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Abstract

Generalized Probabilistic Theories (GPTs) are theories of nature that have
random features. A GPT must specify the set of states purporting to represent
the physical reality, the allowable measurements, the rules for outcome statistics
of the latter, and the composition rules for merging subsystems and creating a
larger system. Examples include classical probability and quantum theory.

The composition rules alluded to above usually involve tensor products, including
tensor products of normed spaces, convex sets and of cones. Among tensor
products that have operational meaning in the GPT context, the projective and
the injective product are the extreme ones, which leads to the natural question
”How much do they differ?” considered already by Grothendieck and Pisier, resp.
in the 1950s and 1980s.

We report on quantitative results concerning projective/injective discrepancy for

finite-dimensional normed spaces. Some of the results are essentially optimal, but

others can be likely improved. The methods involve a wide range of techniques

from geometry of Banach spaces and random matrices. We also report on parallel

results in the context of cones. Finally, we will encourage a more systematic study

of convex bodies with the allowed morphisms being projective transformations.
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Outline

• a few words about GPTs

• projective and injective tensor products and norms: definitions, notation

• historical background; the infinite dimensional case; qualitative vs.
quantitative

• tensor products of cones vs. tensor products of normed spaces and
convex bodies

• a selection of results and examples of tools from geometric functional
analysis and random matrices

Buzzwords : CHSH inequality; Dvoretzky-Milman’s theorem; p-summing
norms; Chevet-Gordon’s inequality; Grothendieck’s inequalities;
K -convexity & the MM∗-estimate
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Generalized Probabilistic Theories or GPTs

A general probabilistic theory is a triple (V ,C , u), where: (i) V is a
finite-dimensional real vector space; (ii) C ⊂ V is a closed, convex, salient
and generating cone; and (iii) u, called the order unit or the unit effect, is
a functional in the interior of the dual cone

C ∗ ..= {x∗ ∈ V ∗ : x∗(x) > 0 ∀ x ∈ C}.

(V ,C ) can be thought of as an ordered vector space: x 6 y ⇔ y − x ∈ C .

The dual space V ∗ can be thought of as ordered by the dual cone C ∗.
The states of the physical system modeled by (V ,C , u) are represented by
vectors in C ∩ u−1(1) =: Ω.
The associated normed spaces have unit balls BV := conv(−Ω ∪ Ω) and
BV ∗ := {x∗ : −u 6 x∗ 6 u}.
If (Vj ,Cj , uj), j = 1, 2 represent subsystems, the global system is modeled
by V = V1 ⊗ V2, with the choice of cone C depending on further
assumptions, e.g., global vs. local measurements being allowed.
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Classical and quantum GPTs

In the classical case, Ω ⊂ Rn is the set of (discrete) probability densities.

Ω = {(pj)
n
j=1 :

∑
j

pj = 1}

and the cone is Rn
+.

In the quantum case, Ω is the set n × n matrices of trace 1 which further
belong to the positive semi-definite cone (density matrices).

The norms are the `n1-norm for the base space and the `n∞-norm for the
dual in the classical case, and the trace class norm and the “spectral” norm
(as an operator on `n2) in the quantum case.

Roughly speaking, measurements of a state give probabilistic outcomes
according to the weights (pj) and similarly in the quantum case.
This is measurement “in a basis”, other schemes are also allowed.
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Definitions and notation : the projective norm

If X ,Y are real Banach spaces, we will consider norms on X ⊗ Y (the
algebraic tensor product) verifying

‖x ⊗ y‖ = ‖x‖ · ‖y‖. (1)

By the triangle inequality, every such norm must satisfy

‖z‖ 6 min

{∑
i

‖xi‖ · ‖yi‖ : z =
∑
i

xi ⊗ yi

}
(2)

and replacing “6” by “..=” in (2) we get the definition of the projective
tensor norm ‖z‖X⊗πY , the largest norm on X ⊗ Y verifying (1), also
denoted sometimes by ‖z‖X ⊗̂Y . We will usually write simply ‖z‖π.
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Definitions and notation : duality and the injective norm

For the smallest “reasonable” norm on X ⊗ Y it is most convenient to
appeal to duality: if x∗ ∈ X ∗, y∗ ∈ Y ∗, we want x∗ ⊗ y∗ to induce a
functional on X ⊗ Y whose norm is ‖x∗‖ · ‖y∗‖, which implies

‖z‖ > max {(x∗ ⊗ y∗)(z) : ‖x∗‖ 6 1, ‖y∗‖ 6 1} . (3)

Again, replacing “>” by “..=” in (3) we get the definition of injective tensor
norm ‖z‖X⊗εY (or simply ‖z‖ε), denoted sometimes by ‖z‖X ⊗̌Y .
Equivalently, ‖z‖ε is the norm of z as a bilinear form on X ∗ × Y ∗.

A compact way to relate these two notions (at least in the finite
dimensional case) is

X ⊗ε Y = (X ∗ ⊗π Y ∗)∗ .

If the spaces are infinite dimensional, completions are required and there
are reflexivity issues, but we will largely ignore this side of the story and –
unless explicitly stated otherwise – will assume that dim X , dim Y <∞.

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 7 / 25



Definitions and notation : duality and the injective norm

For the smallest “reasonable” norm on X ⊗ Y it is most convenient to
appeal to duality: if x∗ ∈ X ∗, y∗ ∈ Y ∗, we want x∗ ⊗ y∗ to induce a
functional on X ⊗ Y whose norm is ‖x∗‖ · ‖y∗‖, which implies

‖z‖ > max {(x∗ ⊗ y∗)(z) : ‖x∗‖ 6 1, ‖y∗‖ 6 1} . (3)

Again, replacing “>” by “..=” in (3) we get the definition of injective tensor
norm ‖z‖X⊗εY (or simply ‖z‖ε), denoted sometimes by ‖z‖X ⊗̌Y .
Equivalently, ‖z‖ε is the norm of z as a bilinear form on X ∗ × Y ∗.

A compact way to relate these two notions (at least in the finite
dimensional case) is

X ⊗ε Y = (X ∗ ⊗π Y ∗)∗ .

If the spaces are infinite dimensional, completions are required and there
are reflexivity issues, but we will largely ignore this side of the story and –
unless explicitly stated otherwise – will assume that dim X , dim Y <∞.

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 7 / 25



Definitions and notation : duality and the injective norm

For the smallest “reasonable” norm on X ⊗ Y it is most convenient to
appeal to duality: if x∗ ∈ X ∗, y∗ ∈ Y ∗, we want x∗ ⊗ y∗ to induce a
functional on X ⊗ Y whose norm is ‖x∗‖ · ‖y∗‖, which implies

‖z‖ > max {(x∗ ⊗ y∗)(z) : ‖x∗‖ 6 1, ‖y∗‖ 6 1} . (3)

Again, replacing “>” by “..=” in (3) we get the definition of injective tensor
norm ‖z‖X⊗εY (or simply ‖z‖ε), denoted sometimes by ‖z‖X ⊗̌Y .
Equivalently, ‖z‖ε is the norm of z as a bilinear form on X ∗ × Y ∗.

A compact way to relate these two notions (at least in the finite
dimensional case) is

X ⊗ε Y = (X ∗ ⊗π Y ∗)∗ .

If the spaces are infinite dimensional, completions are required and there
are reflexivity issues, but we will largely ignore this side of the story and –
unless explicitly stated otherwise – will assume that dim X , dim Y <∞.

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 7 / 25



An equivalent language: tensor products of convex sets

In geometric functional analysis, we often identify norms on a finite
dimensional vector space V with symmetric convex bodies:

X = (V , ‖ · ‖) → BX
..= {x : ‖x‖ 6 1} = the unit ball of X

V ⊃ K → ‖x‖K ..= inf{t > 0 : x ∈ tK} = the Minkowski functional of K

In this setting we define the projective tensor product as

K ⊗π L ..= conv{x ⊗ y : x ∈ K , y ∈ L}

and the previous definitions can be restated as

BX⊗πY
..= BX ⊗π BY and BX⊗εY

..= (BX∗ ⊗π BY ∗)
◦ ,

where K ◦ ..= {x ∈ V ∗ : ∀y ∈ K 〈y , x〉 6 1} is the polar of K .

One can likewise define projective and injective tensor products for
not-necessarily-symmetric convex sets, most notably for cones.
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Considering operators rather than tensors

Since X ∗ ⊗ Y is canonically isomorphic to L(X ,Y ), it is also possible to
avoid talking about tensors and rephrase all questions in terms of
operators. In that setting, if z =

∑
i |yi 〉〈x∗i |, then

‖z‖ε = ‖z : X → Y ‖,

the operator norm, while ‖z‖π = min
∑

i ‖yi‖ · ‖x∗i ‖ (the minimum over all
representations) is the nuclear norm.

Moreover, appealing to duality gives

‖z‖π = max
‖w :Y→X‖61

tr wz .

This allows to analyze both concepts in terms of operator norms, which
are arguably conceptually simpler. In particular

ρ(X ,Y ) ..= max
z∈X⊗Y , z 6=0

‖z‖π
‖z‖ε

= max
‖w :Y→X∗‖61, ‖z:X∗→Y ‖61

tr wz .

The quantity ρ(X ,Y ) quantifies discrepancy between X ⊗π Y and X ⊗ε Y
and is arguably the most important concept of this presentation.
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Grothendieck and Pisier

Tensor products of normed spaces were studied in detail by Grothendieck
in 1950s. In particular, he proposed and studied 14 “natural tensor norms”
and posed a number of open questions, one of which was whether the
norms ‖ · ‖X⊗πY and ‖ · ‖X⊗εY can be equivalent when when
dim X = dim Y =∞.

It was a surprise when in 1980s Pisier answered this question in the
positive, even more so because he showed earlier that if dim X →∞ and
dim Y →∞, then

ρ(X ,Y ) → ∞.

Also surprisingly, no quantitative analysis of the finite high-dimensional
case was made until very recently. Such analysis is the main topic of this
presentation. We also show that ρ(X ,Y ) > 1 in all nontrivial cases (i.e.,
min{dim W , dim Y } > 2).
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The analogous problem for cones

Given two non-degenerate cones C ⊂ Rn, C ′ ⊂ Rm, when do we have
C ⊗ε C ′ = C ⊗π C ′?

Answer: If and only if one of the cones C ,C ′ is classical (i.e., isomorphic
to the standard classical cone).

(G. Aubrun, L. Lami, C. Palazuelos, M. Plavala, 2021)

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 11 / 25



The analogous problem for cones

Given two non-degenerate cones C ⊂ Rn, C ′ ⊂ Rm, when do we have
C ⊗ε C ′ = C ⊗π C ′?

Answer: If and only if one of the cones C ,C ′ is classical

(i.e., isomorphic
to the standard classical cone).

(G. Aubrun, L. Lami, C. Palazuelos, M. Plavala, 2021)

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 11 / 25



The analogous problem for cones

Given two non-degenerate cones C ⊂ Rn, C ′ ⊂ Rm, when do we have
C ⊗ε C ′ = C ⊗π C ′?

Answer: If and only if one of the cones C ,C ′ is classical (i.e., isomorphic
to the standard classical cone).

(G. Aubrun, L. Lami, C. Palazuelos, M. Plavala, 2021)

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 11 / 25



The analogous problem for cones

Given two non-degenerate cones C ⊂ Rn, C ′ ⊂ Rm, when do we have
C ⊗ε C ′ = C ⊗π C ′?

Answer: If and only if one of the cones C ,C ′ is classical (i.e., isomorphic
to the standard classical cone).

(G. Aubrun, L. Lami, C. Palazuelos, M. Plavala, 2021)

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 11 / 25



The equality case for cones

Consider now any cone C ⊂ Rn and the classical cone C ′ = Rm
+ ⊂ Rm.

We want to show that

C ⊗ε Rm
+ = C ⊗π Rm

+.

We have

C ⊗π Rm
+ = conv{x ⊗ y : x ∈ C , y ∈ Rm

+} = conv{
∑m

k=1 xk ⊗ ek : xk ∈ C}
because each y ∈ Rm

+ is a positive linear combination of ek ’s, and likewise

C ∗ ⊗π Rm
+ = conv{

∑m
k=1 yk ⊗ ek : yk ∈ C ∗}.

By definition, τ ∈ Rn ⊗ Rm belongs to C ⊗ε Rm
+ iff

〈τ, σ〉 > 0 for all σ ∈ C ∗ ⊗π Rm
+.

Writing τ =
∑m

k=1 zj ⊗ ej and testing it against σ = y ⊗ ek , y ∈ C ∗ we get

〈τ, σ〉 =
∑m

k=1〈zj , y〉〈ej , ek〉 = 〈zk , y〉 > 0 for all y ∈ C ∗,

which means that each zk ∈ C (by the bipolar theorem for cones). That
is, every τ ∈ C ⊗ε Rm

+ belongs to C ⊗π Rm
+, so the two cones are equal.

The remarkable fact is that this is effectively the only case of equality.
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Back to normed spaces: some special cases

If H,K are Hilbert (inner product) spaces, the situation is very simple:
‖ · ‖ε is the operator (spectral) norm, while ‖ · ‖π is the trace class norm
and so

ρ(H,K) = min{dimH, dimK}.

(This in particular saturates the easy general upper bound for ρ(X ,Y ).)
For a general lower bound, a naive attempt is to appeal to the John’s
theorem, which says that if dim X = n = dimH, where H is a Hilbert
space, then d(X ,H) 6 n1/2, where

d(E ,F ) = min{‖v : E → F‖ · ‖v−1 : F → E‖}

is the Banach-Mazur distance. This allows to obtain some nontrivial
information; for example using v , v−1 certifying d(X ,H) 6 n1/2 as w , z in

ρ(X ,H) = max
‖w :H→X∗‖61, ‖z:X∗→H‖61

tr wz

we obtain ρ(X ,H) > n1/2. The same circle of ideas allows to handle the
case of different dimensions: ρ(X ,H) > min{dim X , dimH}1/2.
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Some special cases, cont’d

The same argument proves a cute equality ρ(X ,X ∗) = dim X , but it
doesn’t help in the general case: by a 1981 result of Gluskin
max{d(E ,F ) : dim E = dim F = n} = Θ(n) and no nontrivial lower bound
can be directly inferred.

Here are other interesting special cases that can be handled. If (say)
dim X > n, then

ρ(X , `n1) > (n/2)1/2 and ρ(X , `n∞) > (n/2)1/2.

The first inequality follows by relating ρ(X , `n1) to the so-called p-summing
norms of the identity on X ; these concepts were fashionable in 1970s and
1980s. The second one is then a consequence of (generally true)
ρ(X ,Y ) = ρ(X ∗,Y ∗). No substantial improvement is possible since
ρ(H, `n1) = n1/2 (easy), but we do not know whether (n/2)1/2 can be
replaced by n1/2 in general.
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The quantum case

The case that is of relevance to quantum theory is when X ,Y are spaces
of Hermitian matrices endowed with the trace class norm. We have then

ρ(X ,Y ) = Θ(min{dim X , dim Y }3/4).

For simplicity, consider X = Y to be spaces of d × d matrices, so
n = dim X = dim Y = d2. The lower bound uses random tensors. Let

z =
d2∑
j=1

d2∑
k=1

gjkxj ⊗ yk

where (xj) and (yk) are Hilbert–Schmidt orthonormal bases of X and Y
and gjk are i.i.d. Gaussian random variables. We are going to use

ρ(X ,Y ) = max{tr wz : ‖w : Y → X ∗‖ 6 1, ‖z : X ∗ → Y ‖ 6 1}

with w = zT . It is clear what tr zT z is, and the norms ‖zT : Y → X ∗‖,
‖z : X ∗ → Y ‖ are controlled (ultimately) via the Chevet-Gordon inequality.
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The quantum case, continued

And here is the idea behind the O(·) argument (the upper bound).

We note first that z ∈ X ⊗ε Y can be thought of as a bilinear form on
X ∗ × Y ∗ and that X ∗ = Y ∗ is (the self-adjoint part of) the C ∗-algebra A
of k × k matrices with the usual operator norm. Thus we are in the realm
of the Haagerup-Pisier non-commutative Grothendieck inequality, which
says that for such bilinear form there are states ϕ,ψ on A such that

|z(a, b)| 6 2‖z‖ε ϕ(a2)1/2 ψ(b2)1/2 for all a, b ∈ ReA.

With this information, we need to upper-bound ‖z‖π, or the nuclear norm
of z : A → A∗.

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 16 / 25



The quantum case, continued

And here is the idea behind the O(·) argument (the upper bound).

We note first that z ∈ X ⊗ε Y can be thought of as a bilinear form on
X ∗ × Y ∗ and that X ∗ = Y ∗ is (the self-adjoint part of) the C ∗-algebra A
of k × k matrices with the usual operator norm. Thus we are in the realm
of the Haagerup-Pisier non-commutative Grothendieck inequality, which
says that for such bilinear form there are states ϕ,ψ on A such that

|z(a, b)| 6 2‖z‖ε ϕ(a2)1/2 ψ(b2)1/2 for all a, b ∈ ReA.

With this information, we need to upper-bound ‖z‖π, or the nuclear norm
of z : A → A∗.

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 16 / 25



The quantum case, conclusion

Again, we need to upper-bound the nuclear norm of z : A → A∗, using

|z(a, b)| 6 2‖z‖ε ϕ(a2)1/2 ψ(b2)1/2 for all a, b ∈ ReA.

Here is a calculation which is not quite right, but supplies the gist of the
trick.

Let ϕ =
∑d

i=1 λi |ui 〉〈ui | be the spectral decomposition. We will
estimate the nuclear norm of z : A → A∗ (say, with ‖z‖ε 6 1) by writing

z(a) =
∑
i ,j

tr(aEji )z(Eij), or z =
∑
i ,j

|z(Eij)〉〈Eji |

where Eij = |ui 〉〈uj |. For a single term, we have

‖z(Eij)‖A∗ = max
‖b‖A61

|z(Eij , b)| 6 2ϕ(|Eij |2)1/2 6 2λ
1/2
i

(note that ψ(b2) 6 1 if ‖b‖A 6 1) and summing over 1 6 i , j 6 d gives

2d
∑

i λ
1/2
i 6 2d3/2 = 2n3/4 as a bound on ‖z‖π (4n3/4 if we don’t cheat).
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The general case, or cases

Modulo logarithmic factors (indicated by ∗ in the Ω notation), we have:

• X = Y , dim X = n: ρ(X ,X ) = Ω∗(n1/2) (almost optimal, see X = `n1)

• dim X = dim Y = n: ρ(X ,Y ) = Ω∗(n1/6)

• dim X = n 6 dim Y : ρ(X ,Y ) = Ω∗(n1/8)

The bounds can not be better than, respectively, (2n)1/2, n1/2, and again
n1/2. We know that (2n)1/2 is not sharp, but we do not know whether the
factor 2 can be removed. It is conceivable that all these quantities are
actually Ω∗(n1/2) or even Ω(n1/2).

While the above results are asymptotic, it is worthwhile noting that

• dim X , dim Y > 2 =⇒ ρ(X ,Y ) > 19
18 .
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An Auerbach-type lemma

Just for fun, here is a simple lemma that is fundamental in proving this
2-dimensional lower bound and which is susceptible to an intuitive
geometrical interpretation:

Let X be a Banach space of dimension at least 2. Then there exist vectors
e1, e2 ∈ X , e∗1 , e∗2 ∈ X ∗ such that for any i , j ∈ {1, 2} we have
‖ei‖X = ‖e∗j ‖X∗ = 1, e∗j (ei ) = δij , and moreover

‖e1 + e2‖X 6 3/2.

Once established, this allows to mimic the entanglement-detecting
CHSH-inequality to obtain a non-trivial 19/18 lower bound for ρ(X ,Y ).
This is the bound shown in our paper; we have a more complicated
argument that gives 8

7 , and we suspect that the right number is
√

2.
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Affine vs. projective transformations

One of the reasons for the difference between the setting of cones and the
setting of normed spaces is that two different sets of morphisms are
involved.

A cone C is uniquely determined by its base

BC = C ∩ u−1(1)

corresponding to an interior element u of the dual cone C ∗.

While the bases of C and C ∗ are related by the standard polarity relation
for convex bodies (not entirely trivial, but true), the set of morphisms in
the category of cones (linear maps of the underlying real vector spaces)
corresponds to projective maps between the bases and not to affine maps.

One illustration of this difference is the fact that all convex quadrangles
are projectively equivalent, while obviously they are not all affinely
equivalent. This suggests investigating the class of n-dimensional (not
necessarily-symmetric) convex bodies by identifying bodies that are
projectively equivalent, and with some projective version of the
Banach-Mazur distance quantifying their similarity.
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The toolbox for the general case

This is again based on ρ(X ,Y ) = max‖w :Y→X∗‖61, ‖z:X∗→Y ‖61 tr wz and
an appropriate relaxation of the choices w = v , z = v−1. First, we define
the factorization constant of X through Y as

f(X ,Y ) ..= inf
u,v
{‖u : X → Y ‖ · ‖v : Y → X‖ : vu = IdX} ,

which allows dim X 6= dim Y and means that a subspace “well-isomorphic”
to X is“well-complemented” in Y .

Next, the weak factorization constant is

wf(X ,Y ) ..= inf
u,v
{E [‖u : X → Y ‖ · ‖v : Y → X‖] : E [vu] = IdX} ,

where u, v are now operator-valued random variables.

Clearly wf(X ,Y ) 6 f(X ,Y ) 6 d(X ,Y ) and one easily checks that

ρ(X ′,Y ) 6 wf(X ′,X )ρ(X ,Y ) and ρ(X ,Y ) >
dim X

wf(X ,Y ∗)
.
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The toolbox for the general case, cont’d

If X = Y , we select u, v “at random.”

At first, we choose a representation
of X of Rn and let u = n−1/2GT , v = n−1/2G , where G is a GOE matrix.
The tool which allows to estimate E‖G : Y ∗ → X‖ is the Chevet-Gordon
inequality, which upper-bounds it by n−1/2 times

‖Id : `n2 → X‖ · E‖g‖Y + ‖Id : `n2 → Y ‖ · E‖g‖X ,

where g is the standard Gaussian vector on Rn. If X = Y , the two terms
coincide and – bounding similarly E‖GT : X → Y ∗‖ and noting that
‖Id : `n2 → X ∗‖ = ‖Id : X → `n2‖ – we see that we need to control

‖Id : `n2 → X‖ · ‖Id : X → `n2‖ · E‖n−1/2g‖X · E‖n−1/2g‖X∗ .

For an appropriate representation of X of Rn, the first two factors give
d(X , `n2) 6 n1/2. The last two factors are essentially the same as spherical
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Mean (half-)width of K ⊂ Rn and the MM∗-estimate

If |u| = 1 and w(K , u) := supx∈K 〈u, x〉 = ‖u‖K◦ , then
w(K , u) + w(K ,−u) is the width of K in the direction of u. The average
over u is the mean half-width of K .

The MM∗-estimate says that, for some well-balanced linear image K̃ of
any centrally symmetric convex body K ⊂ Rn we can achieve
w(K̃ ) · w(K̃ ◦) = O(log n). Thus, for the corresponding representation of
X on Rn, we obtain the same bound for E‖n−1/2g‖X · E‖n−1/2g‖X∗ .

Some additional tweaking is needed since we need to reconcile two
requirements for the representation of X of Rn, the one witnessing
d(X , `n2) and the other consistent with the MM∗-estimate, but ultimately
gathering all bounds we get

ρ(X ,X ) = Ω

(
dim X

d(X , `n2) log3 n

)
> Ω

(
n1/2

log3 n

)
,

as needed.
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The case X 6= Y

There are too many “balancing requirements” to be simultaneously
achievable, so instead the argument is based on the following trichotomy.

Let X be a normed space of dimension n. Then for every 1 6 A 6 n1/2 at
least one of the following holds

1 X contains a subspace E of dimension d = Ω(n1/2) such that
d(E , `d∞) = O(A

√
log n).

2 X ∗ contains a subspace F of dimension d = Ω(n1/2) such that
d(F , `d∞) = O(A

√
log n).

3 X contains a subspace H of dimension d = Ω(A2/ log n) such that
d(H, `d2 ) 6 4 and, additionally, H is O(log n)-complemented in X .

Since subspaces λ-isomorphic to `d∞ are automatically λ-complemented,
each of the conditions above leads to an upper bound on wf(`dp ,X ) for the

appropriate p ∈ {1, 2,∞}. Given that ρ(`dp , `
d ′
p′ ) are known, every

combination of these conditions for X and Y leads to a lower bound on
ρ(X ,Y ), and the final step is optimizing over A.
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THANK YOU!

S. Szarek (CWRU/Sorbonne) GPTs, tensor products, projective maps ICERM, October 17, 2022 25 / 25


