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This tutorial will review concepts covered in depth, for example, in 
Newman’s Networks book:
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Example: friendship network in middle and high schools: mixing by race and grade

Networks: motivation for social justice analysis

At first sight there seems to be segregation on the left school and not on the right. Is this the case, 
or does it depend on how the network is drawn? 

Symbol colors represent race. Symbol shapes represent grade.

James Moody, American Journal of Sociology, v 107, Number 3, pp. 679-716 (2001).



Networks: motivation for social justice analysis
Quantifying relationships can make biases and prejudices evident

structure of academia, shed new light on
the factors that shape individual career tra-
jectories, and identify a novel connection
between faculty hiring and social inequality.

RESULTS

Across the sampled disciplines, we find
that faculty production (number of fac-
ulty placed) is highly skewed, with only 25%
of institutions producing 71 to 86% of all
tenure-track faculty (table S2; this and sub-
sequent ranges indicate the range of a given
quantity across the three disciplines, un-
less otherwise noted). The number of fac-
ulty within an academic unit (number of
faculty hired, that is, the unit’s size) is also
skewed, with some units being two to three
times larger than others. Business schools
are especially large, generally containing
several internal departments, with a mean
size of 70 faculty members who received
their doctorates from other within-sample
units, whereas computer science and his-
tory have mean sizes of 21 and 29, respec-
tively (see Supplementary Materials). The
differences in size within a discipline,
however, cannot explain the observed dif-
ferences in placements. If placements were
simply proportional to the size of a unit,
then the placement and size distributions
would be statistically indistinguishable. A
simple test of this size-proportional place-
ment hypothesis shows that it may be re-
jected out of hand [Kolmogorov-Smirnov (KS) test, P < 10−8;
Fig. 2, B and C], indicating genuine differential success rates
in faculty placement.

The Gini coefficient, a standard measure of social in-
equality, is defined as the mean relative difference between
a uniformly random pair of observed values. Thus, G = 0
denotes strict equality, and G = 1 maximal inequality. We
find G = 0.62 to 0.76 for faculty production (Fig. 2, A and
B), indicating strong inequality across disciplines [cf., G =
0.45 for the income distribution of the United States (12)].

Strong inequality holds even among the top faculty pro-
ducers: the top 10 units produce 1.6 to 3.0 times more fac-
ulty than the second 10, and 2.3 to 5.6 times more than the
third 10. For such differences to reflect purely meritocratic
outcomes, that is, utilitarian optimality of total scholarship
(13), differences in placement rates must reflect inherent dif-
ferences in the production of scholarship. Under a meritoc-
racy, the observed placement rates would imply that faculty
with doctorates from the top 10 units are inherently two to
six times more productive than faculty with doctorates from
the third 10 units. The magnitude of these differences makes
a pure meritocracy seem implausible, suggesting the influ-
ence of nonmeritocratic factors like social status.
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Fig. 1. Prestige hierarchies in faculty hiring networks. (Top) Placements for 267 computer science
faculty among 10 universities, with placements from one particular university highlighted. Each arc
(u,v) has a width proportional to the number of current faculty at university v who received their doctorate
at university u (≠v). (Bottom) Prestige hierarchy on these institutions that minimizes the total weight
of “upward” arcs, that is, arcs where v is more highly ranked than u.
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Fig. 2. Inequality in faculty production. (A) Lorenz curves showing the fraction of
all faculty produced as a function of producing institutions. (B and C) Complementary
cumulative distributions for institution out-degree (faculty produced) and in-degree
(faculty hired). The means of these distributions are 21 for computer science, 70 for
business, and 29 for history.
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Example: prestige in faculty hiring networks

NETWORK SC I ENCES

Systematic inequality and hierarchy in faculty
hiring networks
Aaron Clauset,1,2,3* Samuel Arbesman,4 Daniel B. Larremore5,6

The faculty job market plays a fundamental role in shaping research priorities, educational outcomes, and career
trajectories among scientists and institutions. However, a quantitative understanding of faculty hiring as a system is
lacking. Using a simple technique to extract the institutional prestige ranking that best explains an observed faculty
hiring network—who hires whose graduates as faculty—we present and analyze comprehensive placement data on
nearly 19,000 regular faculty in three disparate disciplines. Across disciplines, we find that faculty hiring follows a
common and steeply hierarchical structure that reflects profound social inequality. Furthermore, doctoral prestige
alone better predicts ultimate placement than a U.S. News & World Report rank, women generally place worse than
men, and increased institutional prestige leads to increased faculty production, better faculty placement, and a
more influential position within the discipline. These results advance our ability to quantify the influence of prestige
in academia and shed new light on the academic system.

INTRODUCTION
Faculty hiring is a ubiquitous feature of academic disciplines, the result
of which—who hires whose graduates as faculty—shapes nearly every
aspect of academic life, including scholarly productivity, research prior-
ities, resource allocation, educational outcomes, and the career trajec-
tories of individual scholars (1–4). Despite these fundamental roles, a
clear and systematic understanding of the common patterns and effi-
ciencies of faculty hiring across disciplines is lacking.

From the institutional perspective, faculty hiring is an implicit as-
sessment: when an institution u hires as faculty the graduate of another
institution v, u makes a positive assessment of the quality of v’s teach-
ing and research programs. Similarly, when an individual accepts a job
offer from u, he or she makes a positive assessment of u’s quality. As a
collection of such pairwise assessments, a discipline’s faculty hiring
network (Fig. 1) represents a collective assessment (5) of its own
educational and research outcomes. When institutions are unequally
successful in faculty placement, achieving more placements at other
successful institutions implies a more positive collective assessment of
that institution’s outcomes.

Differential success rates in such competitions are a hallmark of so-
cial hierarchy, which may emerge from either physical dominance or
social prestige mechanisms (6). Among academic institutions, physical
dominance may be neglected, leaving social prestige, in which less
prestigious institutions seek to emulate the successful behaviors of
more prestigious institutions in an effort to bolster their own prestige
(7, 8). In this context, prestige in faculty hiring is an operational var-
iable that encompasses differences in both scholastic merit and non-
meritocratic factors such as social status or geography. If such factors
are irrelevant, then prestige is equivalent to merit. More realistically,
nonmeritocratic factors play a role, and the greater their importance,
the lesser the correlation between prestige and merit.

Objectively measuring institutional prestige is complicated by the
fact that it depends on interactions between institutions and on sub-
jective evaluations, among other factors. Classic approaches, such as the
authoritative rankings by the U.S. News & World Report and the Na-
tional Research Council (NRC) (9), quantify institutions independent-
ly, omitting the impact of interactions like joint initiatives, research
collaborations, graduate admissions, or faculty hiring. Such rankings
are also widely criticized (10, 11) for emphasizing educational inputs,
like reputation, wealth, and “selectivity,” rather than educational out-
puts. In contrast, faculty hiring networks simultaneously represent in-
teractions and expert assessments of outcomes, which enables an effective,
quantitative approach by which to characterize the impact of prestige,
identify large-scale patterns in hiring, and shed light on the relative
roles of merit and status.

Here, we investigate the structure of faculty hiring networks using
complete and hand-curated data on the placements of nearly 19,000
tenure-track or tenured faculty, among 461 North American departmental
or school-level academic units, in the disciplines of computer science,
business, and history (see Supplementary Materials and table S1). These
disciplines represent highly distinct scholastic traditions, which provide a
broad basis for characterizing general patterns in faculty placement in ac-
ademia. Institutions in our sample were selected from comprehensive
lists of Ph.D.-granting academic units within each discipline. To be present
in our data, a faculty member must have received his or her doctorate
from and held at the time of sampling a faculty position at one of the
in-sample institutions. Of the faculty sampled, 86% met these criteria,
indicating a nearly closed doctoral ecosystem among these institutions.

To these data, we apply a novel network-based technique for extract-
ing a prestige hierarchy that best explains the observed hiring decisions.
Across disciplines, we show that faculty hiring follows a common and
steeply hierarchical structure that reflects profound social inequality
among institutions. Furthermore, we show that (i) doctoral prestige alone
better predicts ultimate placement than authoritative rankings from the
U.S. News &World Report and the NRC, (ii) female graduates generally
place worse than male graduates from the same institution, and (iii) in-
creased institutional prestige leads to increased faculty production, better
faculty placement, and amore influential position within a discipline. These
results advance our ability to quantify and understand the systematic

1Department of Computer Science, University of Colorado, Boulder, CO 80309, USA.
2BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. 3Santa Fe
Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA. 4Ewing Marion Kauffman
Foundation, Kansas City, MO 64110, USA. 5Department of Epidemiology, Harvard
School of Public Health, Boston, MA 02115, USA. 6Center for Communicable Disease
Dynamics, Harvard School of Public Health, Boston, MA 02115, USA.
*Corresponding author. E-mail: aaron.clauset@colorado.edu

2015 © The Authors, some rights reserved;
exclusive licensee American Association for
the Advancement of Science. Distributed
under a Creative Commons Attribution
Non-Commercial License 4.0 (CC BY-NC).
10.1126/sciadv.1400005
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Networks: the basics

A network is a collection of nodes and links 1
2

3

Nodes = Star Wars characters

Links = co-appearances in Star Wars movies

http://evelinag.com/blog/2015/12-15-star-wars-social-network/



Networks: representations

A network is a collection of nodes and links

= {1,2,3}

1
2

3

= {(1,2), (1,3), (2,3)}

Nodes
Links

Edge list

1,2
1,3
2,3

Adjacency matrix = ADefinition

<latexit sha1_base64="TLDjWx9ViPCLmZfyR9c8Utv1zbs="></latexit>2

4
0 0 0
1 0 0
1 1 0

3

5
1
2
3

1 2 3

“2 points to 3”

Precise but cumbersome Computationally efficient Useful for theory, inefficient 
when storing many zeros



Basic properties: degree and degree distribution

The degree of a node is the number of links it has to other nodesi
Degree of node  = i ki

The degree distribution is the fraction of nodes with degree . Consider these two examples:k

k k

P(k)P(k) Network of face-to-face 
daily conversations

Network of twitter followers

“Heavy tail”



Basic properties: degree distribution

The degree distribution of real-world networks is often heavy-tailed. 


In practice this means there is a significant number of nodes with very high degrees (think popular 
twitter/instagram users or web pages)

Credit: Aaron Clauset

For some networks 



“Scale-free networks”
P(k) ∼ k−γ



P(k) = Ck−γ log(P(k)) = log(C) − γ log(k)

log(P(k))

log(k)

Scale-free networks



Mason Porter’s Power Law Shop
(now sadly inactive as far as I know)



Scale-free networks - why all the fuss?

Power laws suggest the possibility of common organizing principles


Physicists attracted to the similarities with statistical physics


The fit to power-law scaling is not statistically justified in many situations


The consensus (if there’s one) is that many networks have a heavy-tailed 
degree distribution, and that’s what matters



Heavy-tailed degree distribution - moments

The qualitative behavior of processes on networks often depend strongly on the value of      ⟨k2⟩/⟨k⟩

where  is the nth moment of the degree distribution, ⟨kn⟩ ⟨kn⟩ =
1
N

N

∑
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Assortative mixing
Sometimes nodes are more likely to connect if they have similar characteristics

Perhaps the single most relevant concept in network science for social justice analysis!

Employers might want to hire people who look like them 🤨

😐Facebook users more likely to connect if they went to the same high school




Assortative mixing

Example: friendship network in middle and high schools: mixing by race and grade

James Moody, “Race, School Integration, and Friendship Segregation in America”, American Journal of Sociology, v 107, Number 3, pp. 679-716 (2001).

Sometimes nodes are more likely to connect if they have similar characteristics



Assortativity coefficient
How assortative is the network? How can we tell, without visualizing and eyeballing the patterns, 
if there is assortative mixing?

Suppose that  is the fraction of edges connecting a node of type  to a node of type . An 
assortativity coefficient can be defined as

eij i j

: randomly connected; : perfectly segregatedr = 0 r = 1

r =
∑i eii − ∑i aibi

1 − ∑i aibi
ai = ∑

j

eij bj = ∑
i

eij  where

Newman, Mark EJ. "Mixing patterns in networks." Physical review E 67.2 (2003): 026126.

From  to i i From i To i



r = 0.59 r = 0.99r = 0.05r = − 0.68

Assortativity coefficient
 number of ’s here divided by total number of ’se11 = 1 1

 number of ’s here divided by total number of ’se21 = 1 1



Assortativity coefficient
In this example: only two categories

In general: we might want to include more categories, and data on categories might not be clear.

We know exactly which nodes belong to which category. 



Assortative mixing
Example: organization with overall gender balance (50%-50%), but with assortative mixing by gender 
and with resources controlled by males

Female Male



Female Male

Assortative mixing
Example: organization with overall gender balance (50%-50%), but with assortative mixing by gender 
and with resources controlled by males

Female Male

Allocate resource to 
network neighbors



Female Male

Assortative mixing
Example: organization with overall gender balance (50%-50%), but with assortative mixing by gender 
and with resource distribution controlled by males

Structural bias

Female Male

Resource allocation is unfair even if 
organization has 50%-50% gender balance



Relevant read

https://arxiv.org/abs/2206.07113 


(submitted to arXiv June 14)



Motivation: spreading processes on networks

Seed

Centrality



Centrality
Motivation: spreading processes on networks



Centrality
Motivation: spreading processes on networks



Centrality
Motivation: spreading processes on networks



Seed

Centrality
Motivation: spreading processes on networks



Centrality
Motivation: spreading processes on networks



Centrality
Motivation: spreading processes on networks



Centrality
Motivation: spreading processes on networks



Many ways to define centrality

Degree centrality: the “degree centrality” of a node is its degree

Eigenvector centrality: the centrality  of node  is proportional to the sum of its neighbors’ 
centralities 

ui i

ui = C
N

∑
j=1

Aijuj

        The eigenvector centrality  of node  is proportional to the th entry of the network’s 
adjacency matrix eigenvector corresponding to its largest eigenvalue.

ui i i

Betweenness centrality: how many shortest paths between pairs of nodes have to go 
through node i



Eigenvector centrality

Si
ze

 o
f a

va
la

nc
he

Eigenvector centrality of seed node

Larremore, Daniel B., et al. "Statistical properties of avalanches in networks." Physical Review E 85.6 (2012): 066131.



https://aksakalli.github.io/2017/07/17/network-centrality-measures-and-their-visualization.html

Many ways to define centrality
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Social networks are big and messy
It is useful to have null models where we can remove complications and study the effect of 
separate features individually

Network of social interactions on a facebook page 

(nodes with degree less than 6 are not shown)


Nia et al., 2012 International Conference on Social Informatics, 2012 




Network models
Network models allow us to add and change properties in a controlled way

Some uses:

As null models: Construct a network which a desired property but otherwise random.

To explore the effect of network properties: Construct a network where a property can be adjusted.


As testbeds: Test your model of social dynamics in a simple network first. 



The simplest: Erdös-Rényi network

 : Random network with N nodes and probability of connection G(N, p) p

No heavy-tail

No community structure

Easy to work with

Start with  nodes, create a 
link between every pair with 
probability 

N

p

Too simple



Degree-based models - Chung-Lu model
Random network with prescribed degree sequence {k1, k2, …, kN}

kikj

∑n kn

i j

Degree distribution can 
be prescribed
No community structure

Start with  nodes, create a link 
between nodes ,  with probability

N
i j

Chung, Fan, Linyuan Lu, and Van Vu. "The spectra of random graphs with given expected degrees." Internet 
Mathematics 1.3 (2004): 257-275.



Degree-based models - configuration model

Random network with prescribed degree sequence {k1, k2, …, kN}

k1 = 1 k2 = 2 k3 = 3 k4 = 1 k5 = 1 k6 = 2

Assign stubs to each node according to their degree
Match pairs of stubs randomly

Fosdick, Bailey K., et al. "Configuring random graph models with fixed degree 
sequences." Siam Review 60.2 (2018): 315-355.



Community structure
Nodes in networks often split into communities

Nodes = twitter users

Links = retweets

Color = ideology


Brady et al. PNAS 2016



Stochastic block model
Specify communities in advance, and the create links with higher probability for nodes within the 
same community

Start with  nodes, create a link 
between every pair of nodes  with 
probability

N
i, j

Block Matrix 

Community structure 
can be prescribed

No heavy-tail

⇢
pin i, j in the same community
pout i, j in di↵erent community
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Actual Matrix Network

pin > pout
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Holland, Paul W., Kathryn Blackmond Laskey, and Samuel Leinhardt. "Stochastic blockmodels: First steps." Social networks 5.2 (1983): 109-137.



Generalized stochastic block models
Specify node characteristics (race, age, community, etc) in a vector zi

Probability that two nodes are connected is a function of , :


 

zi zj

P(Aij = 1) = f(zi, zj)

Very flexible; characteristics can be:


Intended nodal degree (Chung-Lu model)


Community index (previous slide)


Demographical metadata


Dynamical parameters (e.g., infectivity for epidemic models, 

frequency for oscillator networks)




Growing network models

Nodes join the network and connect preferentially to nodes that have a high degree already

j

i

k

Preferential attachment mechanism: originally proposed by Price, popularized by Barábasi-Albert

Price, Derek J. De Solla. "Networks of scientific papers: The pattern of bibliographic references indicates the 
nature of the scientific research front." Science 149.3683 (1965): 510-515.
Barabási, Albert-László, and Réka Albert. "Emergence of scaling in random 
networks." science 286.5439 (1999): 509-512.

First-mover advantage



Evolving network models

Example: network and opinions coevolving

Time-evolving network models could be very relevant for social justice modeling


(an example will be shown in Part II)



Talk outline

‣ Motivation: how are networks useful for social justice analysis?


✓Basic network properties


✓Network models


‣ Beyond networks

Part 1

‣ Examples


Part 2
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Beyond networks
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Nodes and links

Slide from Nicholas Landry

Networks
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Hypergraphs

Nodes and hyperedges



What is a hypergraph?

Nodes: {1,2,3,…N}, 

Edges: pairs of nodes

i

j
Network 

Hypergraph Nodes: {1,2,3,…N}, 

Hyperedges: sets of 

nodes
i

j

k



Hypergraphs
Opinion models

≠

Multiple one-on-one discussions are not 
equivalent to one group discussion



≠

Scientific collaborations

Multiple pairwise joint publications are not 
equivalent to a single joint publication.

Hypergraphs



Dynamics on Hypergraphs

Synchronization: 

Opinion models:

I. Iacopini, G. Petri, A. Barrat, V. Latora, Nature Communications (2019)

B. Jhun, M. Jo, B. Kahng, Journal of Statistical Mechanics (2019).

G. F. de Arruda, G. Petri, Y. Moreno, PRR (2020).

P. S. Skardal, A. Arenas, PRL (2019)

A. P. Millán, J.J. Torres, G. Bianconi (2020)

L. Neuhäuser et al., arXiv 2004.00901

A. Hickok et al., SIAM JAPD, (2021)

Contagion models

Review: Battiston et al., Physics Reports (2020)



Part II

Demonstrations of network creation and manipulation in matlab and python

Examples of simple spreading processes on networks

Example of diversity/productivity modeling






