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@ The Euclidean Scattering Transform
o A wavelet based model of CNNs

@ Geometric Scattering
o Wavelets on Graphs and Manifolds

@ Scattering for Graph Synthesis

o Generate New Molecules
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Supervised Learning

Problem Formulation

Learn an unknown function f : X — ) from pointwise evaluations

(Xlayl)a .. -’(XN;)/N)

Image Recognition - MNIST data set
X is the set of all images ) is the set {0,1,2,3,4,5,6,7,8,9}
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Convolutional Neural Networks

Basic Structure

@ Front end: Learns a representation of input through many
convolutional layers

o Each convolutional layer consists of a linear transformation and
a pointwise nonlinearity, e.g. ReLU(x) = max{x,0}.

@ Back end: Uses this representation to classify the input

@ The convolutional layers and the linear classifier are jointly
optimized using back propagation.

Drawbacks and Challenges

o Interpretability?
o Data Hungry

@ Why are many layers better than one gigantic layer?
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The (Euclidean) Scattering Transform - S. Mallat (2012)

Overview:

o Model of Convolutional Neural Networks.
o Predefined (wavelet) filters.

o Provable stability and invariance properties.

o Near state of the art numerical results in certain
situations.

o Needs less training data.
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Characterizing a function

Collect measurements:

Given a signal f(x), collect measurements that encode information.
o The Fourier Series: ¢,(f) = fol f(x)e =27 dx,
@ The Wavelet Transform: W;f(x) = (¢  f)(x),

e ¥j(x) = %w (%) for some mean zero “mother wavelet” .
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The Scattering Transform

The Scattering Transform:

@ Multilayered cascade of nonlinear measurements.

@ Each “layer” uses a wavelet transform W, and a nonlinearity,
o Uif(x) = o((¢j*F)(x)), j < J, a(x) =M(x) = |x].

o Ujpf(x) = U,U;f(x)

o U . j.f(x)=U,...U,f(x)

O i inf(X) = 05 Uy (%), 65(x) = 10 (%)

I IESEARTS

____________________________________________________________________
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Scattering vs. CNNs for Classification

How they work:

o lterative cascade of convolutions and nonlinearities.

@ Scattering uses predesigned wavelet filters. CNNs find their
filters by solving a (highly nonconvex) optimization problem.

@ Scattering uses M(x) = |x| rather than more common choices
such as Relu.

Situations where scattering is appropriate:

o Limited amounts of (labeled, trustworthy) training data.

@ Want to account for the underlying physics.
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Why a Nonlinear Structure?

A good representation should be:

o Stable on L2
@ Invariant to translations (or rotations etc.)

o Sufficiently descriptive

The limits of linearity:

A linear network can be invariant or descriptive, but not both.
o £(0) = Jga f(x)dx is invariant, but throws away all
high-frequency information.
o Filters which focus in on high-frequency information are
unstable to translations.

The wavelet transform captures high-frequency information, and
the modulus operator pushes this information down to lower
frequencies.
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Theoretical Properties

Theorem (Mallat 2012)
The scattering transform has the following properties

o Nonexpansiveness: i.e..,
ISh — Sh|| < |A —fll, VA, HeL?

@ Invariance to translations

@ Stability to small deformations
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Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?

@ Scattering Transform and Sparse Linear Classifiers for Art
Authentication (Leonarduzzi, Liu, and Wang)

@ Dataset of 64 real Van Gogh'’s and 15 fakes.

o Scattering achieves state-of-the-art (96%) accuracy.
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Scattering for Quantum Chemistry

(n,I,m)
(3,0,0) (3,1,0) (3,2,0)

3s 3p 3d
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Same Power Spectrum, Different Scattering

Figure 9: Two different textures having the same Fourier power spectrum. (a) Textures X(u). Top:
Brodatz texture. Bottom: Gaussian process. (b) Same estimated power spectrum RX(w). (c) Nearly
same scattering coefficients Sy[p] X for m = 1 and 27 equal to the image width. (d) Different scattering
coefficients Sy [p]X for m = 2.
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Coefficients of Common Stochastic Processes

Informal Theorem: (Bruna, Mallat, Bacry, Muzy)

@ Bruna et al. compute (in asymptotic limits) the scattering
coefficients of common stochastic processes

o Poisson Process
o Fractional Brownian motion
e a-stable

o First-order scattering coefficients can distinguish Poisson vs
fractional Brownian motion or a-stable

@ Second-order coefficients can distinguish fBM vs stable

Central Limit Theorems

@ Works by G.R. Liu, Y.C Sheu, and H.T. Wu prove central
limit theorem type results for higher-order moments

@ Use more general activation functions
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Synthesis of random textures

(@) () © (@
(a): Original texture. (b): texture synthesized with wavelet 12 norms. (¢): synthesized with

wavelet 1! norms. (d): synthesized with scattering coefficients.
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Geometric Deep Learning

Goal:

o Extend Deep Learning methods to data with non-Euclidean
Structure such as graphs and manifolds

Geometric Scattering:

o Key challenge is defining wavelets

@ Probabilistic Methods: Heat semi-group on a manifold or
random walk on a graph.

@ Spectral Methods: Eigenfunctions / eigenvectors of an
appropriate Laplacian.
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e G=(V,E)isagraph, V={vy,...,ww}, ECV XV

o Adjacency matrix A

1 if(vj,w)€E
0 otherwise

A(j,k):{

Degree vector and matrix
D = diag(d), d(j) = degree of vertex j

Lazy Random Walk Matrix P = [ + AD~!
Lazy Symmetric Diffusion Matrix T = | + D~1/2AD~1/2
Normalized Self-Loop Adjacency Matrix (GCN)

A= (D+1)"YV2(A+ 1)(D+1)~1/?
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Semi-Supervised Node Classification

Entire Graph Structure is
known (all Vertices and
Edges)

- Node feature matrix

X =X%=(xq,...,x¢c) is
known for all nodes

Labels are known for some
nodes (<5%)

Goal: Predict the labels of
the remaining nodes.

(c) PubMed (d) Wiki-CS

Figure: Visualizations of Common
Data sets
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Graph Convolutional Network (Kipf and Welling)

Layer-Wise Update Rule

@ Sequentially transform node features via layerwise updates
Xt = 5(AX*O)

@ O is a trainable weight matrix.

o The matrix A acts a local-averaging operator.

@ Promotes smoothness, i.e. similarity amongst neighbors
o O is learned but A is designed.

Low-pass filter

o Multiplying by A leaves bottom eigenvector unchanged.
o All other frequencies are depressed.
@ Repeated applications increasingly depress high-frequencies.

@ “Deep” Graph Neural Nets typically use 2 layers.
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Geometric Wavelets

20

@ Detects changes rather than local-averages

o How is my four-step neighborhood different than my two-step
neighborhood?

@ Band-pass filter rather than low-pass

‘2"7 &J dJ—l 7;J—2
)\I'l )\l )\2 ’\3
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Spatial Geometric Wavelets

Definition

Let X' be a graph or a manifold and let {P;};>o be the
heat-semigroup of random walk diffusion.

Wr(6) = (821(2), 0o

where
VP = Py — Py, 0P = Py,

Theorem: P., Gao, Wolf, Hirn

Wﬁz) is a non-expansive frame on a suitable weighted space, i.e.,

cllfI? < STV + 0P )% < |17
J
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Spectral Geometric Wavelets

Setup - Spectral Representation of the Heat Semigroup

Let A be the Laplace-Beltrami operator on a manifold M with
eigenvectors i, Apkx = Akpk.

P:f(x) = Zg()\k f,on) ok, gA)=e?

Spectral Wavelets
WD r(6) = (WP (), 05 s

where d>( ) — = P, and
\Uj(‘l) = (Ppj+1 — Pyj) 1/2 Z[g 2 —8(M«) ']1/2<f7§0k>90k-
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Spectral Wavelet's Continued

Theorem: P., Gao, Wolf, Hirn

WSl) is an isometry, i.e.,

1 1
ST 4 (o2 = 7).
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Geometric Scattering

Theorem: (P., Gao, Wolf, Hirn)

The graph and manifold scattering transforms constructed with
these wavelets have similar theoretical guarantees to the Euclidean
scattering transform:

o Non-expansiveness (Lipschitz continuity on L?)

@ Invariance to manifold isometries of graph permutations

@ Stability to perturbations which are close to being isometries /
permutations

g | -

____________________________________________________________________
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Trainable Graph Scattering Transform

Scattering Channels

Use many paths of the form p = (j1,...,jm):

Upx =V o(V;, _o(...0(V,o(Vx))...).
Layer-wise update rule:

Xt =0 (UpX0+B).

Hybrid Network
o Min, Wenkel, and Wolf (2021) use both GCN chanels and
Scattering channels of each layer.

@ GCN channels focus on low-frequency information.

@ Scattering Channels retain high-frequency information.
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Overcoming oversmoothing

Theorem: (Wenkel, Min, P., Wolf, and Hirn) (forthcoming)

The Hybrid GCN - Scattering network has strictly greater
discriminatory power than just GCN

@ Introduce a geometric characterization of situations GCN is
guaranteed to fail

@ Produce a substantial sub-class where scattering will succeed
with overwhelming probability.

s e s s s e’

(a) Graph convolution (g, * x) ) Geometric scattering (W3x)

Repeated applications of a low-pass filter cause a signal to
converge to its projection onto the bottom eigenvector which is
either constant or a function of the degree vector.
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Graph Scattering Transforms

Untrained Variations

@ Zou and Lerman (2020) - Original - spectral wavelets
e Gama, Bruna, and Riberio (2018)- Diffusion wavelets based
on T, invariance and stability analysis

e Gao, Wolf, and Hirn (2019)- Diffusion wavelets based on P,
statistical moments, graph classification (no theoretical
guarantees)

e P. Gao, Wolf, and Hirn (2019)- Invariance and Stability
analysis for general diffusion wavelets

Trained Networks
@ Min, Wenkel, and Wolf (2020,2020)- Hybrid network,
Attention Mechanism

o Tong et al. (2020) - Learns scales based on data
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Graph Generation

Problem:

o Given a dataset of graphs, can you generate a new graph that
looks like it was a member of the original dataset

o Motivating Application - Drug Development

4
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Encoding robust representation for graph generation

(Zou and Lerman 2019)

graph
samples

seattering
transform
+
Gaussianize

Rl

latent
representations

. .‘:
s

Encoder E = Graph Scattering Transform

Decoder D = Fully Connected Network

DoE=Id

Generate new graphs by adding noise in latent space

edge

Pl weights
D,
e
L . vertex
9wt features
Dy

Figure: Scattering Encoder-Decoder Network
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Molecular Graph Generation via Geometric Scattering

(GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Property Prediction
¥

Latant Space

!
09>

Scattering Moments
S

%%mm —

2‘:’60‘ Layeis |3} ]

%Fuuy Connected Layer

G G

Molecule Generation

Discriminator
D)

Figure: GRaph Scattering SYnthesis network
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GRASSY Explained

o First compute scattering moments to produce a preliminary
latent representation.

@ Then train a regularized autoencoder on top of the scattering
coefficients to produce a compressed latent representation.

@ Autoencoder is penalized by a regression network that that
aims to predict chemical properties of the molecules.

o Quantitative Estimate of Drug-likeliness, Molecular Weight,
Number of Rings, etc

@ Then train a generator / descriminator to generate realistic

adjacency matrices.
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GRASSY - Bhaskar, Grady, P., Krishnaswamy

Property Prediction
¥

N

Scattering Moments

%%mm —

4‘:’50& Layers [3) ]

%ﬁ"y Connected Layer

G

Maolecule Generation

Discriminator
o

Figure: GRaph Scattering SYnthesis network
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Regularized Autoencoder

Loss Functions
@ Reconstruction Loss: Want F o E =~ Id

Ly =S = F(E(S))Il

@ Properties Loss: Want to be able to accurately predict
Chemical Properties from E(S)

Ly =|lp— R(E(S))I

Property Prediction
¥
J.

\
Encoder Latant Space
(E) DO

Figure: Regularized AutoEncoder
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Molecule Generation

Generative Adversarial Network

@ Generator proposes new graphs

@ Discriminator decides if they are “real” or “fake”

@ Trained in an alternating fashion “against” each other

kS
Latant Space

&)
G\GQQ

Generator
M)

%% Adjacency Matrix 1§

,':-’Gm Layers {3} ]

C zal, I’Eu)
Molecule Generation

Discriminator
o

Figure: Generator and Discriminator

34 Perlmutter(UCLA) Geometric Scattering And Applications



Molecule Generation (Cont'd)

e z; = E(S(G;))= Latent representation of G; = (V;, E;, W;)
o zisj(a) =(1—-a)zi + az;

o Wi (a) = M(zi,j(e)) = Matrix generated from z_;

Losses

o Matrix Loss: L, = ||W; — Wj|| + ||WJ - W
@ Adversarial Loss: £, = —flog(D(VAV,-J(a))da
o Smoothness Loss: Ls ~ [ || &-F(zij())|*do

Graphs of Different Sizes

@ Pad with zeros
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Fraction of graphs generated with molecule-like structure

Validity Models
Threshold GRASSY GSAE GraphAF  MOolGAN (A = 0)
5 0.79
15 0.76
25 0.54
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Graph Trajectories

Adversarial Scattering Inversion - Generating Molecular Graphs via Smooth Interpolation

Training Sample 1 : Trajectory (Generated Molecules) : Training Sample 2
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Figure: Trajectories
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Latent Space Trajectories

QED Psa HA Mal. Wt Ring Count

@
=z L

@ 8

E‘\ .-u

F

= I-

Ui

8i

Figure: Latent Representation of molecules from ZINC dataset via the
PHATE dimension reduction algorithm
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Conclusion

@ The Euclidean scattering transform is a model of CNNs.
o Provable Stability / Invariance Guarantees
o Designed filters - useful for low-data environments
e Can be used to synthesize textures
@ The graph scattering transform is model of GNNs
o Similar theoretical guarantees to the Euclidean scattering
transform
@ The graph scattering transform can be used to synthesize
molecules as part of the GRASSY framework
o Regularized Autoencoder produces compressed representation

which respects chemical properties
o Generator and Discriminator produce new, realistic molecules
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THANK YOU!
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