Lightning Talks
 Thursday July 13, 2023

Presenters -Lewis Combes (University of SheffieldPascal Molin (Université Paris Cité)Eric Moss (Boston College)Tung Nguyen (Western University
Alexey Pozdnyakov (University of Connecticut
Brandon Williams
Ajmain Yamin (CUNY Graduate Center
Mingjie Chen (University of Birmingham)
Travis Morrison (Virginia Tech)
James Boyd (Wolfram Institute)
Daniel Gordon (IDA Center for Communications Research- LaJolla)
Maria Sabitova (CUNY Queens College)

Period polynomials of Bianchi modular forms LuCANT

Lewis Combes

University of Sheffield

Classical period polynomials

Let $\Delta \in S_{12}\left(\mathrm{PSL}_{2}(\mathbb{Z})\right)$.

Classical period polynomials

Let $\Delta \in S_{12}\left(\mathrm{PSL}_{2}(\mathbb{Z})\right)$.

$$
\begin{aligned}
r_{\Delta}(X, Y) & =\int_{0}^{\infty i} \Delta(z)(X z+Y)^{10} d z \\
& =\omega_{+}\left(\frac{36}{691} X^{10}-X^{8} Y^{2}+3 X^{6} Y^{4}-3 X^{4} Y^{6}+X^{2} Y^{8}-\frac{36}{691} Y^{10}\right) \\
& +\omega_{-}\left(4 X^{9} Y-25 X^{7} Y^{3}+42 X^{5} Y^{5}-25 X^{3} Y^{7}+4 X Y^{9}\right)
\end{aligned}
$$

where $\omega_{+} \approx 0.11437902$ and $\omega_{-} \approx 0.00926927$.

Classical period polynomials

Let $\Delta \in S_{12}\left(\mathrm{PSL}_{2}(\mathbb{Z})\right)$.

$$
\begin{aligned}
r_{\Delta}(X, Y) & =\int_{0}^{\infty i} \Delta(z)(X z+Y)^{10} d z \\
& =\omega_{+}\left(\frac{36}{691} X^{10}-X^{8} Y^{2}+3 X^{6} Y^{4}-3 X^{4} Y^{6}+X^{2} Y^{8}-\frac{36}{691} Y^{10}\right) \\
& +\omega_{-}\left(4 X^{9} Y-25 X^{7} Y^{3}+42 X^{5} Y^{5}-25 X^{3} Y^{7}+4 X Y^{9}\right)
\end{aligned}
$$

where $\omega_{+} \approx 0.11437902$ and $\omega_{-} \approx 0.00926927$.
Recall Ramanujan's famous congruence

$$
\Delta \equiv E_{12}(\bmod 691)
$$

Bianchi period polynomials

Base-change Δ to $K=\mathbb{Q}(\sqrt{-11})$, and compute in Magma the space of period polynomials using cohomology.

Bianchi period polynomials

Base-change Δ to $K=\mathbb{Q}(\sqrt{-11})$, and compute in Magma the space of period polynomials using cohomology. Bianchi period polynomials come in four variables, X, Y, \bar{X} and \bar{Y}.

Bianchi period polynomials

Base-change Δ to $K=\mathbb{Q}(\sqrt{-11})$, and compute in Magma the space of period polynomials using cohomology. Bianchi period polynomials come in four variables, X, Y, \bar{X} and \bar{Y}.

$$
r_{\Delta}(X, Y, \bar{X}, \bar{Y})=\frac{31452624}{691} X^{10} \bar{X}^{10}+(\text { integral terms })-\frac{31452624}{691} Y^{10} \bar{Y}^{10}
$$

and $\Delta \equiv E_{12}(\bmod 691)$ still holds.

Bianchi period polynomials

Base-change Δ to $K=\mathbb{Q}(\sqrt{-11})$, and compute in Magma the space of period polynomials using cohomology. Bianchi period polynomials come in four variables, X, Y, \bar{X} and \bar{Y}.

$$
r_{\Delta}(X, Y, \bar{X}, \bar{Y})=\frac{31452624}{691} X^{10} \bar{X}^{10}+(\text { integral terms })-\frac{31452624}{691} Y^{10} \bar{Y}^{10}
$$

and $\Delta \equiv E_{12}(\bmod 691)$ still holds. Two genuine cusp forms F_{1}, F_{2} also in the space. This is rare for level 1 Bianchi forms.

$$
r_{F_{1}}(X, Y, \bar{X}, \bar{Y})=\frac{40656}{173} X^{10} \bar{X}^{10}+(\text { integral terms })-\frac{40656}{173} Y^{10} \bar{Y}^{10}
$$

and $F_{1}, F_{2} \equiv E_{12}(\bmod 173)$.

Bianchi period polynomials

Base-change Δ to $K=\mathbb{Q}(\sqrt{-11})$, and compute in Magma the space of period polynomials using cohomology. Bianchi period polynomials come in four variables, X, Y, \bar{X} and \bar{Y}.

$$
r_{\Delta}(X, Y, \bar{X}, \bar{Y})=\frac{31452624}{691} X^{10} \bar{X}^{10}+(\text { integral terms })-\frac{31452624}{691} Y^{10} \bar{Y}^{10}
$$

and $\Delta \equiv E_{12}(\bmod 691)$ still holds. Two genuine cusp forms F_{1}, F_{2} also in the space. This is rare for level 1 Bianchi forms.

$$
r_{F_{1}}(X, Y, \bar{X}, \bar{Y})=\frac{40656}{173} X^{10} \bar{X}^{10}+(\text { integral terms })-\frac{40656}{173} Y^{10} \bar{Y}^{10}
$$

and $F_{1}, F_{2} \equiv E_{12}(\bmod 173)$.
\rightsquigarrow congruences can be detected with period polynomials.

Congruences between cusp forms

Haberland's formula for \mathbb{Q} :
Period polynomials \rightsquigarrow Petersson product

Congruences between cusp forms

Haberland's formula for \mathbb{Q} :
Period polynomials \rightsquigarrow Petersson product
In https://arxiv.org/abs/2306.10877, we compute a (conjectural) analogue to find another congruence

$$
\Delta \equiv F_{1}, F_{2}(\bmod 43)
$$

Congruences between cusp forms

Haberland's formula for \mathbb{Q} :
Period polynomials \rightsquigarrow Petersson product
In https://arxiv.org/abs/2306.10877, we compute a (conjectural) analogue to find another congruence

$$
\Delta \equiv F_{1}, F_{2}(\bmod 43)
$$

Computing S5 modular forms with the «Abstract Groups » section

Pascal MOLIN - Université Paris-Cité

S5 forms?

$$
\begin{equation*}
\operatorname{Gal}(L / a)=S_{5} \xrightarrow[\bar{\rho}]{\sim} P G L_{2}\left(\mathbb{F}_{5}\right) \tag{Gallic}
\end{equation*}
$$

prof image tooting, g does met come from char 0 (aka "ethereal form")

S5 forms?

$$
\begin{align*}
& \tilde{L} \operatorname{Gal(L/Q)} \longleftrightarrow \underset{\rho}{\longrightarrow} L_{2}\left(1 F_{25}\right) \\
& L_{1} G a l(L / Q)=S_{5} \xrightarrow[\vec{\rho}]{\sim} P G L_{2}\left(\mathbb{F}_{5}\right) \tag{Gadoio}\\
& + \text { today } F=\mathbb{F}_{25}, X^{2}=1, \tilde{L}^{\text {ker } X}=L^{\text {ker } \operatorname{sig} x}
\end{align*}
$$

Lifting 1: group theory

Extension of S_{5}

+ central
+ mon spit
+ cyclic
$+\# C=2$ if
x quadratic
and ken $x=$ ken sin n
LMFDB:

$$
\begin{array}{r}
\hat{G}=C_{2} \cdot S_{5}=\left\langle S L_{2}\left(\mathbb{F}_{5}\right),\binom{\alpha}{2 \alpha}\right\rangle \\
\alpha^{2}=2[5]
\end{array}
$$

Lifting 2: Galois theory

 $\Lambda \subset \mathrm{H}_{2} \triangle \mathrm{H}_{1} \subset \mathrm{C}_{2} \cdot \mathrm{~S}_{5}$ $\mathrm{H}_{1} / \mathrm{H}_{2}$ abelian.

LMFDB:

$$
\underset{H_{1}}{\mathrm{C}_{5}}-\mathrm{C}_{5}: \mathrm{C}_{4}-\mathrm{C}_{2} \cdot \mathrm{~S}_{5}
$$

Algo
+other cases

Computing Bianchi-Maass Forms

Eric Moss

Boston College
2023 LuCaNT Lightning Talks

$$
\text { July 13, } 2023
$$

Bianchi groups Γ_{d} act discretely on hyperbolic 3 -space. Let $d>0$ and let $\mathcal{O}_{d}=\mathcal{O}_{\mathbb{Q}(\sqrt{-d})}$.

$$
\begin{gathered}
\mathcal{H}^{3}=\{x+j y \mid x \in \mathbb{C}, y>0\} \\
\Gamma_{d}=\operatorname{PSL}_{2}\left(\mathcal{O}_{d}\right) \subset \mathcal{H}^{3}
\end{gathered}
$$

Definition

Bianchi-Maass form of weight 0 for Γ_{d}

- $f: \Gamma_{d} \backslash \mathcal{H}^{3} \rightarrow \mathbb{C}$, smooth, L^{2}
- $\Delta f=\lambda f$

Our interest is in cusp forms. They have a Fourier expansion $\left(\lambda=1-(i r)^{2}\right)$,

$$
f(x+j y)=\sum_{n \in \mathcal{O}_{d}} a_{n} y K_{i r}\left(\frac{2 \pi}{A}|n| y\right) \exp \left(\frac{\pi i}{A}\langle i n, x\rangle\right)
$$

- It is expected that level 1 Maass cusp forms are "transcendental"; coefficients and eigenvalues conjectured to be transcendental numbers.
- We use Hejhal's algorithm. Produces a well-conditioned linear system with the coefficients a_{n} as the unknowns. Is heuristic, not rigorous.
- Dennis Hejhal (1992) over \mathbb{Q}
- Gunther Steil (1997) nonlinear methods for $d=1,2,3,7,11$ $\left(h\left(\mathcal{O}_{d}\right)=1\right.$, euclidean)
- Holger Then (2004) extended Hejhal to $\mathrm{PSL}_{2}(\mathbb{Z}[i])$ (i.e. $d=1$).

- I have implemented an extension of Hejhal's algorithm to the remaining Euclidean fields $(d=1,2,3,7,11)$. In C++ using Arb.
- Must search for eigenvalues and coefficients simultaneously.
- Extending Hejhal to \mathcal{O}_{d} comes with an increase in computational complexity which increases as d increases.
- Coming soon: Extending to noneuclidean \mathcal{O}_{d} with $h\left(\mathcal{O}_{d}\right)=1$. Key tool: reduction

≈ 1800 points

Fekete polynomials of principal Dirichlet characters

Shiva Chidambaram，Ján Mináč

Western University

LMFDB，Computation，and Number Theory
ICERM，July 2023

- Let χ be a Dirichlet character of modulus n. The L-function of χ is defined as

$$
L(\chi, s)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}
$$

- $L(\chi, s)$ has the following integral representation

$$
\Gamma(s) L(\chi, s)=\int_{0}^{1} \frac{(-\log (t))^{s-1}}{t} \frac{F_{\chi}(t)}{1-t^{n}} d t
$$

where $\Gamma(s)$ is the Gamma function and

$$
F_{\chi}(x)=\sum_{a=0}^{n-1} \chi(a) x^{a}
$$

- Fekete observed that if χ is a quadratic character such that $F_{\chi}(x)$ has no real roots on $(0,1)$, then $L(\chi, s)$ has no real zeros near 1.
- Let χ_{n} be the principal Dirichlet character of modulus n

$$
\chi_{n}(a)=\left\{\begin{array}{ll}
0 & \text { if } \\
1 & \operatorname{gcd}(a, n)>1 \\
1 & \text { if }
\end{array} \operatorname{gcd}(a, n)=1\right.
$$

- Let

$$
F_{n}(x)=F_{\chi_{n}}(x)=\sum_{\substack{0 \leq a \leq n-1 \\ \operatorname{gcd}(a, n)=1}} x^{a} .
$$

- Our numerical data suggests that F_{n} has exactly one irreducible non-cyclotomic factor, which we denote by f_{n}. Furthermore, the Galois group of f_{n} is as large as possible.
- For example

$$
F_{15}(x)=x \Phi_{2} \Phi_{4} \Phi_{8} f_{15}(x)
$$

where $f_{15}(x)=x^{6}-x^{4}+x^{3}-x^{2}+1$.

- If $d \mid n$, then by the theory of Ramanujan sums

$$
F_{n}\left(\zeta_{d}\right)=\frac{\mu(d) \varphi(n)}{\varphi(d)}
$$

- Let p be a prime number such that $\operatorname{gcd}(p, n)=1$. Then we have the following recursive formula

$$
F_{n p}(x)=\frac{1-x^{n p}}{1-x^{n}} F_{n}(x)-F_{n}\left(x^{p}\right) .
$$

- If $d \nmid n p$ and $d \mid p-1$ then Φ_{d} is a factor of $F_{n p}$.
- By induction

$$
F_{n}(x)=\left(1-x^{n}\right) \sum_{m \mid n} \mu(m) \frac{x^{m}}{1-x^{m}}
$$

- Using this formula, we can derive various combinatorial conditions on d such that Φ_{d} is a factor of F_{n}. We can also determine precisely the multiplicity of Φ_{d}.

Thank you!

Murmurations in Arithmetic Alexey Pozdnyakov University of Connecticut

Paper: arXiv.2307.00256

Murmurations of L-functions

a_p averages of $1691 / 1772$ root number $+1 /-1$ elliptic curves E / Q of conductor $2^{\wedge} 10<N<=2^{\wedge} 11$ for $p<2^{\wedge} 11$

Much more at math.mit.edu/~drew/murmurations

Theorem for Dirichlet Characters

Theorem

For $c \in \mathbb{R}_{>1}$ and $y \in \mathbb{R}_{>0}$ we have,

$$
\lim _{x \rightarrow \infty} \frac{\log X}{X} \sum_{\substack{N \in[X, c x]]}} \sum_{\chi \in \mathcal{D}_{ \pm}(N)} \frac{\chi\left(\lceil y X\rceil^{\mathfrak{p}}\right)}{G(\chi)}= \begin{cases}\int_{1}^{c} \cos \left(\frac{2 \pi y}{x}\right) d x, & \text { if }+, \\ -i \int_{1}^{c} \sin \left(\frac{2 \pi y}{x}\right) d x, & \text { if }-,\end{cases}
$$

where $\mathcal{D}_{ \pm}(N)=\{\chi \bmod N: \chi$ primitive, $\chi(-1)= \pm 1\}$.

- Similar results for weight 2, 4, 6 modular newforms (Nina Zubrilina).
- Universal density function for any suitable family of L-functions.
- Connections to L-function zeros and one-level density.
- See Murmurations in Arithmetic on ICERM website for related talks.

Computation of vector-valued modular forms

Brandon Williams

RWTH Aachen University
July 13, 2023

Weil representation ρ_{L} of $\operatorname{Mp}_{2}(\mathbb{Z})$ attached to an even lattice L. Applications: Jacobi forms (lattice index); Saito-Kurokawa lift / Gritsenko lift; Borcherds products.
"Computation" of modular forms $M_{*}\left(\rho_{L}\right)$:
(1) Each space $M_{k}\left(\rho_{L}\right)$ is finite dim'l and defined over $\mathbb{Q} \Rightarrow$ compute coefficients of a \mathbb{Q}-basis;
(2) $M_{*}\left(\rho_{L}\right)$ is a free $\mathbb{Q}\left[E_{4}, E_{6}\right]$-module of rank $\operatorname{det}(L) \Rightarrow$ compute coefficients of a basis.

Elements of $M_{*}\left(\rho_{L}\right)$:
(1) Theta series (if L is positive definite)
(2) Eisenstein series (easy Fourier coefficients)

Algorithm. Certain lattice embeddings $i: L \rightarrow M$ lead to "pullback" morphisms $i^{*}: M_{*}\left(\rho_{M}\right) \rightarrow M_{*}\left(\rho_{L}\right)$. Here $\operatorname{det}(M)$ can be smaller than $\operatorname{det}(L)$.
(1) Find $\operatorname{dim} S_{k}$ using Riemann-Roch formula.
(2) Compute a lattice embedding $i: L \rightarrow M$ with $\operatorname{rk}(M)=\operatorname{rk}(L)+1$ and $\operatorname{det}(M)$ small.
(3) Pull back Eisenstein series $E_{k-1 / 2}$ and related forms (Serre derivative, multiples by $\left.\mathbb{Q}\left[E_{4}, E_{6}\right]\right)$ along i^{*}.
Lemma. If $k \geq 3$ then as i runs through all (appropriate) embeddings $E_{k}-i^{*}\left(E_{k-1 / 2}\right)$ spans S_{k} ! So repeat (1)-(3) to get a basis.
(4) If k is small then use

$$
S_{k}(\rho)=\left\{F / E_{4}: F \in S_{k+4}(\rho) \text { such that } \vartheta \vartheta\left(F / E_{k}\right) \in S_{k+4}(\rho)\right\}
$$

where ϑ is the Serre derivative $\vartheta(f)=\eta^{2 k}\left(f / \eta^{2 k}\right)^{\prime}$.
Implementation in Sage.

Belyi Pairs of Complete Regular Dessins

Ajmain Yamin
ayamin@gradcenter.cuny.edu

CUNY Graduate Center
LuCaNT 4
July 13, 2023

Problem + Previous Works

Problem Statement + Definitions

Compute Belyi pairs (affine models) of complete regular dessins. Complete regular dessin a.k.a. K_{n}-dessin: bipart. dessin of a CRM. Compl. reg. map (CRM): reg. map w/ underlying graph K_{n}.

Theorem (Biggs (1985) + James \& Jones (1971))

Classification of CRMs: Cayley maps associated to \mathbb{F}_{n}.
Theorem (Jones, Streit \& Wolfart (2009))
Min. field of def. of K_{n}-dessin: spl. field of p in $\mathbb{Q}\left(\zeta_{n-1}\right), n=p^{f}$.

Theorem (Hidalgo (2015))

Explicit affine models of K_{8}-dessins defined over $\mathbb{Q}(\sqrt{-7})$.

Solution + Future Work

Theorem (Y. (2023))

Explicit affine models of $K_{5} \& K_{7}$-dessins def. $/ \mathbb{Q}(i) \& \mathbb{Q}(\omega)$ resp.
Method: Cyclotomic construction + manipulate \wp-functions.

Future work: Generalize cycl. constr. + higher genus arithmetic.

Hidden Stabilizers, the Isogeny To Endomorphism Ring Problem and the Cryptanalysis of pSIDH

joint with Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin Leroux, Christophe Petit

LuCaNT 2023

Mingjie Chen
University of Birmingham
July 2023

Isogeny-based Cryptography

Resolution of the IsERP

Given End $\left(E_{0}\right)$, a representation of $\varphi: E_{0} \rightarrow E$, compute End (E).

Beyond the SEA (algorithm):
 Computing the trace of a supersingular endomorphism

Travis Morrison

Virginia Tech
joint work with: Lorenz Panny, Jana Sotáková, Michael Wills

Computing the trace of an endomorphism

Problem: given an elliptic curve E / \mathbb{F}_{q} and $\alpha \in \operatorname{End}(E)$, compute $\operatorname{Tr} \alpha \in \mathbb{Z}$.

Why?

Computing $\operatorname{Tr} \pi_{E}$ reveals the ring structure of $\mathbb{Z}\left[\pi_{E}\right]$, i.e. a multiplication table for the basis $1, \pi_{E}$.
If E is supersingular: computing traces lets us determine a multiplication table for basis elements of $\operatorname{End}(E)$ (or a suborder)

How? Schoof's algorithm

For small primes ℓ, compute the characteristic polynomial of $\left.\pi_{E}\right|_{E[\ell]} \in \operatorname{End}(E[\ell])$ to get $t_{\ell} \equiv \operatorname{Tr} \pi_{E}(\bmod \ell)$. Recover $\operatorname{Tr} \pi_{E}$ from the t_{ℓ} 's with CRT.

Elkies' method for computing t_{ℓ}
If E admits a rational ℓ-isogeny ϕ, compute characteristic polynomial of $\left.\pi_{E}\right|_{\operatorname{ker} \phi} \in \operatorname{End}(\operatorname{ker} \phi)$ to get t_{ℓ}.

The SEA algorithm for supersingular endomorphisms

When $E / \mathbb{F}_{p^{2}}$ is supersingular: $E / \mathbb{F}_{p^{2}}$ has all of its ℓ-isogenies defined over $\mathbb{F}_{p^{2}}$ (every prime is an Elkies prime!)

Theorem (M.-Panny-Sotáková-Wills)

There is an algorithm for computing the trace of an endomorphism α of a supersingular $E / \mathbb{F}_{p^{2}}$. Assuming GRH and that $\operatorname{deg} \alpha=d^{e}$ with $e=O(\log p)$ and $d=O(1)$, the algorithm terminates in expected $\tilde{O}\left((\log p)^{4}\right)$ bit operations.

Beyond the SEA (algorithm)

1. Compute $a \in \mathbb{F}_{p^{2}}$ such that $\alpha^{*} \omega_{E}=a \omega_{E}$, we get
$\operatorname{Tr} \alpha \equiv \operatorname{Tr}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p}} a(\bmod p)$
2. Since E is supersingular we know $\# E\left(\mathbb{F}_{p^{2}}\right)$. If $\ell \mid \# E\left(\mathbb{F}_{p^{2}}\right)$ then find P of order ℓ and solve $(\alpha+\widehat{\alpha})(P)=t_{\ell} P$.

Online Math Databases on the Cheap

Dan Gordon

Center for Communications Research - La Jolla gordon@ccr-lajolla.org

July 13, 2023

The La Jolla Combinatorics Repository

A quick history

- Started in 1996 as a database of covering designs, one per HTML page
- Grew, rewrote as a MySQL database
- Hundreds of contributors of covering designs from all over
- Over the years added difference sets, circulant weighing matrices, Steiner systems

Issues

- I had to learn HTML, PHP, SQL, and AWS system administration
- Location changed from http://sdcc12.ucsd.edu/~xm3dg/cover.html to http://www. ccrwest.org/cover.html to https://dmgordon.org.
- How to make sure the data will always be available?

Many mathematicians face this issue

October 2021 Email from Robert Craigen

- Sent to 10 researchers interested in "Hadamardish" materal
- Led to a zoom discussion of how to make data available online
- Wanted systematic, permanent, comprehensive databases
- No consensus about how to achieve that

First Try

For a paper published in DCC this year:

- github repo with data, basic code to use it
- jupyter notebook to run the code in
- zenodo.org gave it a permanent home with a DOI
- mybinder.org lets you run it without installing anything

Issues

- binder is slow
- can this scale up to larger (several GB) databases?
- Are there better solutions?

Links

- The La Jolla Combinatorics Repository
- Signed Difference Sets
- https://doi.org/10.5281/zenodo. 7473882
- github repo

A number theoretic classification of toroidal solenoids

Maria Sabitova

CUNY

