Families of genus-2 curves with 5-torsion

LuCaNT, ICERM, 14 July 2023

Noam D. Elkies, Harvard University

Overview

Context: \exists lots of parametrizations of elliptic curves with torsion (by modular curves like $X_1(p)$, X(p)); very few for abelian varieties of dimension > 1.

We find "X₁(5)" for genus-2 Jacobians, i.e. parametrize (C,T)with g(C) = 2 and 5-torsion $T \in \text{Jac}(C)$. Also the involution [sic] $(C,T) \leftrightarrow (C,2T)$ [because $(C,T) \cong (C,-T)$].

Then refine to (C,T) with some level-2 structure (e.g. "X₁(10)"), or satisfying some extra geometric or RM condition. E.g. a 2-dim. family with Jac(C) generically simple (even End_C = Z) and torsion $(Z/2Z)^4 \oplus (Z/5Z)$.

Connections elsewhere in the LMFDB (modular forms; hypergeometric periods).

Classical elliptic modular curves vs. genus-2 modular threefolds

We've long known and used formulas for $X_0(p)$ for plenty of p (100+) and a good number of $X_1(p)$ and even X(p), some with beautiful geometry.

Not so for curves of genus 2: for p > 3, only partial parametrizations: notably, split Jacobians (Jac(C) isogenous to $E \times E'$, Howe-Leprévost-Poonen 2000 and Howe 2015); also, p = 5with $T = P - P_0$ for some Weierstrass point P_0 (Boxall-Grant-Leprévost 2001: $y^2 + (x^3 + a_1x^2 + a_2x)y = a_5x$ with P_0, P at $x = 0, \infty$).

For p = 2 and p = 3, similar formulas <u>are</u> known for g = 2...

One 2-torsion point on g = 1 curve $y^2 = P_3(x) \leftrightarrow$ partial factorization, $P_3 = P_1P_2$;

One 2-torsion point on g = 2 curve $y^2 = P_6(x) \leftrightarrow partial factorization, <math>P_6 = P_2 P_4$.

In each case, full level-2 structure (i.e. all 2-torsion rational) \leftrightarrow full factorization of P_3 or P_6 .

p = 3:

One 3-torsion point on $y^2 = P_3(x)$: choice of a_1, a_2, a_3 s.t. $P_3 = (x + a_2)^3 + (a_1x + a_3)^2$. Full level-3 structure: X(3), tetrahedral symmetry over $\mathbf{Q}(\boldsymbol{\mu}_3)$.

One 3-torsion point on $y^2 = P_6(x)$: quadratic β s.t. $P_6 = c\gamma^3 + \beta^2$. Full level-3 structure: Burkhardt quartic, Sp₄(Z/3Z) symmetry (again needs $\mathbf{Q}(\mu_3)$).

One 2-torsion point on g = 1 curve $y^2 = P_3(x) \leftrightarrow$ partial factorization, $P_3 = P_1P_2$;

One 2-torsion point on g = 2 curve $y^2 = P_6(x) \leftrightarrow partial factorization, <math>P_6 = P_2 P_4$.

In each case, full level-2 structure (i.e. all 2-torsion rational) \leftrightarrow full factorization of P_3 or P_6 .

$$p = 3$$
:

One 3-torsion point on $y^2 = P_3(x)$: choice of a_1, a_2, a_3 s.t. $P_3 = (x + a_2)^3 + (a_1x + a_3)^2$. Full level-3 structure: X(3), tetrahedral symmetry over $\mathbf{Q}(\mu_3)$.

One 3-torsion point on $y^2 = P_6(x)$: quadratic β s.t. $P_6 = c\gamma^3 + \beta^2$. Full level-3 structure: Burkhardt quartic, Sp₄(Z/3Z) symmetry (again needs Q(μ_3)).

Next case is p = 5. For elliptic curves, $X_0(5)$ and $X_1(5)$ are well known, and even X(5) is famously rational with icosahedral symmetry over $Q(\mu_5)$.

In genus 2, the moduli threefold "X(5)" is of general type. But "X₁(5)" turns out to be still rational — and still parallel to the modular curve.

Example of 5-torsion on elliptic curve

5-torsion on 11.a3 (a.k.a. $X_1(11)$) : $y^2 + y = x^3 - x^2$

We reconstruct any elliptic curve E with 5-torsion point P from such a picture: translate y so the tangent to P is y = 0, getting $y^2 + (a_1x + a_3)y = x^2(x - x_0)$ with -2P at $(x_0, 0)$; then line through -2P and -P: $(0, -a_3)$ must be tangent at 2P, "etc."

For 5-torsion on a genus-2 Jacobian, we typically get analogous picture from the effective divisors that represent K + T and K-2T. Since $2(K+T)+(K-2T) \sim \iota^*(K+T)+2(K-2T) \sim 3K$, we get divisors of functions y - cubic(x):

We reconstruct any elliptic curve E with 5-torsion point P from such a picture: translate y so the tangent to P is y = 0, getting $y^2 + (a_1x + a_3)y = x^2(x - x_0)$ with -2P at $(x_0, 0)$; then line through -2P and -P: $(0, -a_3)$ must be tangent at 2P, "etc."

For 5-torsion on a genus-2 Jacobian, we typically get analogous picture from the effective divisors that represent K + T and K-2T. Since $2(K+T)+(K-2T) \sim \iota^*(K+T)+2(K-2T) \sim 3K$, we get divisors of functions y - cubic(x):

Example of 5-torsion on g = 2 curve

5-torsion on Jacobian of genus-2 curve 18055.b.18055.1: $y^{2} = \frac{1}{4}(x^{3} + x + 1)^{2} - x^{6} - x^{5} + 3x^{4} + 3x^{3} - 6x^{2} - 3x + 4$

(blue curve: $2y = -x^3 + 3x + 1$; red: $2y = -x^3 + 2x^2 + x + 3$; x-coordinates satisfy $x^2 = 2$ and $x^2 + x = 1$)

Translate y so blue is y = 0:

Example of 5-torsion on g = 2 curve, cont'd

(blue curve: y = 0; red: $y = -x^2 - x + 1$)

Then the RHS is a multiple of $Q^2(x)Q'(x)$ for quadratics Q, Q'vanishing on x-coordinates of the K + T and K - 2T divisor — indeed in our exmaple it's $-(x^2 - 2)^2(x^2 + x - 1)$; and substituting the red cubic for y then yields a multiple of QQ'^2 . This gives an identity in Q, Q', and the linear coefficient of y, which we soon parametrize up to scaling Q, Q': the curve is

$$y^{2} + (L'Q' - LQ)y = Q^{2}Q'$$

where L, L' are linear polynomials with LL' = Q - Q'; the divisors $\sim K + T$ and K - 2T are $\{Q = 0, y = 0\}$ and $\{Q' = 0, y = LQ\}$.

The equation

$$y^{2} + (L'Q' - LQ)y = Q^{2}Q'$$

has seven parameters, the 2+2+3 coefficients of L, L', Q; but generically L, L' are not proportional, and then using GL_2 we find an equivalent coordinate on the *x*-line for which

$$(L, L', Q) = (x, 1, q_2x^2 + q_1x + q_0).$$

so (q_0, q_1, q_2) are birational coordinates on the (C, T) moduli space. Changing T to 2T takes (q_0, q_1, q_2) to $(q_2, 1 - q_1, q_0)$; the quotient "X₀(5)" by this involution is also rational.

To recover the modular elliptic curve $X_1(5)$, regard the equation $y^2 + (L'Q' - LQ)y = Q^2Q'$ as an elliptic curve in the (Q, y) plane, with L, L' scalars and Q' = Q - LL' as before. The 5-torsion points are again at (Q, y) = (0, 0) and $(Q, y) = (LL', L^2L')$, and L'/L is a rational coordinate on $X_1(5)$. The equation

$$y^{2} + (L'Q' - LQ)y = Q^{2}Q'$$

has seven parameters, the 2+2+3 coefficients of L, L', Q; but generically L, L' are not proportional, and then using GL_2 we find an equivalent coordinate on the *x*-line for which

$$(L, L', Q) = (x, 1, q_2x^2 + q_1x + q_0).$$

so (q_0, q_1, q_2) are birational coordinates on the (C, T) moduli space. Changing T to 2T takes (q_0, q_1, q_2) to $(q_2, 1 - q_1, q_0)$; the quotient "X₀(5)" by this involution is also rational.

To recover the modular elliptic curve $X_1(5)$, regard the equation $y^2 + (L'Q' - LQ)y = Q^2Q'$ as an elliptic curve in the (Q, y) plane, with L, L' scalars and Q' = Q - LL' as before. The 5-torsion points are again at (Q, y) = (0, 0) and $(Q, y) = (LL', L^2L')$, and L'/L is a rational coordinate on $X_1(5)$. Now the modular curve $X_1(10)$ is still rational; it parametrizes (E, T, T_0) where E is an elliptic curve and T, T_0 are 5-torsion and 2-torsion points. That's a 3:1 cover of $X_1(5)$, which parametrizes only (E, T); explicitly

$$L' = (1 - 2t) \left(\frac{t}{t - 1}\right)^2 L, \quad Q = -\frac{t^4}{(t - 1)^2} L^2$$

for some rational coordinate t on $X_1(10)$.

In the genus-2 setting, we can use this to get as many as 3 rational Weierstrass points. For generic t_0, t_1, t_∞ choose L, L' such that $L'/L = (1 - 2t_i)(t/(t - 1))^2$ at x = i $(i = 0, 1, \infty)$; then solve the linear equations for the coefficients of Q to make $Q/L^2 = t_i^4/(t_i - 1)^2$ at each x_i . One or two Weiersstrass points is similar and easier; so is parametrizing (C, T) with a 2-torsion point.

[This is already [NDE 2003], with similar formulas for genus-2 Jacobians with a 6-, 7-, or 8-torsion point.] Now the modular curve $X_1(10)$ is still rational; it parametrizes (E, T, T_0) where E is an elliptic curve and T, T_0 are 5-torsion and 2-torsion points. That's a 3:1 cover of $X_1(5)$, which parametrizes only (E, T); explicitly

$$L' = (1 - 2t) \left(\frac{t}{t - 1}\right)^2 L, \quad Q = -\frac{t^4}{(t - 1)^2} L^2$$

for some rational coordinate t on $X_1(10)$.

In the genus-2 setting, we can use this to get as many as 3 rational Weierstrass points. For generic t_0, t_1, t_∞ choose L, L' such that $L'/L = (1 - 2t_i)(t/(t - 1))^2$ at x = i $(i = 0, 1, \infty)$; then solve the linear equations for the coefficients of Q to make $Q/L^2 = t_i^4/(t_i - 1)^2$ at each x_i . One or two Weiersstrass points is similar and easier; so is parametrizing (C, T) with a 2-torsion point.

[This is already [NDE 2003], with similar formulas for genus-2 Jacobians with a 6-, 7-, or 8-torsion point.]

All that assumes that the effective divisor representing K + Tis disjoint from both the K+2T and the K-2T divisor. That's the typical case, but there are *atypical* (C,T); that happens <u>iff</u> either T or 2T (but not both) is $\cong P - P_0$ with P_0 Weierstrass. (It then follows that the other is $\cong \pm (2P - K)$, but this is not an "iff": atypical (C,T) recover the 2-dim. Boxall–Grant– Leprévost family $y^2 + (x^3 + a_1x^2 + a_2x)y = a_5x$.

Here even full 2-level structure is possible, with moduli space open in the Clebsch–Klein cubic surface $\sum_{i=1}^{5} r_i = \sum_{i=1}^{5} r_i^3 = 0$; this surface is rational so there are plenty of examples (albeit all beyond current LMFDB range). The simplest, from the point (1:5:-7:-8:9) on the C–K cubic, is

$$y^{2} = x(x+1)(x-1)(3x-7)(8x-13)(24x+25)$$

with P_0 at x = -25/24. This seems to be the record for torsion on a simple genus-2 Jacobian over **Q**. All that assumes that the effective divisor representing K + Tis disjoint from both the K+2T and the K-2T divisor. That's the typical case, but there are *atypical* (C,T); that happens <u>iff</u> either T or 2T (but not both) is $\cong P - P_0$ with P_0 Weierstrass. (It then follows that the other is $\cong \pm (2P - K)$, but this is not an "iff": atypical (C,T) recover the 2-dim. Boxall–Grant– Leprévost family $y^2 + (x^3 + a_1x^2 + a_2x)y = a_5x$.

Here even full 2-level structure is possible, with moduli space open in the Clebsch–Klein cubic surface $\sum_{i=1}^{5} r_i = \sum_{i=1}^{5} r_i^3 = 0$; this surface is rational so there are plenty of examples (albeit all beyond current LMFDB range). The simplest, from the point (1:5:-7:-8:9) on the C–K cubic, is

$$y^2 = x(x+1)(x-1)(3x-7)(8x-13)(24x+25)$$

with P_0 at x = -25/24. This seems to be the record for torsion on a simple genus-2 Jacobian over **Q**.

RM5 Jacobians with a $\sqrt{5}$ -torsion point

Alex Cowan, using Mestre's *méthode des graphes* with various old and new optimizations, computes modular forms φ giving simple factors of $J_0(N)$ of small dimension 2+ (prime $N \leq 2 \cdot 10^6$ and counting). Most have dim = 2, and most of <u>those</u> are RM5.

If nontrivial *p*-torsion then $\varphi \equiv E_2 \mod p$. Very rare beyond the known (N,p) = (29,7) and (23,11) — and most have RM5 and p = 5.

So, find Igusa invariants of (C,T) family and intersect with RM5 locus. Get 8434-term polynomial in q_0, q_1, q_2 . Happily Maxima factors it in seconds, into

$$\Delta := (4(q_0 + q_2) + 3)q_0q_2 - q_1^2q_0 - (1 - q_1)^2q_2$$

times a 7434-term complementary factor. The surface $\Delta = 0$ is rational and parametrizes RM5 *C* with $\sqrt{5}$ -torsion *T*.

RM5 Jacobians with a $\sqrt{5}$ -torsion point

Alex Cowan, using Mestre's *méthode des graphes* with various old and new optimizations, computes modular forms φ giving simple factors of $J_0(N)$ of small dimension 2+ (prime $N \leq 2 \cdot 10^6$ and counting). Most have dim = 2, and most of <u>those</u> are RM5.

If nontrivial *p*-torsion then $\varphi \equiv E_2 \mod p$. Very rare beyond the known (N,p) = (29,7) and (23,11) — and most have RM5 and p = 5.

So, find Igusa invariants of (C,T) family and intersect with RM5 locus. Get 8434-term polynomial in q_0, q_1, q_2 . Happily Maxima factors it in seconds, into

$$\Delta := (4(q_0 + q_2) + 3)q_0q_2 - q_1^2q_0 - (1 - q_1)^2q_2$$

times a 7434-term complementary factor. The surface $\Delta = 0$ is rational and parametrizes RM5 *C* with $\sqrt{5}$ -torsion *T*.

RM5 Jacobians with a $\sqrt{5}$ -torsion point

Next, for each of A.Cowan's forms, reconstruct a curve (using Cremona's "indirect method" via $L(1, \varphi \otimes \chi_d)$), find its coordinates on $\Delta = 0$. Most are on the line $(q_0, (-3q_0 + 1)/2, -q_0)$ with $1/q_0 \in \mathbb{Z}$ odd; e.g. $q_0 = 1$ gives curve 44521.a.44521.1 \leftrightarrow form 211.2.a.a:

 $y^{2} + (x^{3} + x^{2} + 1)y = -x^{6} + 5x^{4} - 5x^{3} - 8x^{2} + 4x + 4.$ In general $q_{0} = 1/(2a + 5)$ yields C_{a} with disc = $(2a + 5)^{12}N^{2}$ where

$$N = a^4 + 10a^3 + 100a^2 + 375a + 625,$$

which should be prime infinitely often.

In the RM-5 setting, $Jac(C)/\langle T \rangle$ is itself principally polarized, so Jac(C') for some curve C'. I don't yet(?) have the formula in general, but for C_a it looks like C'_a is

$$y^{2} = 5x^{6} + (2a + 20)x^{5} + (a^{2} + 10a + 50)x^{4} + (2a^{2} + 10a + 50)x^{3} + (a^{2} + 25)x^{2} - 10(a + 1)x - (4a + 15)$$

with discriminant N^4 .

This is all reminiscent of the Neumann–Setzer family of elliptic curves. . .

"Recall": For elliptic curves E of prime conductor p, always disc = $\pm p$ and $E_{tors} = \{0\}$, *except* a handful of small-conductor curves (p = 11, 17, 19, 37) and the <u>Neumann–Setzer curves</u> with $p = u^2 + 64$, namely

$$E_0: y^2 + xy = x^3 - \frac{u+1}{4}x^2 + 4x - u$$
 (disc = $-p^2$),

$$E_1: y^2 + xy = x^3 - \frac{u+1}{4}x^2 - x$$
 (disc = p)

with 2-torsion (u/4, -u/8) and (0, 0) respectively.

Remarkably C'_a itself has a 5-torsion point — so an isogeny class of (at least) three curves, so also reminiscent of $X_0(11)$ and $X_1(11)$, where there's also a third curve (which Mazur called " $X_2(11)$ "). For example, for conductor 211^2 there's also

 $y^{2} + (x^{3} + x + 1)y = x^{6} + 133x^{5} + 434x^{4} - 312811x^{3} - 7229489x^{2} + 18177671x - 816824059$ with discriminant $11^{24}41^{12}211^{2}$.

Ari Shnidman (e-mail of 29 Aug. 2021): this had to happen for prime N "as explained in Mazur's paper"; once it's an infinite family, must work even for N composite.

Finally, what if (C,T) both RM5 <u>and</u> atypical? Intersect both surfaces to get one-dim. family

$$C_j : y^2 = (x^3 + 5x^2 + 5x)^2 + 4jx.$$

It's hypergeometric, e.g. for $|1-\jmath|<1$,

$$\int_0^\infty \frac{dx}{\sqrt{(x^3 + 5x^2 + 5x)^2 + 4jx}} = \frac{\pi}{5\sin(2\pi/5)} {}_2F_1(2/5, 3/5; 1; 1-j),$$

$$\int_0^\infty \frac{(x+1)\,dx}{\sqrt{(x^3+5x^2+5x)^2+4yx}} = \frac{\pi}{5\sin(\pi/5)}\,{}_2F_1(1/5,4/5;1;1-y).$$

(Proof: change of variables

4

$$x = z - 2 + z^{-1}, \quad x^3 + 5x^2 + 5x = (z - 1)(z^5 - 1)/z^3,$$

'etc.'' — see paper.)

Further directions

We got this far with hardly any theoretical machinery. How does all this connect with . . .

• Siegel and Hilbert modular forms for the relevant congruence subgroups of Sp₄(Z) and SL₂($Z[\frac{1+\sqrt{5}}{2}]$)?

• Your favorite compactification of the associated modular threefold? (For starters, how does the surface of "atypical" (C, P) fit on the boundary of the "typical" threefold?)

• Horrocks–Mumford surfaces (= (1,5)-polarized ab. surfaces in \mathbf{P}^4 , via $\operatorname{Jac}(C)/\langle T \rangle$)? What's isogenous C' in RM-5 case?

I thank: NSF, Simons; GP-PARI, Maxima, Sage; Alex Cowan; Ari Shnidman, Bjorn Poonen and Drew Sutherland; LuCaNT organizers and referees; and you.

Further directions

We got this far with hardly any theoretical machinery. How does all this connect with . . .

• Siegel and Hilbert modular forms for the relevant congruence subgroups of Sp₄(Z) and SL₂($Z[\frac{1+\sqrt{5}}{2}]$)?

• Your favorite compactification of the associated modular threefold? (For starters, how does the surface of "atypical" (C, P) fit on the boundary of the "typical" threefold?)

• Horrocks–Mumford surfaces (= (1,5)-polarized ab. surfaces in \mathbf{P}^4 , via $\operatorname{Jac}(C)/\langle T \rangle$)? What's isogenous C' in RM-5 case?

I thank: NSF, Simons; GP-PARI, Maxima, Sage; Alex Cowan; Ari Shnidman, Bjorn Poonen and Drew Sutherland; LuCaNT organizers and referees; and you.