Families of genus-2 curves with 5-torsion

$$
\text { LuCaNT, ICERM, } 14 \text { July } 2023
$$

Noam D. Elkies, Harvard University

Overview

Context: \exists lots of parametrizations of elliptic curves with torsion (by modular curves like $\mathrm{X}_{1}(p), \mathbf{X}(p)$); very few for abelian varieties of dimension >1.

We find " $\mathrm{X}_{1}(5)$ " for genus-2 Jacobians, i.e. parametrize (C, T) with $g(C)=2$ and 5-torsion $T \in \operatorname{Jac}(C)$. Also the involution [sic] $(C, T) \leftrightarrow(C, 2 T)$ [because $(C, T) \cong(C,-T)]$.

Then refine to (C, T) with some level-2 structure (e.g. " $\mathrm{X}_{1}(10)$ '), or satisfying some extra geometric or RM condition. E.g. a 2-dim. family with $\operatorname{Jac}(C)$ generically simple (even End $_{\mathrm{C}}=\mathbf{Z}$) and torsion $(\mathbf{Z} / 2 \mathbf{Z})^{4} \oplus(\mathbf{Z} / 5 \mathbf{Z})$.

Connections elsewhere in the LMFDB (modular forms; hypergeometric periods).

Classical elliptic modular curves

 vs. genus-2 modular threefoldsWe've long known and used formulas for $\mathrm{X}_{0}(p)$ for plenty of p (100+) and a good number of $\mathrm{X}_{1}(p)$ and even $\mathrm{X}(p)$, some with beautiful geometry.

Not so for curves of genus 2: for $p>3$, only partial parametrizations: notably, split Jacobians $\left(\operatorname{Jac}(C)\right.$ isogenous to $E \times E^{\prime}$, Howe-Leprévost-Poonen 2000 and Howe 2015); also, $p=5$ with $T=P-P_{0}$ for some Weierstrass point P_{0} (Boxall-GrantLeprévost 2001: $y^{2}+\left(x^{3}+a_{1} x^{2}+a_{2} x\right) y=a_{5} x$ with P_{0}, P at $x=0, \infty)$.

For $p=2$ and $p=3$, similar formulas are known for $g=2 \ldots$
$p=2:$
One 2-torsion point on $g=1$ curve $y^{2}=P_{3}(x) \longleftrightarrow$ partial factorization, $P_{3}=P_{1} P_{2}$;

One 2-torsion point on $g=2$ curve $y^{2}=P_{6}(x) \longleftrightarrow$ partial factorization, $P_{6}=P_{2} P_{4}$.

In each case, full level-2 structure (i.e. all 2-torsion rational) \longleftrightarrow full factorization of P_{3} or P_{6}.
$p=2:$
One 2-torsion point on $g=1$ curve $y^{2}=P_{3}(x) \longleftrightarrow$ partial factorization, $P_{3}=P_{1} P_{2}$;

One 2-torsion point on $g=2$ curve $y^{2}=P_{6}(x) \longleftrightarrow$ partial factorization, $P_{6}=P_{2} P_{4}$.

In each case, full level-2 structure (i.e. all 2-torsion rational) \longleftrightarrow full factorization of P_{3} or P_{6}.
$p=3:$
One 3-torsion point on $y^{2}=P_{3}(x)$: choice of a_{1}, a_{2}, a_{3} s.t. $P_{3}=\left(x+a_{2}\right)^{3}+\left(a_{1} x+a_{3}\right)^{2}$. Full level-3 structure: $\times(3)$, tetrahedral symmetry over $\mathrm{Q}\left(\boldsymbol{\mu}_{3}\right)$.

One 3-torsion point on $y^{2}=P_{6}(x)$: quadratic β s.t. $P_{6}=$ $c \gamma^{3}+\beta^{2}$. Full level-3 structure: Burkhardt quartic, $\mathrm{Sp}_{4}(\mathrm{Z} / 3 \mathrm{Z})$ symmetry (again needs $\mathrm{Q}\left(\mu_{3}\right)$).

Next case is $p=5$. For elliptic curves, $\mathrm{X}_{0}(5)$ and $\mathrm{X}_{1}(5)$ are well known, and even $\times(5)$ is famously rational with icosahedral symmetry over $\mathrm{Q}\left(\mu_{5}\right)$.

In genus 2, the moduli threefold " $X(5)$ " is of general type. But " $\mathrm{X}_{1}(5)$ " turns out to be still rational - and still parallel to the modular curve.

Example of 5-torsion on elliptic curve

$$
\text { 5-torsion on } \left.11 . a 3 \text { (a.k.a. } \mathrm{X}_{1}(11)\right): y^{2}+y=x^{3}-x^{2}
$$

[diagram repeat]

We reconstruct any elliptic curve E with 5-torsion point P from such a picture: translate y so the tangent to P is $y=0$, getting $y^{2}+\left(a_{1} x+a_{3}\right) y=x^{2}\left(x-x_{0}\right)$ with $-2 P$ at $\left(x_{0}, 0\right)$; then line through $-2 P$ and $-P:\left(0,-a_{3}\right)$ must be tangent at $2 P$, "etc."
[diagram repeat]

We reconstruct any elliptic curve E with 5-torsion point P from such a picture: translate y so the tangent to P is $y=0$, getting $y^{2}+\left(a_{1} x+a_{3}\right) y=x^{2}\left(x-x_{0}\right)$ with $-2 P$ at $\left(x_{0}, 0\right)$; then line through $-2 P$ and $-P:\left(0,-a_{3}\right)$ must be tangent at $2 P$, "etc."

For 5-torsion on a genus-2 Jacobian, we typically get analogous picture from the effective divisors that represent $K+T$ and $K-2 T$. Since $2(K+T)+(K-2 T) \sim \iota^{*}(K+T)+2(K-2 T) \sim 3 K$, we get divisors of functions $y-\operatorname{cubic}(x)$:

Example of 5-torsion on $g=2$ curve

5-torsion on Jacobian of genus-2 curve 18055.b.18055.1: $y^{2}=\frac{1}{4}\left(x^{3}+x+1\right)^{2}-x^{6}-x^{5}+3 x^{4}+3 x^{3}-6 x^{2}-3 x+4$

(blue curve: $2 y=-x^{3}+3 x+1$; red: $2 y=-x^{3}+2 x^{2}+x+3$; x-coordinates satisfy $x^{2}=2$ and $x^{2}+x=1$)

Translate y so blue is $y=0$:

Example of 5-torsion on $g=2$ curve, cont'd

5-torsion on Jacobian of genus-2 curve 18055.b.18055.1: $y^{2}-\left(x^{3}-3 x-1\right) y=-x^{6}-x^{5}+5 x^{4}+4 x^{3}-8 x^{2}-4 x+4$

(blue curve: $y=0$; red: $y=-x^{2}-x+1$)

$$
\text { [repeat] } y^{2}-\left(x^{3}-3 x-1\right) y=-x^{6}-x^{5}+5 x^{4}+4 x^{3}-8 x^{2}-4 x+4
$$

Then the RHS is a multiple of $Q^{2}(x) Q^{\prime}(x)$ for quadratics Q, Q^{\prime} vanishing on x-coordinates of the $K+T$ and $K-2 T$ divisor - indeed in our exmaple it's $-\left(x^{2}-2\right)^{2}\left(x^{2}+x-1\right)$; and substituting the red cubic for y then yields a multiple of $Q Q^{\prime 2}$. This gives an identity in Q, Q^{\prime}, and the linear coefficient of y, which we soon parametrize up to scaling Q, Q^{\prime} : the curve is

$$
y^{2}+\left(L^{\prime} Q^{\prime}-L Q\right) y=Q^{2} Q^{\prime}
$$

where L, L^{\prime} are linear polynomials with $L L^{\prime}=Q-Q^{\prime}$; the divisors $\sim K+T$ and $K-2 T$ are $\{Q=0, y=0\}$ and $\left\{Q^{\prime}=0, y=L Q\right\}$.

The equation

$$
y^{2}+\left(L^{\prime} Q^{\prime}-L Q\right) y=Q^{2} Q^{\prime}
$$

has seven parameters, the $2+2+3$ coefficients of L, L^{\prime}, Q; but generically L, L^{\prime} are not proportional, and then using GL_{2} we find an equivalent coordinate on the x-line for which

$$
\left(L, L^{\prime}, Q\right)=\left(x, 1, q_{2} x^{2}+q_{1} x+q_{0}\right) .
$$

so (q_{0}, q_{1}, q_{2}) are birational coordinates on the (C, T) moduli space. Changing T to $2 T$ takes (q_{0}, q_{1}, q_{2}) to ($q_{2}, 1-q_{1}, q_{0}$); the quotient " $X_{0}(5)$ " by this involution is also rational.

The equation

$$
y^{2}+\left(L^{\prime} Q^{\prime}-L Q\right) y=Q^{2} Q^{\prime}
$$

has seven parameters, the $2+2+3$ coefficients of L, L^{\prime}, Q; but generically L, L^{\prime} are not proportional, and then using GL_{2} we find an equivalent coordinate on the x-line for which

$$
\left(L, L^{\prime}, Q\right)=\left(x, 1, q_{2} x^{2}+q_{1} x+q_{0}\right) .
$$

so (q_{0}, q_{1}, q_{2}) are birational coordinates on the (C, T) moduli space. Changing T to $2 T$ takes (q_{0}, q_{1}, q_{2}) to ($q_{2}, 1-q_{1}, q_{0}$); the quotient " $X_{0}(5)$ " by this involution is also rational.

To recover the modular elliptic curve $\mathrm{X}_{1}(5)$, regard the equation $y^{2}+\left(L^{\prime} Q^{\prime}-L Q\right) y=Q^{2} Q^{\prime}$ as an elliptic curve in the (Q, y) plane, with L, L^{\prime} scalars and $Q^{\prime}=Q-L L^{\prime}$ as before. The 5-torsion points are again at $(Q, y)=(0,0)$ and $(Q, y)=$ ($L L^{\prime}, L^{2} L^{\prime}$), and L^{\prime} / L is a rational coordinate on $\mathrm{X}_{1}(5)$.

Now the modular curve $\mathrm{X}_{1}(10)$ is still rational; it parametrizes (E, T, T_{0}) where E is an elliptic curve and T, T_{0} are 5-torsion and 2-torsion points. That's a 3:1 cover of $\mathrm{X}_{1}(5)$, which parametrizes only (E, T); explicitly

$$
L^{\prime}=(1-2 t)\left(\frac{t}{t-1}\right)^{2} L, \quad Q=-\frac{t^{4}}{(t-1)^{2}} L^{2}
$$

for some rational coordinate t on $\mathrm{X}_{1}(10)$.

Now the modular curve $\mathrm{X}_{1}(10)$ is still rational; it parametrizes (E, T, T_{0}) where E is an elliptic curve and T, T_{0} are 5-torsion and 2-torsion points. That's a 3:1 cover of $X_{1}(5)$, which parametrizes only (E, T); explicitly

$$
L^{\prime}=(1-2 t)\left(\frac{t}{t-1}\right)^{2} L, \quad Q=-\frac{t^{4}}{(t-1)^{2}} L^{2}
$$

for some rational coordinate t on $\mathrm{X}_{1}(10)$.
In the genus- 2 setting, we can use this to get as many as 3 rational Weierstrass points. For generic t_{0}, t_{1}, t_{∞} choose L, L^{\prime} such that $L^{\prime} / L=\left(1-2 t_{i}\right)(t /(t-1))^{2}$ at $x=i(i=0,1, \infty)$; then solve the linear equations for the coefficients of Q to make $Q / L^{2}=t_{i}^{4} /\left(t_{i}-1\right)^{2}$ at each x_{i}. One or two Weiersstrass points is similar and easier; so is parametrizing (C, T) with a 2-torsion point.
[This is already [NDE 2003], with similar formulas for genus-2 Jacobians with a 6-, 7-, or 8-torsion point.]

All that assumes that the effective divisor representing $K+T$ is disjoint from both the $K+2 T$ and the $K-2 T$ divisor. That's the typical case, but there are atypical (C, T); that happens iff either T or $2 T$ (but not both) is $\cong P-P_{0}$ with P_{0} Weierstrass. (It then follows that the other is $\cong \pm(2 P-K)$, but this is not an "iff": atypical (C, T) recover the 2-dim. Boxall-GrantLeprévost family $y^{2}+\left(x^{3}+a_{1} x^{2}+a_{2} x\right) y=a_{5} x$.

All that assumes that the effective divisor representing $K+T$ is disjoint from both the $K+2 T$ and the $K-2 T$ divisor. That's the typical case, but there are atypical (C, T); that happens iff either T or $2 T$ (but not both) is $\cong P-P_{0}$ with P_{0} Weierstrass. (It then follows that the other is $\cong \pm(2 P-K)$, but this is not an "iff": atypical (C, T) recover the 2-dim. Boxall-GrantLeprévost family $y^{2}+\left(x^{3}+a_{1} x^{2}+a_{2} x\right) y=a_{5} x$.

Here even full 2-level structure is possible, with moduli space open in the Clebsch-Klein cubic surface $\sum_{i=1}^{5} r_{i}=\sum_{i=1}^{5} r_{i}^{3}=0$; this surface is rational so there are plenty of examples (albeit all beyond current LMFDB range). The simplest, from the point ($1: 5:-7:-8: 9$) on the $C-K$ cubic, is

$$
y^{2}=x(x+1)(x-1)(3 x-7)(8 x-13)(24 x+25)
$$

with P_{0} at $x=-25 / 24$. This seems to be the record for torsion on a simple genus-2 Jacobian over \mathbf{Q}.

RM5 Jacobians with a $\sqrt{5}$-torsion point
Alex Cowan, using Mestre's méthode des graphes with various old and new optimizations, computes modular forms φ giving simple factors of $J_{0}(N)$ of small dimension $2+$ (prime $N \leq$ $2 \cdot 10^{6}$ and counting). Most have $\operatorname{dim}=2$, and most of those are RM5.

If nontrivial p-torsion then $\varphi \equiv E_{2} \bmod p$. Very rare beyond the known $(N, p)=(29,7)$ and $(23,11)$ - and most have RM5 and $p=5$.

RM5 Jacobians with a $\sqrt{5}$-torsion point
Alex Cowan, using Mestre's méthode des graphes with various old and new optimizations, computes modular forms φ giving simple factors of $\mathrm{J}_{0}(N)$ of small dimension $2+$ (prime $N \leq$ $2 \cdot 10^{6}$ and counting). Most have dim $=2$, and most of those are RM5.

If nontrivial p-torsion then $\varphi \equiv E_{2} \bmod p$. Very rare beyond the known $(N, p)=(29,7)$ and $(23,11)$ - and most have RM5 and $p=5$.

So, find Igusa invariants of (C, T) family and intersect with RM5 locus. Get 8434-term polynomial in q_{0}, q_{1}, q_{2}. Happily Maxima factors it in seconds, into

$$
\Delta:=\left(4\left(q_{0}+q_{2}\right)+3\right) q_{0} q_{2}-q_{1}^{2} q_{0}-\left(1-q_{1}\right)^{2} q_{2}
$$

times a 7434-term complementary factor. The surface $\Delta=0$ is rational and parametrizes RM5 C with $\sqrt{5}$-torsion T.

RM5 Jacobians with a $\sqrt{5}$-torsion point

Next, for each of A.Cowan's forms, reconstruct a curve (using Cremona's "indirect method" via $L\left(1, \varphi \otimes \chi_{d}\right)$), find its coordinates on $\Delta=0$. Most are on the line $\left(q_{0},\left(-3 q_{0}+1\right) / 2,-q_{0}\right)$ with $1 / q_{0} \in \mathrm{Z}$ odd; e.g. $q_{0}=1$ gives curve 44521.a.44521.1 \longleftrightarrow form 211.2.a.a:

$$
y^{2}+\left(x^{3}+x^{2}+1\right) y=-x^{6}+5 x^{4}-5 x^{3}-8 x^{2}+4 x+4
$$

In general $q_{0}=1 /(2 a+5)$ yields C_{a} with disc $=(2 a+5)^{12} N^{2}$ where

$$
N=a^{4}+10 a^{3}+100 a^{2}+375 a+625
$$

which should be prime infinitely often.

In the RM-5 setting, $\operatorname{Jac}(C) /\langle T\rangle$ is itself principally polarized, so $\operatorname{Jac}\left(C^{\prime}\right)$ for some curve C^{\prime}. I don't yet(?) have the formula in general, but for C_{a} it looks like C_{a}^{\prime} is

$$
\begin{aligned}
y^{2} & =5 x^{6}+(2 a+20) x^{5}+\left(a^{2}+10 a+50\right) x^{4} \\
& +\left(2 a^{2}+10 a+50\right) x^{3}+\left(a^{2}+25\right) x^{2}-10(a+1) x-(4 a+15)
\end{aligned}
$$

with discriminant N^{4}.

This is all reminiscent of the Neumann-Setzer family of elliptic curves...
"Recall": For elliptic curves E of prime conductor p, always disc $= \pm p$ and $E_{\text {tors }}=\{0\}$, except a handful of small-conductor curves ($p=11,17,19,37$) and the Neumann-Setzer curves with $p=u^{2}+64$, namely

$$
\begin{array}{ll}
E_{0}: y^{2}+x y=x^{3}-\frac{u+1}{4} x^{2}+4 x-u & \left(\text { disc }=-p^{2}\right), \\
E_{1}: y^{2}+x y=x^{3}-\frac{u+1}{4} x^{2}-x & (\text { disc }=p)
\end{array}
$$

with 2-torsion $(u / 4,-u / 8)$ and $(0,0)$ respectively.

Remarkably C_{a}^{\prime} itself has a 5-torsion point - so an isogeny class of (at least) three curves, so also reminiscent of $\mathrm{X}_{0}(11)$ and $X_{1}(11)$, where there's also a third curve (which Mazur called " $X_{2}(11)$ "). For example, for conductor 211^{2} there's also
$y^{2}+\left(x^{3}+x+1\right) y=x^{6}+133 x^{5}+434 x^{4}-312811 x^{3}-7229489 x^{2}+18177671 x-816824059$
with discriminant $11^{24} 41^{12} 211^{2}$.

Ari Shnidman (e-mail of 29 Aug. 2021): this had to happen for prime N "as explained in Mazur's paper'; once it's an infinite family, must work even for N composite.

Finally, what if (C, T) both RM5 and atypical? Intersect both surfaces to get one-dim. family

$$
C_{\jmath}: y^{2}=\left(x^{3}+5 x^{2}+5 x\right)^{2}+4 \jmath x
$$

It's hypergeometric, e.g. for $|1-\jmath|<1$,

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d x}{\sqrt{\left(x^{3}+5 x^{2}+5 x\right)^{2}+4 \jmath x}}=\frac{\pi}{5 \sin (2 \pi / 5)} 2 F_{1}(2 / 5,3 / 5 ; 1 ; 1-\jmath) \\
& \int_{0}^{\infty} \frac{(x+1) d x}{\sqrt{\left(x^{3}+5 x^{2}+5 x\right)^{2}+4 \jmath x}}=\frac{\pi}{5 \sin (\pi / 5)} 2 F_{1}(1 / 5,4 / 5 ; 1 ; 1-\jmath)
\end{aligned}
$$

(Proof: change of variables

$$
x=z-2+z^{-1}, \quad x^{3}+5 x^{2}+5 x=(z-1)\left(z^{5}-1\right) / z^{3}
$$

"etc." - see paper.)

Further directions

We got this far with hardly any theoretical machinery. How does all this connect with...

- Siegel and Hilbert modular forms for the relevant congruence subgroups of $\mathrm{Sp}_{4}(\mathrm{Z})$ and $\mathrm{SL}_{2}\left(\mathrm{Z}\left[\frac{1+\sqrt{5}}{2}\right]\right)$?
- Your favorite compactification of the associated modular threefold? (For starters, how does the surface of "atypical" (C, P) fit on the boundary of the "typical" threefold?)
- Horrocks-Mumford surfaces $(=(1,5)$-polarized ab. surfaces in \mathbf{P}^{4}, via $\left.\operatorname{Jac}(C) /\langle T\rangle\right)$? What's isogenous C^{\prime} in RM-5 case?

Further directions

We got this far with hardly any theoretical machinery. How does all this connect with...

- Siegel and Hilbert modular forms for the relevant congruence subgroups of $\mathrm{Sp}_{4}(\mathrm{Z})$ and $\mathrm{SL}_{2}\left(\mathrm{Z}\left[\frac{1+\sqrt{5}}{2}\right]\right)$?
- Your favorite compactification of the associated modular threefold? (For starters, how does the surface of "atypical" (C, P) fit on the boundary of the "typical" threefold?)
- Horrocks-Mumford surfaces $(=(1,5)$-polarized ab. surfaces in \mathbf{P}^{4}, via $\left.\operatorname{Jac}(C) /\langle T\rangle\right)$? What's isogenous C^{\prime} in RM-5 case?

I thank: NSF, Simons; GP-PARI, Maxima, Sage; Alex Cowan; Ari Shnidman, Bjorn Poonen and Drew Sutherland; LuCaNT organizers and referees; and you.

