

- G = (V, E) is a graph, $V = \{v_1, \ldots, v_N\}$, $E \subseteq V \times V$
- Adjacency matrix A

$$egin{aligned} \mathcal{A}(j,k) = egin{cases} 1 & ext{if } (v_j,v_k) \in E \ 0 & ext{otherwise} \end{aligned}$$

Degree vector and matrix

$$D = diag(\mathbf{d}), \quad \mathbf{d}(j) = degree \text{ of vertex } j$$

- Lazy Random Walk Matrix $P = I + AD^{-1}$
- Lazy Symmetric Diffusion Matrix $T = I + D^{-1/2}AD^{-1/2}$
- Normalized Self-Loop Adjacency Matrix (GCN)

$$\widehat{A} = (D+I)^{-1/2}(A+I)(D+I)^{-1/2}$$

Setup

- Entire Graph Structure is known (all Vertices and Edges)
- Node feature matrix $X = X^0 = (\mathbf{x}_1, \dots, \mathbf{x}_C)$ is known for all nodes
- Labels are known for some nodes (≤5%)
- Goal: Predict the labels of the remaining nodes.

Figure: Visualizations of Common Data sets

Graph Convolutional Network (Kipf and Welling)

Layer-Wise Update Rule

• Sequentially transform node features via layerwise updates

$$X^{t+1} = \sigma(\widehat{A}X^t\Theta)$$

- Θ is a trainable weight matrix.
- The matrix \hat{A} acts a local-averaging operator.
- Promotes smoothness, i.e. similarity amongst neighbors
- Θ is learned but \widehat{A} is designed.

Low-pass filter

- Multiplying by \widehat{A} leaves bottom eigenvector unchanged.
- All other frequencies are depressed.
- Repeated applications increasingly depress high-frequencies.
- "Deep" Graph Neural Nets typically use 2 layers.

Perlmutter(UCLA)

- Detects changes rather than local-averages
 - How is my four-step neighborhood different than my two-step neighborhood?
- Band-pass filter rather than low-pass

Spatial Geometric Wavelets

Definition

Let \mathcal{X} be a graph or a manifold and let $\{P_t\}_{t\geq 0}$ be the heat-semigroup of random walk diffusion.

$$\mathcal{W}_{J}^{(2)}f(x) = \{\Psi_{j}^{(2)}f(x), \Phi_{J}^{(2)}f(x)\}_{0 \le j \le J},$$

where

$$\Psi_{j}^{(2)}=P_{2^{J+1}}-P_{2^{J}},\quad \Phi_{J}^{(2)}=P_{2^{J+1}},$$

Theorem: P., Gao, Wolf, Hirn

 $\mathcal{W}_J^{(2)}$ is a non-expansive frame on a suitable weighted space, i.e.,

$$c\|f\|^2 \leq \sum_j \|\Psi_j^{(2)}f\|^2 + \|\Phi_J^{(2)}f\|^2 \leq \|f\|^2.$$

Spectral Geometric Wavelets

Setup - Spectral Representation of the Heat Semigroup

Let Δ be the Laplace-Beltrami operator on a manifold \mathcal{M} with eigenvectors φ_k , $\Delta \varphi_k = \lambda_k \varphi_k$.

$$P_t f(x) = \sum_{k=0}^{\infty} g(\lambda_k)^t \langle f, \varphi_k \rangle \varphi_k, \quad g(\lambda) = e^{-\lambda}$$

Spectral Wavelets

$$\mathcal{W}_{J}^{(2)}f(x) = \{\Psi_{j}^{(2)}f(x), \Phi_{J}^{(2)}f(x)\}_{0 \le j \le J},$$

where $\Phi_J^{(1)} = P_{2^J}$ and

$$\Psi_{j}^{(1)} = (P_{2^{j+1}} - P_{2^{j}})^{1/2} = \sum_{k=0}^{\infty} [g(\lambda_{k})^{2^{j+1}} - g(\lambda_{k})^{2^{j}}]^{1/2} \langle f, \varphi_{k} \rangle \varphi_{k}.$$

Theorem: P., Gao, Wolf, Hirn

 $\mathcal{W}_J^{(1)}$ is an isometry, i.e.,

Perlmutter(UCLA)

$$\sum_{j} \|\Psi_{j}^{(1)}f\|^{2} + \|\Phi_{J}^{(1)}f\|^{2} = \|f\|^{2}.$$

Perlmutter(UCLA)

Theorem: (P., Gao, Wolf, Hirn)

The graph and manifold scattering transforms constructed with these wavelets have similar theoretical guarantees to the Euclidean scattering transform:

- Non-expansiveness (Lipschitz continuity on L²)
- Invariance to manifold isometries of graph permutations
- Stability to perturbations which are close to being isometries / permutations

Trainable Graph Scattering Transform

Scattering Channels

Use many paths of the form $p = (j_1, \ldots, j_m)$:

$$U_{p}\mathbf{x} \coloneqq \Psi_{j_{m}}\sigma(\Psi_{j_{m-1}}\sigma(\ldots\sigma(\Psi_{j_{2}}\sigma(\Psi_{j_{1}}\mathbf{x}))\ldots).$$

Layer-wise update rule:

$$X_{sct}^{\ell} \coloneqq \sigma \left(U_p X^{\ell-1} \Theta + B
ight).$$

Hybrid Network

- Min, Wenkel, and Wolf (2021) use both GCN chanels and Scattering channels of each layer.
- GCN channels focus on low-frequency information.
- Scattering Channels retain high-frequency information.

Theorem: (Wenkel, Min, P., Wolf, and Hirn) (forthcoming)

The Hybrid GCN - Scattering network has strictly greater discriminatory power than just GCN

- Introduce a geometric characterization of situations GCN is guaranteed to fail
- Produce a substantial sub-class where scattering will succeed with overwhelming probability.

Repeated applications of a low-pass filter cause a signal to converge to its projection onto the bottom eigenvector which is either constant or a function of the degree vector.

Untrained Variations

- Zou and Lerman (2020) Original spectral wavelets
- Gama, Bruna, and Riberio (2018)- Diffusion wavelets based on *T*, invariance and stability analysis
- Gao, Wolf, and Hirn (2019)- Diffusion wavelets based on *P*, statistical moments, graph classification (no theoretical guarantees)
- P. Gao, Wolf, and Hirn (2019)- Invariance and Stability analysis for general diffusion wavelets

Trained Networks

- Min, Wenkel, and Wolf (2020,2020)- Hybrid network, Attention Mechanism
- Tong et al. (2020) Learns scales based on data

Problem:

- Given a dataset of graphs, can you generate a new graph that looks like it was a member of the original dataset
- Motivating Application Drug Development

Encoding robust representation for graph generation (Zou and Lerman 2019)

- Encoder E = Graph Scattering Transform
- Decoder *D* = Fully Connected Network
- $D \circ E = Id$
- Generate new graphs by adding noise in latent space

Figure: Scattering Encoder-Decoder Network

Molecular Graph Generation via Geometric Scattering (GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network

Geometric Scattering And Applications

Perlmutter(UCLA)

Perlmutter(UCLA)

- First compute scattering moments to produce a preliminary latent representation.
- Then train a regularized autoencoder on top of the scattering coefficients to produce a compressed latent representation.
- Autoencoder is penalized by a regression network that that aims to predict chemical properties of the molecules.
 - Quantitative Estimate of Drug-likeliness, Molecular Weight, Number of Rings, etc
- Then train a generator / descriminator to generate realistic adjacency matrices.

GRASSY - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network

Regularized Autoencoder

Loss Functions

• Reconstruction Loss: Want $F \circ E \approx Id$

$$\mathcal{L}_r = \|\mathbf{S} - F(E(\mathbf{S}))\|$$

• Properties Loss: Want to be able to accurately predict Chemical Properties from *E*(**S**)

$$\mathcal{L}_p = \|p - R(E(\mathbf{S}))\|$$

Figure: Regularized AutoEncoder

Geometric Scattering And Applications

Molecule Generation

Generative Adversarial Network

- Generator proposes new graphs
- Discriminator decides if they are "real" or "fake"
- Trained in an alternating fashion "against" each other

Figure: Generator and Discriminator

Molecule Generation (Cont'd)

Notation

• $z_i = E(\mathbf{S}(G_i)) = \text{Latent representation of } G_i = (V_i, E_i, W_i)$

•
$$z_{i \to j}(\alpha) = (1 - \alpha)z_i + \alpha z_j$$

• $\hat{W}_{i,j}(\alpha) = M(z_{i \to j}(\alpha)) = Matrix \text{ generated from } z_{i \to j}$

Losses

- Matrix Loss: $\mathcal{L}_m = \|W_i \hat{W}_i\| + \|\hat{W}_j W_j\|$
- Adversarial Loss: $\mathcal{L}_a = -\int \log(D(\hat{W}_{i,j}(\alpha))d\alpha)$
- Smoothness Loss: $\mathcal{L}_s \approx \int \|\frac{\partial}{\partial_\alpha} F(z_{i,j}(\alpha))\|^2 d\alpha$

Graphs of Different Sizes

Pad with zeros

ZINC Tranche	# An Min.	toms Max.	Validity Threshold	GRASSY	GSAE	Models GraphAF	$MolGAN (\lambda = 0)$
BBAB FBAB	8 16 28	18 27 36	5 15 25	0.86 0.94 0.73	0.22	0.79 0.76 0.54	0.32 0.46 0.41

Fraction of graphs generated with molecule-like structure

Graph Trajectories

Perlmutter(UCLA)

Figure: Trajectories

Latent Space Trajectories

Figure: Latent Representation of molecules from ZINC dataset via the PHATE dimension reduction algorithm

Conclusion

- The Euclidean scattering transform is a model of CNNs.
 - Provable Stability / Invariance Guarantees
 - Designed filters useful for low-data environments
 - Can be used to synthesize textures
- The graph scattering transform is model of GNNs
 - Similar theoretical guarantees to the Euclidean scattering transform
- The graph scattering transform can be used to synthesize molecules as part of the GRASSY framework
 - Regularized Autoencoder produces compressed representation which respects chemical properties
 - Generator and Discriminator produce new, realistic molecules

THANK YOU!