An introduction to network analysis and modeling with applications to social contagion processes

Juan G. Restrepo University of Colorado at Boulder

> June 28, 2022 ICERM

Part II

Talk outline

Part 2

- Modeling processes on networks: SIS example
- Creating, importing and visualizing networks in matlab and python
- Example: creating model of **diversity** and productivity

Talk outline

Part 2

- Modeling processes on networks: SIS example
- Creating, importing and visualizing networks in matlab and python
- Example: creating model of **diversity** and productivity

Social contagion: more than disease

Modeling dynamics on networks

Define nodes and links: What do they represent?

Define node variables: What properties do nodes have? What states can they be in?

Define dynamics: How can the states of the nodes change?

Simulate dynamics: On network models or relevant network datasets

Analyze dynamics: Usually involves approximations...

Interpret results: For example, how can a desirable property be maximized?

Modeling dynamics on networks

Define nodes and links: What do they represent?

Define node variables: What properties do nodes have? What states can they be in?

Define dynamics: How can the states of the nodes change?

Simulate dynamics: On network models or relevant network datasets

Analyze dynamics: Usually involves approximations...

Interpret results: For example, how can a desirable property be maximized?

Simplest model of social contagion: SIS

Susceptible-Infected-Susceptible (SIS):

Nodes represent individuals, links represent interactions.

Each individual can be in two states: susceptible (S) or infected (I).

Modeling dynamics on networks

Define nodes and links: What do they represent?

Define node variables: What properties do nodes have? What states can they be in?

Define dynamics: How can the states of the nodes change?

Simulate dynamics: On network models or relevant network datasets

Analyze dynamics: Usually involves approximations...

Interpret results: For example, how can a desirable property be maximized?

Network SIS model

A healthy node can get infected by an infected neighbor at rate β_2 .

Modeling dynamics on networks

Define nodes and links: What do they represent?

Define node variables: What properties do nodes have? What states can they be in?

Define dynamics: How can the states of the nodes change?

Simulate dynamics: On network models or relevant network datasets

Analyze dynamics: Usually involves approximations...

Interpret results: For example, how can a desirable property be maximized?

Network SIS model

Loop through (small) time intervals Δt :

Loop through all nodes i = 1..., NIf node i is infected, heal with probability $\gamma \Delta t$ If node i is susceptible, Find the number of infected network neighbors, MInfect with probability $1 - (1 - \beta \Delta t)^M \approx M \beta \Delta t$ End End

End

Epidemic threshold Network SIS model simulated on two degree-based models with the same mean degree:

Power law degree distribution Degree distribution uniform in [50,100]

Modeling dynamics on networks

Define nodes and links: What do they represent?

Define node variables: What properties do nodes have? What states can they be in?

Define dynamics: How can the states of the nodes change?

Simulate dynamics: On network models or relevant network datasets

Analyze dynamics: Usually involves approximations...

Interpret results: For example, how can a desirable property be maximized?

Fully mixed contagion

This models assumes that a population of individuals is fully mixed and that everyone influences each other equally

Compartmental model for SIS

 $\frac{dI}{dt} = -\gamma I + \beta_2 NSI$

 γ = rate of healing β_2 = rate of infection

Compartmental model for SIS

 $\frac{dI}{dt} = -\gamma I + \beta_2 N(1 - I)I$

fraction infected, I

0

Equilibrium solution of this equation:

Degree-based compartmental models

x_k = fraction of nodes that are infected \mathbf{N}

Pastor-Satorras, Romualdo, and Alessandro Vespignani. "Epidemic spreading in scale-free networks." Physical review letters 86.14 (2001): 3200.

Network SIS model

Degree-based compartmental model predicts t where $\langle k^n \rangle$ is the nth moment of the degree d

Pastor-Satorras, Romualdo, and Alessandro Vespignani. "Epidemic spreading in scale-free networks." Physical review letters 86.14 (2001): 3200.

A more refined analysis predicts that an epidemi where λ is the largest eigenvalue of the adjacen

Wang, Yang, et al. "Epidemic spreading in real networks: An eigenvalue viewpoint." 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings.. IEEE, 2003.

For more sophisticated analyses, see

Kiss, István Z., Joel C. Miller, and Péter L. Simon. "Mathematics of epidemics on networks." Cham: Springer 598 (2017): 31.

that an epidemic occurs for
$$\beta_2 > \beta_2^c = \gamma \frac{\langle k \rangle}{\langle k^2 \rangle}$$

listribution, $\langle k^n \rangle = \frac{1}{N} \sum_{i=1}^N k_i^n$

 $=\frac{\gamma}{2}$

ic occurs for
$$\beta_2 > \beta_2^c$$

ncy matrix A

Modeling dynamics on networks

Define nodes and links: What do they represent?

Define node variables: What properties do nodes have? What states can they be in?

Define dynamics: How can the states of the nodes change?

Simulate dynamics: On network models or relevant network datasets

Analyze dynamics: Usually involves approximations

Interpret results: For example, how can a desirable property be maximized?

Epidemic threshold

$$\beta_2 > \beta_2^c = \gamma \frac{\langle k \rangle}{\langle k^2 \rangle}$$

The more heterogeneous the degree distribution is, the lower the epidemic threshold Heterogeneity in the contact network promotes epidemics

 β_2/γ

Talk outline

Part 2

\checkmark Modeling processes on networks: SIS example

- Creating, importing and visualizing networks in matlab and python
- Example: creating model of **diversity** and productivity

Python & networkx

The networkx library in Python has many prepackaged network generative models and tools

```
Erdos-Renyi network
```


Python & networkx Stochastic Block Model

```
sizes = [75, 75, 100]
probs = [[0.25, 0.005, 0.005], [0.005, 0.35, 0.005], [0.005, 0.005, 0.40]]
g = nx.stochastic_block_model(sizes, probs, seed=0)
```

```
pos = nx.spring_layout(g)
nx.draw(g, pos, node_color="#3182bd", alpha=1,node_size = 50)
```


Python & networkx

Preferential attachment (Barabasi-Albert model)

Python & networkx

Degree distribution

Python & networkx Import edgelist file, create graph, and plot

In [121]: pos = nx.spring_layout(G) nx.draw(g, node_color="r", alpha=1,node_size = 50)

matlab & Python: webweb Visualization can be misleading, but it can also be useful for dissemination webweb is an & easy-to-use visualization tool for matlab/python

Daniel Larremore dblarremore webweb webweb getting started examples documentation webweb in the wild changelog about

Search webweb

webweb on GitHub

webweb

webweb is a tool for creating, displaying, and sharing interactive network visualizations on the web, designed for simplicity and ease of use. With just a few lines of python, networkx, or matlab, webweb will build and launch a visualization in your browser.

Here's an example of webweb's style and functionality. The network itself comes from Hunter Wapman et al.'s analysis of character co-occurrences in the novel *Infinite Jest*.

Erdös-Renyi network

🚪 Editor – /Users/restrepj/Dropbox				
erdos.m	🛪 diversity.m 🛛 🕇			
1	n = 50;	_		
2	A = sprand(n,n,1/n);	Generate matrix		
3	spy(A)	Show matrix		
4	webweb(A)	Visualize matrix		

7

Stochastic Block Model

webweb(a)

Editor – /Users/restrepj/Dropbox/TalksDropbox/ICERM/sbm.m * erdos.m 🗶 diversity.m 🗶 sbm.m * 🗶 spread.m 🗶 problem2.m 🗶 +n = 100; 1 a11 = sprand(n/2,n/2,10/n); a12 = sprand(n/2,n/2,0.2/n); 2 a21 = sprand(n/2,n/2,0.2/n); a22 = sprand(n/2,n/2,10/n); 3 a = [a11 a12; a21 a22]; 4 a = sparse(a); 5 spy(a) 6

matlab: importing network datasets Many searchable databases for networks

Index of Complex Networks

The Colorado Index of Complex Networks (ICON)

ICON is a comprehensive index of research-quality network data sets from all domains of network science, including social, web, information, biological, ecological, connectome, transportation, and technological networks.

Each network record in the index is annotated with and searchable or browsable by its graph properties, description, size, etc., and many records include links to multiple networks. The contents of ICON are curated by volunteer experts from Prof. Aaron Clauset's research group at the University of Colorado Boulder.

Click on the NETWORKS tab above to get started.

🔺 Not Secure | yifanhu.net/GALLERY/GRAPHS/search.html CΔ

Search The University of Florida Sparse Matrix Collection

Fill in one or more of the following fields and click on "search"

Keyword (cont	ained in group, name, kind, author, editor and note
More than but less than	rows.
More than but less than	columns.
More than but less than	nonzeros.
More than but less than	% nonzero pattern symmetry.
Structure Any ~	
Positive definite? Any ~	
Type Any 🗸	
Group: Name:	
Year: between and (integer year, e.g., 2001-2010)
D: between and (int	eger IDs, e.g., between 2300-)

Search

Importing power-grid network into matlab

Z	Ì	Editor – /Users/juanga/Dropbox/TalksDropbox/ICERM/power.m*
	ſ	problem2.m 🗶 diversity.m 🗶 erdos.m 🗶 sbm.m 🗶 power.m* 🗶 pro
1	-	<pre>load('1138_bus.mat'); % load dataset</pre>
2	-	a = sign(abs(Problem.A)); %create adjacency matrix, make unwe
3	-	<pre>n = length(a);</pre>
4	-	webweb(a)

eighted

Simulating the simplest spreading process: if a neighbor is infected, you become infected $v_{i}^{t}(i) = 1$ if useds is infected, at times 4

 $x^{t}(i) = 0$ if node *i* is not infected at time *t*, $x^{t}(i) = 1$ if node *i* is infected at time *t*

Simulating the simplest spreading process: if a neighbor is infected, you become infected

 $x^{t}(i) = 0$ if node *i* is not infected at time *t*, $x^{t}(i) = 1$ if node *i* is infected at time *t*

$$x^{t+1}(i) = \operatorname{sign}\left(\sum_{j=1}^{N} A_{ij} x^{t}(j)\right) = (\operatorname{sign}(A\mathbf{x}))_{i}$$

litor - /Users/juanga/Dropbox/TalksDropbox/ICERM/spread.m*
rdos.m 🛛 sbm.m 🗶 power.m 🗶 problem2.m 🗶 diversity.m 🗶 spi
<pre>- load('1138_bus.mat'); % load dataset</pre>
<pre>a = sign(abs(Problem.A)); %create adjacency matrix, make u</pre>
- n = length(a);
<pre>- [u lam] = eigs(a,1);</pre>
$\left[cont = \frac{1}{2}\right] = max(chc(u))$
<pre>[centrality] = max(abs(u));</pre>
x = z eros(n 1)
x = 2eros(n, 1), x(i) = 1;
X(1) = 1
- □ for t = 1:5
x = sign(a * x);
- end
x = zeros(n,1);
-x(1) = 1;
- for t = 1:5
<pre>x = sign(a*x);</pre>
- ^L end

Seed one node at t = 0 and iterate until t = 5

inweighted

(Not optimized)

matlab Simulating the simplest spreading process

low eigenvector centrality seed

high eigenvector centrality seed

Talk outline

Part 2

✓ Modeling processes on networks: SIS example

 \checkmark Creating, importing and visualizing networks in matlab and python

Example: modeling **diversity** and productivity

Diversity-productivity modeling example

Diversity and Productivity in Production Teams

Barton H. Hamilton, Jack A. Nickerson, Hideo Owan Advances in the Economic Analysis of Participatory and Labor-Managed Firms ISBN: 978-1-78190-220-2, eISBN: 978-1-78190-221-9 ISSN: 0885-3339 Publication date: 11 September 2012 Reprints & Permissions

Abstract

The popular press often touts workforce demographic diversity as profit enhancing because it may reduce the firm's communication costs with particular segments of customers or yield greater team problem-solving abilities. On the other hand, diversity also may raise communication costs within teams, thereby retarding problem solving and lowering productivity. Unfortunately, there is little empirical research that disentangles the above countervailing effects. Diversity in ability enhances the team productivity if there is significant mutual learning and collaboration within the team, while demographic diversity may harm productivity by making learning and peer pressure less effective and increasing team-member turnover. We evaluate these propositions using a novel panel data from a garment plant that shifted from individual piece rate to group piece rate production over three years. Because we observe individual productivity data, we are able to econometrically distinguish between the impacts of diversity in worker abilities and demographic diversity. Teams with more heterogeneous worker abilities are more productive at the plant. Holding the distribution of team ability constant, teams composed of only one ethnicity (Hispanic workers in our case) are more productive, but this finding does not hold for marginal changes in team composition. We find little evidence that workers prefer to be segregated; demographically diverse teams are no more likely to dissolve, holding team productivity (and hence pay) constant, than homogeneous teams.

Academy of Management Journal, Vol. 64, No. 5 Articles

The Effects of Racial Diversity Congruence between Upper Management and Lower Management on Firm Productivity

🕕 is companion of 🛛 🗸

Orlando C. Richard, María del Carmen Triana and Mingxiang Li

Impact of Workplace Diversity

Elizabeth Foma University of Guam School of Business and Public Administration P. O. Box 5169 UOG Station Mangilao, Guam 96923 efoma@uguam.uog.edu; drmayuk@yahoo.com

Diversity-productivity modeling example

Suppose we have N workers (nodes), and they collaborate (links) in projects.

Each worker has a characteristic variable x (could represent race, political ideology, gender, skills, etc.)

Teams of workers try to find the solution to a particular problem. We will model the "problem" as maximizing the function sin(x - b)

Modeling diverse team adaptation

Single problem, non-diverse teams:

good or bad solution, depends on problem

Multiple problems, diverse team:

consistently good solutions

Diverse workspace

Non-diverse workspaces Connect nodes i, j with probability $p_{i,j} = f(|x^0(i) - x^0(j)|)$

Snake

Diversity modeling example Dynamics

Every time step:

Choose a random node i

Choose a random "problem", that is, a random b for the function $h(x) = \sin(x - b)$

Find the team's productivity $\max\{h(x_i)\}$ $A_{ii} \neq 0$

If productivity is less than -0.5, rewire one connection from node i at random

What if nodes still prefer to connect to similar nodes?

Pick another random node j

Node j chooses a neighbor k at random and rewires to random node mif $|x_i - x_m| < |x_i - x_k|$

Diversity modeling example

Diversity stagnates

Diversity modeling exampleIn our example, we can define diversity as

This accounts for diversity across links, not at the population level

 $D = \sum A_{ij} |x_i - x_j|$ i,j

Diversity increases until the benefits of productivity increase are negated by the tendency to connect to similar people

Diversity modeling example If nodes do not rewire seeking similar characteristics, diversity keeps increasing

Diversity modeling example

This was a made-up example where we know what is going to happen.

If anyone is interested in collaborating or has ideas to make it more interesting, please let me know!

Talk outline

Part 2

✓ Modeling processes on networks: SIS example

 \checkmark Creating, importing and visualizing networks in matlab and python

 \checkmark Example: creating model of **diversity** and productivity

