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See http://arxiv.org/abs/2301.11169 for our preprint, and
https://github.com/AndrewVSutherland/EndECNF for
implementations in Pari/GP, SageMath and Magma.

Our algorithm is now in SageMath (version 10.0) and will be in
Pari/GP (version 2.16).
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https://github.com/AndrewVSutherland/EndECNF


Introduction

For many questions concerning elliptic curves E over number
fields K , it is important to know whether or not the curve has
Complex Multiplication (CM).

By definition, this means that End(E) is an order in an
imaginary quadratic field; otherwise End(E) � Z.

The question we are asking is in two parts:

Given an elliptic curve E defined over a number field K,
(1) does E have CM?; if not, then End(E) � Z;

(2) if so, what is the CM discriminant D such that End(E) � OD?



Endomorphism rings and orders

▶ Recall: for each negative discriminant D (i.e. D ≡ 0,1
(mod 4)) there is a unique order OD of discriminant D.
Hence elliptic curves with CM have a unique CM
discriminant.

▶ By End(E) we always mean the ring of geometric
endomorphisms, defined over the algebraic closure; the
additional endomorphisms will only be defined over K
when

√
D ∈ K .



j-invariants

▶ End(E) only depends on the j-invariant j(E)

▶ CM curves have integral j-invariants.

So we can rephrase our questions:

Given an algebraic integer j,
(1) is j a CM j-invariant (“singular modulus”)?

(2) if so, what is the associated discriminant D?

These questions are independent of the field K containing j.



Hilbert Class Polynomials

▶ For each negative discriminant D, the number of CM
j-invariants with discriminant D is h(D), the class number
of the order OD ;

▶ they are all Galois conjugate, being the roots of the Hilbert
Class Polynomial (HCP) HD , which is monic and
irreducible with integer coefficients.

So we can rephrase our questions again, in terms of the
minimal polynomial H of the algebraic integer j:

Given a monic irreducible polynomial H in Z[X ],
(1) is H an HCP?

(2) if so, for which D is H = HD?



The exhaustive method

▶ For each class number h there are only finitely many
discriminants D with h(D) = h, so finitely many HCPs of
degree h.

▶ If we know them all we can simply do a table lookup.
▶ E.g. for h = 1 we have 13:

D = −3,−4,−7,−8,−11,−12, . . . ,−163 and
HD = X ,X − 1728,X + 3375,X − 8000,X + 32768,X +
54000,X + 262537412640768000.

▶ For h ≤ 100 there are 66758 discriminants and over 2GB
of HCPs!

▶ There are 29,25,84,29,101,38,208,55,123 discriminants
for h = 2, . . . ,10. So this is only useful for very small h.



CM facts

▶ Let D be a negative discriminant and K = Q(
√

D). After
embedding OD ↪→ C, each invertible ideal a ⊂ OD becomes
a lattice in C and hence has a j-invariant j(a) which only
depends on the ideal class [a].

▶ For each a, L = K(j([a])) is the ring class field for OD ; it is
an Abelian Galois extension of K of degree h(D), with
Gal(L/K) � CD .

▶ The action of CD is given by [b] : j([a]) 7→ j([ab−1]).
▶ L is also Galois over Q with Gal(L/Q) � CD ⋊ C2, where C2

acts on CD by inversion.
▶ F = Q(j([a])) is only Galois when CD has exponent 2.



The abelian case

▶ When CD is an elementary abelian 2-group, F = Q(j([a]))
is itself Galois and L = F(

√
D) is abelian over Q.

▶ For example, when h(D) = 1, F = Q and L = K or when
h(D) = 2.

▶ This only occurs for finitely many discriminants!
There are 101 of these, listed in John Voight’s PhD thesis
(UC Berkeley, 2005), with h(D) ≤ 16; the largest is
D = −7392 with h(D) = 16.

I may tacitly exclude this case in what follows.



Action of Galois and complex conjugation

▶ The h(D) elements of Gal(L/K) act via j([a]) 7→ j([ab−1]) for
[b] ∈ CD .

▶ The other h(D) elements of Gal(L/Q) have order 2, and
act via j([a]) 7→ j([a−1b]) for [b] ∈ CD .

▶ As a special case, complex conjugation acts by
j([a]) 7→ j([a]) = j([a]−1).

▶ Hence the number of real conjugates is h2 := #CD [2].
▶ There is always at least one real conjugate j([OD ]), and the

conjugates are all real if and only if D is one of the abelian
discriminants.



Properties of HCPs I: factorization over R

▶ By definition,

HD(X) =
∏

[a]∈CD

(X − j([a]))

so that HD is monic, and it is irreducible, of degree h(D),
with integer coefficients.

▶ The root j([a]) is real if and only if [a] ∈ CD [2], so the
number h2 of real roots is a power of 2, divides h, and is 1
if and only if h is odd.

▶ One way to show that some f ∈ Z[X ] (monic irreducible of
degree h) is not an HCP is to count its real roots and see if
it satisfies these. . .



Identifying D using real roots

The algorithm used by the function CMtest in Magma V2.27-5 is
to compute the real roots to high precision, check that their
number is a power of 2 [dividing the degree] and inverting the j
function.

For example if D is even and h > 1 then the largest positive real
root r = j(

√
D/2) ≥ j(

√
−5) > 1264538 and so

D ∼ − log((r − 744)/π)2.

Similarly in the case of odd D, using the largest negative root.

This method is fine for small degree ( < 1s for h ≤ 45) but very
slow and memory bound for larger degrees.



Properties of HCPs II: factorization over Fp

The factorization pattern of HD (mod p) is very constrained.
Assuming that HD (mod p) is squarefree:

▶ If p splits in K as (p) = pp then (considering the action of
Frobp) we find that HD (mod p) factors as a product of h/f
irreducible factors of degree f , where f | h is the order of [p]
in CD .

▶ If p is inert in K then HD (mod p) factors either as a
product of h/2 irreducible quadratics, or as h2 linear and
(h − h2)/2 quadratics, where h2 = #CD [2].
The cases depend on whether [a] is a square or not, where
the action of Frobp is given by [a].



Application to HCP detection

The special factorization patterns of HD (mod p) provide ways
of easily showing that H ∈ Z[X ], monic irreducible of degree h,
is not an HCP.

For example, if h is odd, then h2 = 1, and the number of roots
modulo p must be 0, 1 or h.

When h is even, the number of roots must be 0, h2 or h, for
some h2 > 1, a power of 2 dividing h (which must be the same
for all p which do not have 0 or h roots modulo p).

But to show that a polynomial is an HCP HD , and to recover D,
we need something more.



Using ordinary primes to recover D

As before, let p be a prime such that HD (mod p) is squarefree;
these are unramified in K , so are split or inert.

Let E/L be an elliptic curve with j-invariant j([a]) for some
[a] ∈ CD , so that E has CM by OD , and has good reduction
modulo primes p | p.

The reduction Ep is ordinary if and only if p splits in K ;
otherwise, for inert primes, it is supersingular.

Key fact: in the ordinary case,

End(Ep) � OD � End(E).

So we can recover D by computing End(Ep)!



Using ordinary primes to recover D (contd.)
In our algorithm we find ordinary primes p which split
completely in L , so we only need work over Fp.

But if we do not yet know K = Q(
√

D), how do we find such
primes?

Answer: they are primes such that HD (mod p) splits
completely into linear factors. The density of these is 1/(2h)
(and is likely to be much smaller for irreducible f of degree h
which are not HCPs).

Let Ep/Fp be an elliptic curve with j(Ep) a root of H mod p.
Computing End(Ep) for ordinary Ep/Fp is a previously solved
problem which can be done in polynomial time (under GRH).
[Kohel (1996); Bisson (2011); Bisson and Sutherland (2011)]

In our case we can make use of the fact that the class number
of End(Ep) is known, to simplify the algorithm.
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The algorithm
Given a monic irreducible H ∈ Z[X ] of degree h, return true,D

if H = HD for some D, otherwise return false.

Set D = {h2 = 2k : h2|h, h2 ≡ h (mod 2)}.
For increasing primes p ≥ ⌈37h2(log log(h + 1) + 4)4

⌉:

1. Compute Hp := H mod p ∈ Fp[x].
2. Compute d := deg gcd(Hp(x), xp

− x).
3. If d = 0 or gcd(Hp ,H′p) , 1 then proceed to the next prime

p.
4. If d < h and d < D then return false.
5. Let Ep/Fp be an elliptic curve with j(Ep) a root of Hp.
6. If Ep is supersingular then proceed to the next prime p.
7. Compute D := disc(End(Ep)) ∈ Z.
8. If h(D) , h then return false, else compute HD .
9. If H = HD then return true, D; otherwise return false.



Proof of correctness

▶ The algorithm only returns true and D after checking that
H = HD .

▶ It terminates when it reaches a prime p that satisfies:
1. F = Q[X ]/(H) has a degree 1 prime p | p;
2. every E/F with j(E) a root of H has good ordinary reduction

at every p | p.

A positive density of primes satisfy these.
▶ If H = HD then at step 7, H splits completely mod p and E

is ordinary, so the D computed in step 7 is correct.

For details, see our paper.



Comments on the algorithm

▶ The computed starting value of p ensures that 4p > |D |
when H = HD (under GRH), which is necessary for HD to
split completely mod p.

▶ When H is an HCP we expect (under GRH) to find a
splitting prime in about 2h trials.
The algorithm’s correctness does not depend on these.

▶ For better practical performance and for the asymptotic
complexity we should not reduce H modulo primes one by
one, but use a product tree, first reducing H modulo a
product of primes (in the range) which is large enough.

▶ In computing End(E) we may assume that its class number
is h.



Complexity of the algorithm

Theorem (Heuristic)
Under reasonable heuristic assumptions (including GRH), the
Algorithm can be implemented as a Las Vegas algorithm that
runs in

h2(log h)3+o(1) + h(h + |H|) log(h + |H|)2+o(1) = h(h + |H|)1+o(1)

expected time (which is quasilinear in |H|), using at most

h(h + |H|) log(h + |H|)1+o(1)

space.

Here |H| is the logarithm of the maximum absolute value of the
coefficients of H.



An alternative algorithm
We have a second algorithm which admits a deterministic
implementation that runs in

(h2
|H|)1+o(1)

time using
(h|H|)1+o(1)

space.

The input is again H ∈ Z[X ], monic irreducible of degree h.

But

▶ It only returns true, not the value of D, when H = HD ; and
▶ its correctness is conditional on GRH!

See the paper for the other algorithm. Its implementation is
simpler, but it is slower in practice, and gives less information.



Computational results

We have implemented the algorithm in Pari/GP, SageMath, and
Magma. Our code does not implement all the tweaks mentioned,
but runs successfully on inputs of degree up to 1000, never
taking more than 4.5m (and only up to 30s for h ≤ 500).

In our timings we separate off the time to compute HD , and test
both HD and HD + 1 (which is not an HCP!) for many D up to
about 28 million, with h up to 1000.



Computational results

Magma Pari/GP SageMath
h |H| |D | tHCP tCM tnoCM tHCP tCM tnoCM tHCP tCM tnoCM

5 120 571 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
10 294 2299 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.00
20 843 9124 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.02 0.00
30 1198 21592 0.00 0.02 0.00 0.05 0.06 0.00 0.00 0.07 0.00
40 1739 34180 0.01 0.02 0.00 0.05 0.06 0.00 0.00 0.02 0.00
50 2161 64203 0.02 0.02 0.00 0.09 0.09 0.00 0.00 0.04 0.00

100 4197 249451 0.15 0.23 0.00 0.29 0.37 0.00 0.03 0.30 0.00

200 9520 910539 1.32 1.86 0.00 0.77 1.24 0.00 0.19 1.21 0.00
300 14621 2127259 4.64 6.20 0.01 2.06 3.23 0.00 0.60 3.28 0.02
400 21707 3460787 12.90 16.99 0.00 5.91 8.45 0.00 1.50 5.66 0.00
500 28965 6423467 26.22 31.21 0.01 9.99 12.35 0.00 3.03 8.52 0.00
600 33802 7885067 45.68 49.61 0.01 14.97 17.57 0.01 4.73 10.93 0.02
700 39857 12955579 72.36 76.45 0.01 14.50 17.28 0.01 7.22 10.72 0.01
800 44169 13330819 106.77 122.06 0.02 20.26 28.64 0.01 9.73 27.43 0.02
900 47449 19028875 141.95 145.31 0.01 28.00 30.76 0.01 12.59 16.73 0.01

1000 56827 23519868 215.96 267.94 0.03 49.48 83.42 0.02 18.81 81.98 0.03


