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Classical period polynomials

Let ∆ ∈ S12(PSL2(Z)).

r∆(X ,Y ) =

∫ ∞i

0
∆(z)(Xz + Y )10dz

= ω+

(
36
691X

10 − X 8Y 2 + 3X 6Y 4 − 3X 4Y 6 + X 2Y 8 − 36
691Y

10
)

+ ω−
(
4X 9Y − 25X 7Y 3 + 42X 5Y 5 − 25X 3Y 7 + 4XY 9

)
,

where ω+ ≈ 0.11437902 and ω− ≈ 0.00926927.

Recall Ramanujan’s famous congruence

∆ ≡ E12 (mod 691).
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Bianchi period polynomials

Base-change ∆ to K = Q(
√
−11), and compute in Magma the space of

period polynomials using cohomology.

Bianchi period polynomials come in
four variables, X , Y , X and Y .

r∆(X ,Y ,X ,Y ) = 31452624
691 X 10X

10
+ (integral terms)− 31452624

691 Y 10Y
10

and ∆ ≡ E12 (mod 691) still holds. Two genuine cusp forms F1,F2 also in
the space. This is rare for level 1 Bianchi forms.

rF1(X ,Y ,X ,Y ) = 40656
173 X 10X

10
+ (integral terms)− 40656

173 Y 10Y
10
.

and F1,F2 ≡ E12 (mod 173).

⇝ congruences can be detected with period polynomials.
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Congruences between cusp forms

Haberland’s formula for Q:

Period polynomials⇝ Petersson product

In https://arxiv.org/abs/2306.10877, we compute a (conjectural)
analogue to find another congruence

∆ ≡ F1,F2 (mod 43).

A B

C

∆ E12

F1,F2

691

43 173
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Computing S5 modular forms with 
the « Abstract Groups » section

Pascal MOLIN - Université Paris-Cité



Pascal
S5 forms?



Pascal
S5 forms?



Pascal
Lifting 1: group theory



Pascal
Lifting 2: Galois theory



Computing Bianchi-Maass Forms

Eric Moss

Boston College

2023 LuCaNT Lightning Talks

July 13, 2023

Eric Moss (Boston College) Computing Bianchi-Maass Forms July 13, 2023 1 / 4



Bianchi groups Γd act discretely on hyperbolic
3-space. Let d > 0 and let Od = OQ(

√
−d).

H3 = {x+ jy | x ∈ C, y > 0}

Γd = PSL2 (Od)

� H3

Definition

Bianchi-Maass form of weight 0 for Γd

f : Γd\H3 → C, smooth, L2

∆f = λf

Our interest is in cusp forms. They have a
Fourier expansion (λ = 1− (ir)2),

f(x+jy) =
∑
n∈Od

anyKir

(
2π

A
|n|y

)
exp

(
πi

A
〈in, x〉

)
.

d = 2
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It is expected that level 1 Maass cusp forms are “transcendental”;
coefficients and eigenvalues conjectured to be transcendental
numbers.

We use Hejhal’s algorithm. Produces a well-conditioned linear
system with the coefficients an as the unknowns. Is heuristic, not
rigorous.

Dennis Hejhal (1992) over Q
Gunther Steil (1997) nonlinear methods for d = 1, 2, 3, 7, 11
(h(Od) = 1, euclidean)

Holger Then (2004) extended Hejhal to PSL2(Z[i]) (i.e. d = 1).
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I have implemented an extension of Hejhal’s
algorithm to the remaining Euclidean fields
(d = 1, 2, 3, 7, 11). In C++ using Arb.

Must search for eigenvalues and coefficients
simultaneously.

Extending Hejhal to Od comes with an
increase in computational complexity which
increases as d increases.

Coming soon: Extending to noneuclidean
Od with h(Od) = 1. Key tool: reduction
algorithm for points in H3

≈1800 points
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Fekete polynomials of
principal Dirichlet characters

Shiva Chidambaram, Ján Mináč
Duy Tan Nguyen, Tung T. Nguyen (*)

Western University

LMFDB, Computation, and Number Theory
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Let χ be a Dirichlet character of modulus n. The L-function
of χ is defined as

L(χ, s) =
∞∑

m=1

χ(m)

ms
.

L(χ, s) has the following integral representation

Γ(s)L(χ, s) =

∫ 1

0

(− log(t))s−1

t

Fχ(t)

1− tn
dt

where Γ(s) is the Gamma function and

Fχ(x) =
n−1∑
a=0

χ(a)xa.

Fekete observed that if χ is a quadratic character such that
Fχ(x) has no real roots on (0, 1), then L(χ, s) has no real
zeros near 1.

2 / 5



Let χn be the principal Dirichlet character of modulus n

χn(a) =

{
0 if gcd(a, n) > 1

1 if gcd(a, n) = 1.

Let
Fn(x) = Fχn(x) =

∑
0≤a≤n−1
gcd(a,n)=1

xa.

Our numerical data suggests that Fn has exactly one
irreducible non-cyclotomic factor, which we denote by fn.
Furthermore, the Galois group of fn is as large as possible.

For example
F15(x) = xΦ2Φ4Φ8f15(x),

where f15(x) = x6 − x4 + x3 − x2 + 1.

3 / 5



If d |n, then by the theory of Ramanujan sums

Fn(ζd) =
µ(d)φ(n)

φ(d)
.

Let p be a prime number such that gcd(p, n) = 1. Then we
have the following recursive formula

Fnp(x) =
1− xnp

1− xn
Fn(x)− Fn(x

p).

If d ∤ np and d |p − 1 then Φd is a factor of Fnp.

By induction

Fn(x) = (1− xn)
∑
m|n

µ(m)
xm

1− xm
.

Using this formula, we can derive various combinatorial
conditions on d such that Φd is a factor of Fn. We can also
determine precisely the multiplicity of Φd .

4 / 5



Thank you!
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Murmurations in Arithmetic
Alexey Pozdnyakov

University of Connecticut

A Murmuration of Dirichlet Characters.

Paper: arXiv.2307.00256
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Murmurations of L-functions

Much more at math.mit.edu/∼drew/murmurations
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Theorem for Dirichlet Characters

Theorem
For c ∈ R>1 and y ∈ R>0 we have,

lim
X→∞

logX

X

∑
N∈[X ,cX ]
N prime

∑
χ∈D±(N)

χ(⌈yX ⌉p)
G (χ)

=


∫ c
1 cos

(
2πy
x

)
dx , if +,

−i
∫ c
1 sin

(
2πy
x

)
dx , if −,

where D±(N) = {χ mod N : χ primitive, χ(−1) = ±1}.

Similar results for weight 2, 4, 6 modular newforms (Nina Zubrilina).
Universal density function for any suitable family of L-functions.
Connections to L-function zeros and one-level density.
See Murmurations in Arithmetic on ICERM website for related talks.
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Computation of vector-valued modular forms

Brandon Williams

RWTH Aachen University

July 13, 2023
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Weil representation ρL of Mp2(Z) attached to an even lattice L.
Applications: Jacobi forms (lattice index); Saito–Kurokawa lift /
Gritsenko lift; Borcherds products.

“Computation” of modular forms M∗(ρL):
(1) Each space Mk(ρL) is finite dim’l and defined over Q ⇒
compute coefficients of a Q-basis;
(2) M∗(ρL) is a free Q[E4,E6]-module of rank det(L) ⇒ compute
coefficients of a basis.

Elements of M∗(ρL):
(1) Theta series (if L is positive definite)
(2) Eisenstein series (easy Fourier coefficients)

Brandon Williams Computation of vector-valued modular forms



Algorithm. Certain lattice embeddings i : L → M lead to
“pullback” morphisms i∗ : M∗(ρM) → M∗(ρL). Here det(M) can
be smaller than det(L).
(1) Find dimSk using Riemann–Roch formula.
(2) Compute a lattice embedding i : L → M with
rk(M) = rk(L) + 1 and det(M) small.
(3) Pull back Eisenstein series Ek−1/2 and related forms (Serre
derivative, multiples by Q[E4,E6]) along i∗.
Lemma. If k ≥ 3 then as i runs through all (appropriate)
embeddings Ek − i∗(Ek−1/2) spans Sk ! So repeat (1)-(3) to get a
basis.
(4) If k is small then use

Sk(ρ) = {F/E4 : F ∈ Sk+4(ρ) such that ϑϑ(F/Ek) ∈ Sk+4(ρ)}

where ϑ is the Serre derivative ϑ(f ) = η2k(f /η2k)′.

Implementation in Sage.

Brandon Williams Computation of vector-valued modular forms



Belyi Pairs of Complete Regular Dessins

Ajmain Yamin
ayamin@gradcenter.cuny.edu

CUNY Graduate Center
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Problem + Previous Works

Problem Statement + Definitions

Compute Belyi pairs (affine models) of complete regular dessins.
Complete regular dessin a.k.a. Kn-dessin: bipart. dessin of a CRM.
Compl. reg. map (CRM): reg. map w/ underlying graph Kn.

Theorem (Biggs (1985) + James & Jones (1971))

Classification of CRMs: Cayley maps associated to Fn.

Theorem (Jones, Streit & Wolfart (2009))

Min. field of def. of Kn-dessin: spl. field of p in Q(ζn−1), n = pf .

Theorem (Hidalgo (2015))

Explicit affine models of K8-dessins defined over Q(
√
−7).

Belyi Pairs of Complete Regular Dessins CUNY Graduate Center



Solution + Future Work

Theorem (Y. (2023))

Explicit affine models of K5 & K7-dessins def. / Q(i) & Q(ω) resp.

Method: Cyclotomic construction + manipulate ℘-functions.

Future work: Generalize cycl. constr. + higher genus arithmetic.

Belyi Pairs of Complete Regular Dessins CUNY Graduate Center



Hidden Stabilizers, the Isogeny To Endomorphism Ring 
Problem and the Cryptanalysis of pSIDH

joint with Muhammad Imran, Gábor Ivanyos, Péter Kutas, Antonin 
Leroux, Christophe Petit

Mingjie Chen
University of Birmingham

July 2023

LuCaNT 2023



Isogeny-based Cryptography

After the death of SIDH in July 2022 ……

SQISign
SQISignHD
Scallop
pSIDH ……

Endomorphism
Ring Problem

Given a supersingular
elliptic curve E, compute
its endomorphism ring

End(E).

Path-finding
Problem

Given a supersingular
elliptic curve E, find a

path on the supersingular
ℓ-isogeny graph from E
to a fixed curve 𝐸!

Can we find End(E) if we know an isogeny
from 𝐸! of arbitrary degree D?

?
IsERP



Resolution of the IsERP

IsERP GAEP PQLP

𝐺𝑖𝑣𝑒𝑛 𝐸𝑛𝑑 𝐸! , 𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝜑: 𝐸! → 𝐸, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐸𝑛𝑑 𝐸 .

𝐺𝑖𝑣𝑒𝑛 𝑔 ∈ 𝐺𝐿" 𝑍/𝑁𝑍 , 𝐸𝑛𝑑 𝐸! 𝑎𝑛𝑑 𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓
𝜑: 𝐸! → 𝐸 𝑤𝑖𝑡ℎ 𝜑 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑁 , 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑎 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔 ∗ 𝜑.

𝒪 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 ℬ#,%. 𝐺𝑖𝑣𝑒𝑛 𝑁 𝑎𝑛𝑑 𝜎! ∈
𝒪, 𝑓𝑖𝑛𝑑 𝜎 = 𝜆𝜎! 𝑚𝑜𝑑 𝑁 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟𝑠𝑚𝑜𝑜𝑡ℎ 𝑛𝑜𝑟𝑚.

PQLP

We design a
polynomial
time algorithm
that resolves it.

PQLP
Reducing IsERP to GAEP, we have a
polynomial time quantum algorithm
that solves the Borel Hidden
Subgroup Problem.



Beyond the SEA (algorithm):
Computing the trace of a supersingular

endomorphism

Travis Morrison

Virginia Tech

joint work with: Lorenz Panny, Jana Sotáková, Michael Wills



Computing the trace of an endomorphism

Problem: given an elliptic curve E/Fq and α ∈ End(E ), compute
Trα ∈ Z.

Why?

Computing Tr πE reveals the ring structure of Z[πE ], i.e. a
multiplication table for the basis 1, πE .
If E is supersingular: computing traces lets us determine a
multiplication table for basis elements of End(E ) (or a suborder)

How? Schoof’s algorithm

For small primes `, compute the characteristic polynomial of
πE
∣∣
E [`]
∈ End(E [`]) to get t` ≡ Tr πE (mod `). Recover Tr πE

from the t`’s with CRT.

Elkies’ method for computing t`

If E admits a rational `-isogeny φ, compute characteristic
polynomial of πE

∣∣
ker φ
∈ End(ker φ) to get t`.



The SEA algorithm for supersingular endomorphisms

When E/Fp2 is supersingular: E/Fp2 has all of its `-isogenies
defined over Fp2 (every prime is an Elkies prime!)

Theorem (M.-Panny-Sotáková-Wills)

There is an algorithm for computing the trace of an endomorphism
α of a supersingular E/Fp2 . Assuming GRH and that degα = de

with e = O(log p) and d = O(1), the algorithm terminates in
expected Õ((log p)4) bit operations.

Beyond the SEA (algorithm)

1. Compute a ∈ Fp2 such that α∗ωE = aωE , we get
Trα ≡ TrFp2/Fp

a (mod p)

2. Since E is supersingular we know #E (Fp2). If `|#E (Fp2) then
find P of order ` and solve (α + α̂)(P) = t`P.







Online Math Databases on the Cheap

Dan Gordon

Center for Communications Research - La Jolla
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The La Jolla Combinatorics Repository

A quick history

Started in 1996 as a database of covering designs, one per HTML page

Grew, rewrote as a MySQL database

Hundreds of contributors of covering designs from all over

Over the years added difference sets, circulant weighing matrices, Steiner systems

Issues

I had to learn HTML, PHP, SQL, and AWS system administration

Location changed from http://sdcc12.ucsd.edu/∼xm3dg/cover.html to
http://www.ccrwest.org/cover.html to https://dmgordon.org.

How to make sure the data will always be available?

Gordon (CCR-L) Databases on the cheap July 13, 2023 2 / 5



Many mathematicians face this issue

October 2021 Email from Robert Craigen

Sent to 10 researchers interested in “Hadamardish” materal

Led to a zoom discussion of how to make data available online

Wanted systematic, permanent, comprehensive databases

No consensus about how to achieve that

Gordon (CCR-L) Databases on the cheap July 13, 2023 3 / 5



First Try

For a paper published in DCC this year:

github repo with data, basic code to use it

jupyter notebook to run the code in

zenodo.org gave it a permanent home with a DOI

mybinder.org lets you run it without installing anything

Issues

binder is slow

can this scale up to larger (several GB) databases?

Are there better solutions?

Gordon (CCR-L) Databases on the cheap July 13, 2023 4 / 5



Links

The La Jolla Combinatorics Repository

Signed Difference Sets

https://doi.org/10.5281/zenodo.7473882
github repo

Gordon (CCR-L) Databases on the cheap July 13, 2023 5 / 5

https://dmgordon.org
https://doi.org/10.5281/zenodo.7473882
https://github.com/dmgordo/signed-difference-sets/tree/v1.1


A number theoretic 
classification of toroidal 

solenoids
Maria Sabitova

CUNY
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