Deuring for the People: Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic

Jonathan Komada Eriksen¹ Lorenz Panny² Jana Sotáková³ Mattia Veroni¹

¹Norwegian University of Science and Technology

²Academia Sinica, Taipei, Taiwan

³University of Amsterdam and QuSoft

July 13, 2023 LuCaNT

Main actors

- 1. Prime p large enough,
- 2. finite field \mathbb{F}_{p^2} and extensions,
- 3. supersingular elliptic curves E/\mathbb{F}_{p^2} ,

Assume $#E(\mathbb{F}_{p^2}) = (p+1)^2$, Frobenius over \mathbb{F}_{p^2} acts as [-p].

4. isogenies between elliptic curves:

in our case: all defined over \mathbb{F}_{p^2} ,

given by: their kernels (for instance, given by generators), kernel polynomials*, rational maps, factored into a sequence of smaller-degree isogenies, ...

5. quaternion algebras

$$B_{p,\infty} = (-q, -p) = \mathbb{Q} + \mathbb{Q}\mathbf{i} + \mathbb{Q}\mathbf{j} + \mathbb{Q}\mathbf{k}$$

with $ij = -ji = k$ and $j^2 = -p$ and $i^2 = -q$ for some $-q$ nonsquare mod p .

Deuring correspondence

Let $B_{p,\infty}$ be a quaternion algebra ramified only at p and ∞ .

Deuring correspondence

The endomorphism ring of a supersingular elliptic curve over \mathbb{F}_{p^2} is isomorphic to a maximal order in $B_{p,\infty}$, and any maximal order in $B_{p,\infty}$ is isomorphic to an endomorphism ring of a supersingular elliptic curve over \mathbb{F}_{p^2} .

Computing the endomorphism ring problem

Starting from a curve E, give a maximal order \mathcal{O} isomorphic to End(E).

Constructive Deuring correspodence

Given a maximal order \mathcal{O} in $B_{p,\infty}$, find an elliptic curve E with $End(E) \cong \mathcal{O}$.

Constructive Deuring correspodence

For $\mathcal{O} \subset B_{p,\infty}$, we want to find an elliptic curve E with $\operatorname{End}(E) \cong \mathcal{O}$. Fix a supersingular elliptic curve E_0 with $\operatorname{End}(E_0) = \mathcal{O}_0$.

Another interpretation of the Deuring Correspondence Supersingular *j*-invariants in \mathbb{F}_{p^2} are in a bijection with left-ideal classes in \mathcal{O}_0 .

The ideal class of $[\mathcal{O}_0\mathcal{O}]$ corresponds to an elliptic curve E with $End(E) \cong \mathcal{O}$.

For any *integral* ideal $I \in [\mathcal{O}_0 \mathcal{O}]$, construct isogeny of degree norm(I) with kernel

 $E_0[I] = \bigcap_{\alpha \in I} \ker(\alpha).$

Then the codomain *E* satisfies $End(E) \cong O$.

Strategy

Want to compute an elliptic curve with $End(E) \cong O$.

Strategy:

- 1. Find some supersingular elliptic curve E_0 with effective endomorphism ring \mathcal{O}_0 .
- 2. Compute an integral ideal I in the class of $[\mathcal{O}_0\mathcal{O}]$, e.g. $N \cdot \mathcal{O}_0\mathcal{O}$ for some N.
- 3. Translate this ideal to an isogeny $E_0 \rightarrow E$.

$p \equiv 3 \pmod{4}$

On the curve $E_0: y^2 = x^3 + x$, Frobenius π satisfies $\pi^2 = -p$. Also have an endomorphism ι with $\iota^2 = -1$. Map $\pi \mapsto \mathbf{j}$ and $\iota \mapsto \mathbf{i}$. Then

$$\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \frac{\mathbf{i} + \mathbf{j}}{2} \oplus \mathbb{Z} \frac{1 + \mathbf{k}}{2}$$

How to translate an ideal to an isogeny

Ideal $I \subset \mathcal{O}_0$ of norm N. Assume I is cyclic: cannot factor out any integer.

- 1. find the kernel of the ideal: $E_0[I] = \bigcap_{\alpha \in I} \ker(\alpha) = \{P \in E_0 : \alpha(P) = 0 \text{ for all } \alpha \in I\}.$ For any prime power $\ell^e \mid N$:
 - 1.1 find a basis P, Q of the torsion $E[\ell^e] \subset E(\mathbb{F}_{p^k})$,
 - 1.2 determine the action of I on $E[\ell^e]$,
 - 1.3 compute the kernel generator G_{ℓ} .
 - 1.2 Avoid discrete logarithms:

```
Write I = \alpha \mathcal{O} + N\mathcal{O}.
Then the kernel point G_{\ell} is \overline{\alpha}(P) or \overline{\alpha}(Q), whichever has full order.
```

The kernel is then generated by all the G_{ℓ} .

- 2. translate the kernel into isogenies: for every prime power $\ell^e \mid N$:
 - 2.1 compute an ℓ -isogeny (e times),
 - 2.2 each time, map all the kernel generators through the isogeny.

Kohel-Lauter-Petit-Tignol algorithm

Maximal order \mathcal{O}_0 constructed as before. $I \subset \mathcal{O}_0$ ideal of norm N.

Equivalent ideals

For any $\beta \in I$ of norm *NR*, the ideal

$$J = I \cdot \frac{\beta}{N}$$

is an integral ideal in the same class and has norm R.

So to find an ideal of nicer norm, it is enough to find elements $\beta \in I$ of suitable norm.

KLPT algorithm, simplified

If R is smooth and $R > p^3$, you can find $\beta \in I$ of norm dividing NR in polynomial time.

How to choose R

Most often, the ℓ torsion is only defined over $\mathbb{F}_{p^{\ell-1}}$: extension of \mathbb{F}_{p^2} of degree $\frac{\ell-1}{2}$.

Choice of *R*:

Pick powers $\ell^e \mid R$ such that:

- 1. $\prod \ell^e > p^3$,
- 2. the torsion groups $E[\ell^e]$ are defined over small extensions of \mathbb{F}_{p^2} ,
- 3. the ℓ -isogenies do not get too expensive.

In practice, estimate/guess a cost model, and use a greedy algorithm to get a R with smallest expected cost.

Illustration for some p

Black dots

Small prime powers picked by our algorithm to optimize the extension degrees.

White squares

Primes picked by the naive power-smooth KLPT algorithm.

Timings

x-axis: seconds y-axis: bit-length

Lower dots

Our implementation, picking a good R, small extension degrees

Upper dots

Naive implementation, picking power smooth torsion groups, ignoring extension degrees.

100 bit primes: 2-3 minutes 256 bit primes: 2 hours

Code!

What can the code do for you?

- 1. Written in Sage (version \geq 9.8)
- 2. Handles all non-tiny primes! no congruence condition on p
- 3. Somewhat modular

KLPT algorithm; constructing one supersingular curve with effective endomorphism ring

What it can do but is not yet in repo Handles maximal orders in **your** favorite quaternion algebra,

go between different representations of $B_{
m p,\infty}$

https://github.com/friends-ofquaternions/deuring

Constructing one supersingular elliptic curve

For $p \equiv 3 \mod 4$, we have $y^2 = x^3 + x$ with known *effective* endomorphism ring.

Bröker method

For any prime $p \equiv 1 \mod 4$, find a supersingular elliptic curve in \mathbb{F}_{p^2} as:

- find the smallest prime q that is a non-square mod p,
- find the unique root j of $H_{-q}(X)$ in \mathbb{F}_p ,

• construct elliptic curve E_0 with *j*-invariant *j*.

Certainly Frobenius π satisfies $\pi^2 = -p$, and necessarily get $\vartheta^2 = -q$.

Ibukiyama step

Identify $\vartheta \mapsto \mathbf{i}$ and $\pi \mapsto \mathbf{j}$. Then there are only two choices for endomorphism ring of E_0 :

$$\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} \frac{1+\mathsf{i}}{2} \oplus \mathbb{Z} \frac{\mathsf{j}+\mathsf{k}}{2} \oplus \mathbb{Z} \frac{\mathsf{c}\mathsf{i}\pm\mathsf{k}}{q}$$
(1)

where c is a fixed integer satisfying $c^2 \equiv -p \pmod{q}$.