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Abstract. Building on work of Balakrishnan, Dogra, and of the first author,

we provide some improvements to the explicit quadratic Chabauty method to

compute rational points on genus 2 bielliptic curves over Q, whose Jacobians
have Mordell–Weil rank equal to 2. We complement this with a precision

analysis to guarantee correct outputs. Together with the Mordell–Weil sieve,
this bielliptic quadratic Chabauty method is then the main tool that we use

to compute the rational points on the 411 locally solvable curves from the

LMFDB which satisfy the aforementioned conditions.

1. Introduction

Let X be a smooth, projective, geometrically integral curve over the field of
rational numbers; let g be its genus, and let r be the Mordell–Weil rank of its
Jacobian J over Q. In this article we compute the set of rational points on all such
X in the LMFDB [LMF22] - and, in particular, in the database of genus 2 curves
computed by Booker, Sijsling, Sutherland, Voight and Yasaki [BSS+16] - which
satisfy the following conditions:

(i) g = 2;
(ii) r = 2;
(iii) X is bielliptic over Q.

For some of these curves, there exists a place v of Q for which X(Qv) = ∅, so the
set of rational points X(Q) is trivially empty. After discarding these, we are left
with 411 curves that satisfy (i)–(iii) and are everywhere locally solvable. Our main
contribution, which made the computation of the rational points on these curves
possible, is an improvement of the explicit quadratic Chabauty approach specific to
curves satisfying (i)–(iii) and a SageMath [Sag22] implementation of the resulting
method (available at [BPb]). We now explain how the assumptions (i)–(iii) place
our problem into the more general context of computing rational points on curves.

First of all, since we are assuming (i) that the genus of X is greater than 1, the
set of rational points X(Q) is finite by Faltings’ theorem [Fal83,Fal84]. Without
any further assumption on X, there is no practical algorithm that is guaranteed to
provably output all the finitely many points in X(Q).

If r < g (and g is small, as in our case), a combination of the Chabauty–
Coleman method [Cha41,Col85a] and the Mordell–Weil sieve [Sch99,BS10a] is
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likely to be successful. Let p be a prime of good reduction for X. The core idea
of the Chabauty–Coleman method is that the p-adic closure of J(Q) inside the
p-adic manifold J(Qp) has codimension at least max{g − r, 0}, and hence positive
codimension if r < g. Pulling back to X via X → J , x 7→ [degD · x − D] for
a Q-rational divisor D of positive degree, this allows one to write down a locally
analytic function ρ̃0 : X(Qp) → Qp which vanishes on X(Q). The zero set A0 of
ρ̃0 is finite and contains X(Q); the Mordell–Weil sieve can then often be used to
extract from A0 the set X(Q). An implementation of this method for g = 2 is
available in Magma [BCP97].

When r ≥ g, the Chabauty–Coleman method is, in general, not applicable and
computing X(Q) is often a harder problem. Our geometric assumption (iii) comes
in to simplify the task. Recall that a curve is bielliptic if it has a degree 2 map to
an elliptic curve. We will further require that the map is defined over the base field
of the curve. Then a bielliptic genus 2 curve over Q admits a model of the form

y2 = a6x
6 + a4x

4 + a2x
2 + a0, ai ∈ Z,

and its Jacobian is isogenous to E1×E2, where E1 and E2 are elliptic curves given
by the following Weierstrass equations:

E1 : y2 = x3 + a4x
2 + a2a6x+ a0a

2
6

E2 : y2 = x3 + a2x
2 + a4a0x+ a6a

2
0

(see [FK91,Kuh88]). If one of E1 and E2 has Mordell–Weil rank 0 over Q, we
can easily compute the set X(Q); the more interesting case is when each of E1 and
E2 has positive rank.

For example, Xw/Q : y2 = x6+x2+1 is a bielliptic genus 2 curve, whose elliptic
quotients each have rank 1 (so the rank of the Jacobian of Xw is 2). It turns out
that the determination of Xw(Q) is equivalent to solving Problem 17 of book VI
of Diophantus’ Arithmetica. Wetherell [Wet97] observed that, in this case, one
could exploit the isogeny E1 × E2 ∼ Jac(Xw) to reduce the problem of computing
Xw(Q) to that of computing the rational points on two genus 3 curves, for which
the method of Chabauty–Coleman is applicable. By carrying this out explicitly, he
solved Diophantus’ problem, many centuries after it had been formulated.

Flynn and Wetherell [FW99] recast Wetherell’s solution to Diophantus’ prob-
lem as a special case of a strategy that can be applied to compute the rational points
on arbitrary bielliptic genus 2 curves whose corresponding elliptic curve quotients
each have rank equal to 1. Furthermore, they replaced the Chabauty–Coleman
computations of Wetherell with computations on elliptic curves over number fields.
These have hope of being successful only if the rank of such elliptic curves is strictly
less than the number field degree, condition which is not always satisfied (see the
example at the end of [FW99]). They called the resulting elliptic curve compu-
tations “elliptic curve Chabauty”; an extension of the genus 2 bielliptic method of
Flynn–Wetherell to curves covering elliptic curves (possibly over some extension of
Q) is due to Bruin [Bru03]. It would be interesting to investigate for how many
of the curves in our database the computation of rational points is algorithmically
possible using elliptic curve Chabauty. We have not attempted this, but mention
in this respect that Hast [Has22] has recently implemented a method to compute
rational points on genus 2 curves with a rational Weierstrass point, which combines
descent and elliptic curve Chabauty. The resulting algorithm was run on a large
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database of curves, 21 of which also belong to our database. For 15 of these 21 the
computation was not successful (see [Has]), due to current algorithmic limitations
of Magma [BCP97], for instance in the computation of Mordell–Weil ranks of el-
liptic curves over non-trivial extensions of Q. This does not allow one to conclude
whether in some of these cases there could be an actual theoretical obstruction
to the method, nor whether other versions of elliptic curve Chabauty (e.g. Flynn–
Wetherell’s) would be successful on a subset of these curves. For a discussion of
elliptic curve Chabauty for hyperelliptic curves and some of its limitations, see also
the proof of [BGX21, Proposition 2].

In a different direction, Kim’s program [Kim05,Kim09] aims to construct, for
an arbitrary X/Q, locally analytic functions ρ̃ : X(Qp) → Qp vanishing on the set
X(Q) by replacing the Jacobian in the method of Chabauty–Coleman with suitable
Selmer varieties. Balakrishnan and Dogra [BD18] made one level of Kim’s program
explicit for curves satisfying r < g+ ρ− 1, where ρ is the rank of the Néron–Severi
group of J over Q. The resulting method is known as “quadratic Chabauty”,
and the locally analytic function ρ̃ in this case is defined using quadratic forms
constructed from p-adic heights.

Remark 1.1. Here by “quadratic Chabauty” we always mean, unless otherwise
specified, quadratic Chabauty for rational points. A simpler variant of quadratic
Chabauty can be used to determine the integral points of elliptic and hyperelliptic
curves whose genus is equal to the rank of the Jacobian, and was developed prior
to the work of Balakrishan–Dogra. See [Kim10,BKK11,BB15] for elliptic curves
and [BBM16,BBM17] for hyperelliptic curves.

In particular, the quadratic Chabauty method is applicable to curves satisfying
(i)–(iii), provided that E1 and E2 each have rank 1; in fact, these are perhaps
the simplest class of curves for which Chabauty’s method is not applicable, but
quadratic Chabauty is. Not surprisingly, the first explicit examples of quadratic
Chabauty in the literature are genus 2 bielliptic curves [BD18, §§8.3,8.4]. By now,
Balakrishnan–Dogra’s quadratic Chabauty has also been successfully applied to
many modular curves of arithmetic interest, using the techniques and algorithms
of [BDM+19,BDM+21].

The bielliptic genus 2 case still remains interesting, since it can be understood
independently of the p-adic Hodge theory techniques that are normally involved
in quadratic Chabauty. In this case, the locally analytic function ρ̃ is defined
using abelian integrals and p-adic heights on the two elliptic curves E1 and E2; in
fact, quadratic Chabauty for the rational points of X is, essentially, a combination
of quadratic Chabauty for the integral points of E1 and E2 (see Remark 1.1).
After Balakrishnan–Dogra’s first examples of explicit quadratic Chabauty on a
bielliptic curve [BD18], the first author [Bia20] made some steps in the method
more algorithmic and used this to provide further examples; an extension of this to
number fields is given in [BBBM21].

In this article, we propose a simplification of the quadratic Chabauty function
used in the computations of [BD18,Bia20,BBBM21]: see Theorem 2.4 and Re-
mark 2.5. One of the resulting improvements is that, unlike in [BD18,Bia20], we
can work with one function ρ̃ on the whole of X(Qp), rather than having to consider
different functions on two affine patches covering X(Qp). This makes the compu-
tations less involved, and some of the algorithmic assumptions of [BD18,Bia20]
unnecessary. We give an elementary proof that the set of rational points is contained
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in

A = {z ∈ X(Qp) : ρ̃(z) ∈ Ω},

where Ω is a finite subset of Qp which we can describe explicitly in terms of our
equations for X, E1, E2 and the reduction type of E1 and E2 at the primes of
bad reduction. The proof relies on properties of global and local p-adic heights on
elliptic curves. In particular, we use Mazur–Tate p-adic heights [MT83,MT91,
MST06,Har08].

As a result, it is possible to run the algorithm on a database containing hundreds
of curves, such as ours. To support our computations, we provide a precision
analysis. The function ρ̃ is, locally, given by a power series f(t) ∈ Qp[[t]], where t
is a local parameter. In order to compute the finite set of p-adic points z satisfying
ρ̃(z) ∈ Ω, we need to have information about the p-adic valuation of the coefficients
of f(t). We derive lower bounds for these valuations in Section 3, where we also
explain how to use this to compute the set A, up to some p-adic precision.

Finally, the set A will in general be larger than X(Q). To complete our de-
termination of the set X(Q), we apply the Mordell–Weil sieve as in [BBM17] to
exclude points in A from belonging to X(Q), until we are left only with points
in A that we can recognise as points in X(Q). This normally requires computing
the set A for more than one prime p. See Section 4 (in particular, §4.3) for a de-
scription of a version of the Mordell–Weil sieve that is suitable to our setting, and
that is based on [BBM17]. For this step in our computations we use the code of
Balakrishnan–Dogra–Müller–Tuitman–Vonk, available at [BDM+].

For most of the curves in our database, we apply quadratic Chabauty together
with the Mordell–Weil sieve to compute X(Q). For a minority of curves (59 of
them), one of the two elliptic curves has rank 0, so we can instead compute the
rational points in a much more straightforward way by considering the preimages
of the Q-rational points on the rank 0 elliptic curve quotient. Finally, for two
curves, we suspected that X(Q) = ∅, and we proved this using a sieve (without a
preliminary quadratic Chabauty computation). See Section 4 for the various steps
in our computation.

In summary, we have the following. Consider the set of genus 2 curves defined
over Q from [BSS+16] (available at [LMF22]) which have points everywhere lo-
cally, are bielliptic over Q, and whose Jacobians have rank 2 over Q. To this set
add the quotient of the Shimura curve X0(10, 19) by the Atkin-Lehner involution
w190 and the curve y2 = x6 + 6x5 + 39x4 + 52x3 + 39x2 + 6x+ 1 (see Remark 1.4
below). Let ∆ be the resulting database of 413 curves.

Theorem 1.2. The number of rational points of each curve in the database ∆
is listed in [BPa].

Remark 1.3. For two of the curves in the database ∆, the full set of rational
points had been determined prior to our work, and is listed on [LMF22]. These
curves are:

• The quotient of the modular curve X0(129) by the group generated by the
Atkin-Lehner involutions w3 and w43 (with LMFDB label 5547.b.16641.1).
The rational points for this curve were determined using 2-cover descent
by Bars–González–Xarles [BGX21], as well as using geometric quadratic
Chabauty by Edixhoven–Lido [EL21].

26 Jun 2023 23:11:48 PDT

230105-Padurariu Version 2 - Submitted to LuCaNT

http://www.lmfdb.org/Genus2Curve/Q/5547/b/16641/1


RATIONAL POINTS ON RANK 2 GENUS 2 BIELLIPTIC CURVES IN THE LMFDB 5

• The quotient of the modular curve X0(91) by its Fricke involution w91

(with LMFDB label 8281.a.8281.1). The Q(i)-rational points on this
curve were computed using quadratic Chabauty over number fields by
Balakrishnan–Besser–Müller and the first author [BBBM21].

Our computations for these curves confirm the results of [BGX21,EL21,BBBM21].

Remark 1.4. The computation of the rational points of the following curves
in ∆ is relevant to prior work:

• X0(10, 19)/〈w190〉: [PS23, §3.1];
• y2 = x6 + 6x5 + 39x4 + 52x3 + 39x2 + 6x + 1: [LR22, Theorem 1 and

Remark following];
• X0(166)∗ (with LMFDB label 13778.a.27556.1): [ACKP22, §2.4].

This paper is accompanied by our code on GitHub [BPb,BPa]. While the code
for bielliptic quadratic Chabauty is an upgrade of the code pertaining to [Bia20],
is written in SageMath [Sag22] and is available at [BPb], for the Mordell–Weil
sieve computations we make extensive use of the Magma [BCP97] code available at
[BDM+]; the resulting implementation, as well as the results of our computations,
can be found at [BPa].

Acknowledgements. It is a pleasure to thank Jennifer Balakrishnan, Céline
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1.1. Notation. Given a prime q, we denote by ordq the q-adic valuation on
Qq, normalised to be surjective onto Z, and by | · |q the standard absolute value on

Qq, as well as its extension to Qq.

2. Quadratic Chabauty for genus 2 bielliptic curves

Let X/Q be a non-singular genus 2 curve given by an equation of the form

(2.1) X : y2 = F (x) = a6x
6 + a4x

4 + a2x
2 + a0, ai ∈ Z

and consider the elliptic curves

E1 : y2 = x3 + a4x
2 + a2a6x+ a0a

2
6(2.2)

E2 : y2 = x3 + a2x
2 + a4a0x+ a6a

2
0.(2.3)

There are degree 2 maps ϕi : X → Ei given on affine points by

(2.4) ϕ1(x, y) = (a6x
2, a6y), ϕ2(x, y) = (a0x

−2, a0yx
−3).

We denote by ∞± the two points at infinity in X(Q(
√
a6)) and by ∞ the point at

infinity of an elliptic curve.
Our goal is that of computing X(Q) under some assumptions on the ranks of

E1 and E2. Since ϕi(X(Q)) ⊆ Ei(Q), the task is easy if one of the two elliptic
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curves is of rank 0 over Q. The first interesting case arises when each of E1 and
E2 has rank 1 over Q, and this is precisely the situation that we want to consider
here. So let us assume that

rank(E1(Q)) = rank(E2(Q)) = 1,

and let us fix a prime p of good reduction for the model of X given by (2.1) (and
hence also for (2.2) and (2.3)).

The strategy comprises two steps: first we compute a finite p-adic approxi-
mation of X(Q) inside X(Qp) (quadratic Chabauty), and secondly we refine our
approximation and extract the set X(Q) (Mordell–Weil sieve). Up until and in-
cluding Section 3, our focus will be on the quadratic Chabauty part of the method,
which is due to Balakrishnan–Dogra [BD18].

Some further examples and algorithmic observations and modifications to qua-
dratic Chabauty for genus 2 bielliptic curves were part of the first author’s arti-
cle [Bia20]. Our starting point is the code [Bia] provided with the latter article,
which uses local p-adic height functions on E1 and E2 defined in terms of sigma
functions [MT91,MST06,Har08] (differently from [BD18], which uses Coleman–
Gross p-adic heights [CG89]).

We will need these to define a non-constant locally analytic function ρ̃ : X(Qp)→
Qp and a finite set Ω ⊂ Qp such that ρ̃(X(Q)) ⊆ Ω; we further require that ρ̃ and
Ω are computable, at least up to some desired p-adic precision. The set

(2.5) {z ∈ X(Qp) : ρ̃(z) ∈ Ω},

computed to some p-adic precision, is our approximation of X(Q).
The main novelty compared to [BD18, Bia20] is that, by keeping track of

logarithmic singularities, we are able to work with a simpler function ρ̃: see Remark
2.5 below.

Let us now introduce what we need to define ρ̃ and Ω. For now, we may assume
more generally that p is an odd prime. Further conditions on p will be introduced
only when needed.

First, we let log : Z×p → Qp be the p-adic logarithm. It is possible to extend

log to a function Q×p → Qp by choosing a value for log(p). It is customary (and
natural in our situation [BBBM21, Remark 2.1]) to choose the Iwasawa branch,
namely the one for which log(p) = 0. Some of the summands of ρ̃ depend on this
choice, so we fix this choice of branch. Note, however, that overall our ρ̃ will be
branch-independent.

Next, we consider the p-adic logarithm on an elliptic curve (we will eventually
want to apply this to E1 and E2). Let E be an elliptic curve over Qp given by the
Weierstrass equation

E : y2 = x3 +A2x
2 +A4x+A6, Ai ∈ Zp,

with point at infinity ∞ ∈ E(Qp). The p-adic logarithm Log : E(Qp) → Qp is the
abelian group homomorphism defined as follows. For P ∈ E(Qp), we let

Log(P ) =

∫ P

∞
ω, where ω =

dx

2y
,

and the integral is first defined by formal anti-differentiation in the formal group
and then extended to E(Qp) by insisting that the resulting function be a homomor-
phism. The map Log induces a homomorphism E(Qp) → H0(EQp

,Ω1)∨, which is
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the p-adic Lie group logarithm [Bou98, III, §7.6]. By [Col85b, Theorem 2.8], if E
has good reduction, Log coincides with the Coleman integral of ω between ∞ and
P . We will not use this, but we will use that if P1, P2 ∈ E(Qp) reduce to the same
point modulo p, then

Log(P1)− Log(P2) =

∫ P1

P2

ω,

where the latter integral can also be computed by formal anti-differentiation of a
local expansion of ω. Since ω is holomorphic, Log is locally analytic, i.e. it can be
expressed locally by a convergent power series (see §3.3 for more details). Moreover,
Log vanishes at P ∈ E(Qp) if and only if P ∈ E(Qp)tors (see e.g. [Sil09, IV,
Theorem 6.4 (b)], or, more generally, [Col85b, Proposition 3.1]). In summary,
Log : E(Qp) → Qp is a locally analytic group homomorphism, whose kernel is
E(Qp)tors.

Finally, the most technical ingredient that we need is the theory of p-adic
heights on elliptic curves. The appearance of p-adic heights in the definition of ρ̃
partly justifies the adjective “quadratic” in the name of the method. Assume now
that our elliptic curve is defined over Q:

E : y2 = x3 +A2x
2 +A4x+A6, Ai ∈ Z

and has good reduction at p. Fix a constant c ∈ Qp, or, equivalently, a differential η

of the form η = (x+c)dx2y . Note that the class of η spans a one-dimensional subspace

of H1
dR(E/Qp) complementary to the space of holomorphic forms, and conversely

every such subspace is spanned by the class of a differential of that form.
There are several theories of p-adic heights in the literature, although many

comparison results are now known. Here we use the same height as in [Bia20]. This
is essentially the one of Mazur–Stein–Tate [MST06] (at least when the reduction is
ordinary and we pick the above subspace to be the unit root eigenspace of Frobenius,
as we will do in Section 3), but we further consider its decomposition into a sum of
p-adic local Néron functions at every prime q

λq : E(Qq) \ {∞} → Qp

as in [Bia20, §2A, 4A]. At the primes different from our working prime p, these are
obtained from real-valued Néron functions with respect to the divisor 2(∞) [Sil94,
Chapter VI] by replacing the real logarithm with the p-adic one, and therefore
satisfy similar properties. At the prime p, the local height λp depends on the choice
of c; in the formal group of E at p, it also depends on the branch of the p-adic
logarithm.

The properties of these local height functions that we need for the main theorem
are listed in Propositions 2.1 and 2.2, and more details on λp are also provided in
the precision analysis (§3.4). Roughly, the local function λq is well-behaved on
the subset of E(Qq) consisting of points with coordinates in Zq, where by “well-
behaved” we mean that it has finite image if q 6= p and is locally analytic if q = p.
In the subset of E(Qq) consisting of points reducing to ∞, the function λq has
a logarithmic term if q = p and takes infinitely many values if q 6= p. When we
consider the problem of computing X(Q), we are able to control this unboundedness
by using both maps ϕ1 and ϕ2 defined in (2.4) (see Theorem 2.4 (b)).

Proposition 2.1.
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(a) The local Néron function λp is locally analytic away from the residue disc
of the point at infinity.

(b) Let t = −xy . Then, the expansion of λp in the disc of ∞ in terms of t is

of the form −2 log(t) +O(t).

Proof. See [Bia20] and §3.4. �

Proposition 2.2. Let q 6= p.

(a) If P ∈ E(Qq) reduces to a non-singular point modulo q, then

λq(P ) = log(max{1, |x(P )|q}).
(b) Let WE

q be the set of values attained by λq on points in E(Qq) of the form

(x, y) with x, y ∈ Zq. Then WE
q is finite, explicitly computable, and {0}

for all but finitely many q (in particular, WE
q ⊆ {0} at all primes of good

reduction for the given model for E).

Proof. For part (a), see [Bia20, Lemma 2.1]. For part (b), see [Bia20,
Lemma 6.4], which as stated seems to be specific to Ei, but holds more gener-
ally. It provides an explicit description of WE

q . �

For a global point P ∈ E(Q), the global p-adic height is then

(2.6) hp(P ) =

{∑
q λq(P ) if P 6=∞,

0 otherwise.

By Proposition 2.2, this is well-defined, as all but finitely many of the λq(P ) are
equal to 0, for a given P . The crucial property satisfied by hp that we need is the
following:

(2.7) hp(mP ) = m2hp(P ), for all m ∈ Z, P ∈ E(Q).

We are now ready to introduce the quadratic Chabauty function ρ̃ mentioned above,
and the set Ω. See Remark 2.5 for an explanation of how this differs from the explicit
quadratic Chabauty function used in [BD18,Bia20] (and in the generalisation to
number fields of [BBBM21]).

For a prime q, let

Zq = X(Qq) \ {P : x(P ) ∈ {0,∞}}.

Remark 2.3. We explain the notation in Part (c) of the following theorem.
The finite sets WEi

q ⊂ Qp are defined in Proposition 2.2. Given A,B ⊂ Qp and
a ∈ Qp, we write:

A+B = {a+ b : a ∈ A, b ∈ B}, −A = {−a : a ∈ A}, a+B = {a}+B.

Theorem 2.4. Suppose that each of E1 and E2 has rank 1 over Q, and let
p be a prime of good reduction for the equation (2.1) for X. For each i ∈ {1, 2},
fix a choice of subspace of H1

dR(Ei/Qp) complementary to the space of holomorphic
forms, and consider the corresponding global height hp and local Néron functions
λq, at every q. Let Pi ∈ Ei(Q) be a point of infinite order and let

αi =
hp(Pi)

Log2(Pi)
.

Then:

(a) The constant αi is independent of the choice of Pi.
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(b) The function ρ : Zp → Qp given by

ρ(z) = λp(ϕ1(z))− λp(ϕ2(z))− 2 log(x(z))− α1 Log2(ϕ1(z)) + α2 Log2(ϕ2(z))

can be continued to a locally analytic function ρ̃ : X(Qp)→ Qp.
(c) For a prime q 6= p, let

Ωq = (−WE1
q +WE2

q + {−n log q : − ordq(a6) ≤ n ≤ ordq(a0) and n ≡ 0 mod 2})
∪(log |a0|q −WE1

q ) ∪ (− log |a6|q +WE2
q ).

and set

Ω =

{∑
q bad

wq : wq ∈ Ωq

}
,

where the sum runs over all primes at which X has bad reduction. Then
Ω is finite and

ρ̃(X(Q)) ⊆ Ω.

Remark 2.5. By Proposition 2.1 (b), λp(ϕ1(z)) has a logarithmic term around
points at infinity, λp(ϕ2(z)) has a logarithmic term around points with zero x-
coordinate. The term log(x(z)) also has a logarithmic term around each of these
points. To make up for this, in [BD18, Corollary 8.1] and [Bia20, Proposition 6.5]
one considered two different affine patches covering X(Qp), and correspondingly
applied suitable translations on the elliptic curves to move away from these prob-
lematic discs. What we propose to do here instead is to discard the logarithmic
terms at once, since these overall cancel out.

Moreover, unlike in [BD18, Corollary 8.1] and [Bia20, Proposition 6.5], we do
not assume that a6 = 1. Similarly to [Bia20], we give here an elementary proof
of the resulting quadratic Chabauty criterion, which does not require any p-adic
Hodge theory. As a result, we obtain the explicit description of Ω provided in the
theorem statement. Using results in [BD18], a smaller Ω may sometimes be chosen
if there are some primes q at which X has bad but potentially good reduction: see
Proposion 2.6 below.

Proof of Theorem 2.4.
(a) First note that αi is well-defined since Log vanishes on torsion points only.

The independence of αi on the choice of Pi is a standard argument in quadratic
Chabauty methods. Namely, first note that since Log is a homomorphism, its
square satisfies

Log2(mP ) = m2 Log2(P ) for all m ∈ Z and P ∈ E(Q).

Since Log2 is also non-degenerate and rank(Ei(Q)) = 1, any other function E(Q)→
Qp that transforms quadratically with respect to multiplication by m on the elliptic

curve must be a scalar multiple of Log2. This is in particular the case for hp, in
view of (2.7).

(b) Each term in ρ is locally analytic, with the following exceptions: the function
λp(ϕ1(z)) has a logarithmic term in residue discs of points with x(z) = ∞, the
function λp(ϕ2(z)) has a logarithmic term in residue discs of points with x(z) = 0,
and log(x(z)) has a logarithmic term in residue discs of points with x(z) ∈ {0,∞}.
Using Proposition 2.1 (b), we see that, overall, the logarithmic terms add up to 0.
For more details, see the proof of part (c) or Section 3.
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10 FRANCESCA BIANCHI AND OANA PADURARIU

(c) First note that Ω is finite, since Ωq is finite and there are finitely many
primes of bad reduction for X. Also note that

Ω ⊇ Ω′ :=

{∑
q 6=p

wq : wq ∈ Ωq

}
,

since Ωq ⊆ {0} if q is a prime of good reduction (by Proposition 2.2 (b), the fact
that the primes dividing a0 or a6 are of bad reduction for the given equation for X,
and that the primes of good reduction for X are of good reduction for the equations
(2.2) and (2.3) as well). Therefore, it suffices to show that ρ̃(X(Q)) ⊆ Ω′.

Let us first assume that z ∈ X(Q) ∩ Zp. Then, by (2.6) and part (a),

ρ̃(z) = ρ(z) =
∑
q 6=p

(−λq(ϕ1(z)) + λq(ϕ2(z)) + 2 log |x(z)|q) .

For zq ∈ Zq, define

wq(zq) = −λq(ϕ1(zq)) + λq(ϕ2(zq)) + 2 log |x(zq)|q.

Thus, for z as above, we have

ρ(z) ∈ Ω′′ :=

{∑
q 6=p

wq(zq) : (zq) ∈
∏
q 6=p

Zq

}
.

The following case distinction (which uses Proposition 2.2) shows that Ω′′ ⊆ Ω′:

(1) If − ordq(a6) ≤ 2 ordq(x(zq)) ≤ ordq(a0), both ϕ1(zq) and ϕ2(zq) are
integral and

wq(zq) ∈ −WE1
q +WE2

q + {−n log q : − ordq(a6) ≤ n ≤ ordq(a0) and n ≡ 0 mod 2}.

(2) If 2 ordq(x(zq)) > ordq(a0), then ϕ1(zq) is integral, ϕ2(zq) is not. We have

wq(zq) ∈ −WE1
q + log |a0x(zq)

−2|q + 2 log |x(zq)|q = −WE1
q + log |a0|q.

(3) If 2 ordq(x(zq)) < − ordq(a6), then ϕ2(zq) is integral, while ϕ1(zq) is not.
We have

wq(zq) ∈WE2
q − log |a6x(zq)

2|q + 2 log |x(zq)|q = − log |a6|q +WE2
q .

Finally we need to compute ρ̃(z) for z ∈ X(Q), x(z) ∈ {0,∞} (if such a point
exists).

If z ∈ X(Q) with x(z) = 0, then

λp(ϕ1(z))−α1 Log2(ϕ1(z))+α2 Log2(ϕ2(z)) = −
∑
q 6=p

λq(ϕ1(z)) ∈
{∑
q bad

wq : wq ∈ −WE1
q

}
,

since ϕ1(z) is an integral point and ϕ2(z) is the point at infinity. The remaining
summands in ρ are not individually well-defined at z and we circumvent this issue
as explained in part (b), by expanding around z. For instance, a parametrisation
of the disc containing z is given by

z(t) = (x(t), y(t)) = (t,
√
a0 +O(t)),

where
√
a0 is a suitably chosen square root of a0. Thus,

ϕ2(x(t), y(t)) = (a0t
−2, a0

√
a0t
−3 +O(t−2))
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and so, by Proposition 2.1 (b),

−λp◦ϕ2(z(t))−2 log ◦x(z(t)) = 2 log

(
1
√
a0
t+O(t2)

)
−2 log(t) = − log(a0)+O(t).

We conclude that, if a0 is a square in Q, then

ρ̃(0,
√
a0) = −

∑
q 6=p

λq ◦ϕ1(0,
√
a0)− log(a0) =

∑
q 6=p

(−λq ◦ϕ1(0,
√
a0) + log |a0|q) ∈ Ω.

Similarly, if z =∞± ∈ X(Q), then ϕ2(z) is an integral point on E2 and ϕ1(z)
is the point at infinity on E1. Thus,

−λp(ϕ2(z))−α1 Log2(ϕ1(z))+α2 Log2(ϕ2(z)) =
∑
q 6=p

λq(ϕ2(z)) ∈
{∑
q bad

wq : wq ∈WE2
q

}
.

As for the remaining term λp(ϕ1(z)) − 2 log(x(z)), we have the following. A
parametrisation around z is given by

z(t) = (x(t), y(t)) = (t−1,
√
a6t
−3 +O(t−2)).

Hence

ϕ1(z(t)) = (a6t
−2, a6

√
a6t
−3 +O(t−2)).

By Proposition 2.1 (b),

λp◦ϕ1(z(t))−2 log ◦x(z(t)) = −2 log

(
− 1
√
a6
t+O(t2)

)
−2 log(t−1) = log(a6)+O(t).

So if a6 is a square in Q, then

ρ(∞±) =
∑
q 6=p

(λq ◦ ϕ2(∞±)− log |a6|q) ∈ Ω.

�

As in the proof of Theorem 2.4, for zq ∈ Zq, let

wq(zq) = −λq(ϕ1(zq)) + λq(ϕ2(zq)) + 2 log |x(zq)|q.

Otherwise, if zq ∈ X(Qq) \ Zq, we set

wq(zq) =

{
−λq(ϕ1(zq)) + log |a0|q if x(zq) = 0

λq(ϕ2(zq))− log |a6|q if x(zq) =∞.

Proposition 2.6. If q is a prime of potential good reduction for X, then wq is
constant on X(Qq). Therefore, in Theorem 2.4 we may replace Ωq with {wq(zq)},
where zq is any point in X(Qq).

Proof. On Zq, this follows from [BD18, Lemma 5.4] and a computation anal-
ogous to that of [BD18, Lemma 7.7] (where X is assumed monic). We extend to
zq 6∈ Zq using continuity properties of local heights. �

As a first step for the determination of X(Q), we would like to be able to
compute the set

A = {z ∈ X(Qp) : ρ̃(z) ∈ Ω} ⊇ X(Q).

In the next section we explain how to do so up to some finite p-adic precision.
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12 FRANCESCA BIANCHI AND OANA PADURARIU

3. Precision analysis

3.1. Preliminaries. Let p be a prime of good reduction for the model of X
given by y2 = F (x) = a6x

6 + a4x
4 + a2x

2 + a0, and hence for the given models for
E1 and E2. In particular, p - a0a6.

In Theorem 2.4, we considered the locally analytic function ρ̃ : X(Qp) → Qp
obtained by extending ρ : Zp → Qp defined by

(3.1) ρ(z) = λp(ϕ1(z))−λp(ϕ2(z))−2 log(x(z))−α1 Log2(ϕ1(z))+α2 Log2(ϕ2(z)).

Since ρ̃ is locally analytic, it can be expanded in each residue disc D of X(Qp)
as a power series in Qp[[t]], where t is a local coordinate at a fixed z ∈ D (that is, t
is a uniformiser at z that reduces to a uniformiser for z ∈ X(Fp)). Our goal here is
to find lower bounds for the p-adic valuation of the coefficients of these series, which
will allow us to deduce information about the solutions to ρ̃(z)− w, for w ∈ Ω, in
the disc D.

For a similar precision analysis in the simpler setting of the classical method
of Chabauty and Coleman, see also [BBCF+19, Section 3].

Given a residue disc D in X(Qp), there are two choices to make. First, we need
to pick a point z ∈ D and, secondly, we need to pick a local coordinate at z. Let
z ∈ X(Fp) be the image of D under reduction.

We proceed as follows:

(i) if z is affine with y(z) 6= 0, we take z ∈ X(Qp) to be the unique point

satisfying x(z) ∈ Z, 0 ≤ x(z) ≤ p−1, x(z) = x(z) and y(z) = y(z). As for
the local coordinate, we take t = x − x(z). Note that then y(t) ∈ Zp[[t]]
is the unique solution to y(t)2 = F (x(t)) such that y(0) = y(z).

(ii) if z is Weierstrass (i.e. y(z) = 0), we take z ∈ X(Qp) to be the unique
Weierstrass point in the disc. As for the local coordinate, choose t = y.
Then x(t) ∈ Zp[[t]] is the unique solution to F (x(t)) = y(t)2 such that
x(0) = x(z).

(iii) if z is a point at infinity, we take z ∈ X(Qp) to be the unique point
at infinity in the disc. For the local coordinate, take t = x−1. Then
y(t) =

√
a6t
−3 +O(t−2), for a suitable choice of

√
a6.

Remark 3.1. The existence of such a point z ∈ X(Qp) and such a parametri-
sation in (i) – (iii) is guaranteed by the good reduction assumption and by Hensel’s
lemma.

We analyse each term in (3.1) separately and then draw conclusions at the
end. In fact, for the terms that involve images of z under ϕ1 or ϕ2 (all of them,
except for log(x(z))), as a preliminary step we ignore that these come from points
on X and analyse the corresponding terms on a generic elliptic curve. Note that,
as we already saw in the proof of Theorem 2.4, in the disc of a point at infinity or
a point with x-coordinate reducing to 0 modulo p, not every term is individually
expressible as a power series.

Recall that log denotes our chosen branch of the p-adic logarithm. We will
write logp for the real logarithm with respect to base p.

We start with an auxiliary lemma.

Lemma 3.2. Let f(T ) =
∑∞
n=0BnT

n ∈ Qp[[T ]] with

ordp(Bn) ≥ − ordp(n) + α(n) for all n ≥ 1,
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where α(n) is a (not necessarily strictly) decreasing function of n. Let g(t) =∑∞
i=1 bit

i for some bi ∈ Zp. Then

f(g(t)) = B0 +

∞∑
n=1

Cnt
n,

with ordp(Cn) ≥ − ordp(n) + α(n) for all n ≥ 1.

Proof. For n ≥ 1, we have

Cn =

n∑
m=1

Bm ·

(
coefficient of tn in

( n∑
i=1

bit
i

)m)

=

n∑
m=1

Bm ·

(
coefficient of tn in

( ∑
i1+···+in=m

(
m

i1, . . . , in

) n∏
k=1

(bkt
k)ik

))
.

Thus,

ordp(Cn) ≥ min

{
ordp

(
m

i1, . . . , in

)
+ ordp(Bm)

}
.

where the minimum is taken over all m ≤ n and i1, . . . , in ≥ 0 satisfying
∑n
k=1 ik =

m and
∑n
k=1 kik = n.

For such i1, . . . , in, there must exist k ∈ {1, . . . , n} for which ordp(ik) ≤
ordp(n). Then we have(

m

i1, . . . , in

)
=
m

ik

(
m− 1

i1, . . . , ik−1, ik − 1, ik+1, . . . , in

)
.

Therefore,

ordp(Cn) ≥ min
m≤n
{ordp(m)− ordp(n) + ordp(Bm)}

≥ min
m≤n
{− ordp(n) + α(m)} ≥ − ordp(n) + α(n),

since α is a decreasing function. �

Remark 3.3. In the special case where f(T ) = log(1 + T ) (so α(n) = 0 for all
n), one could recover the same precision estimate in a more straightforward way:

f(g(t)) = log(1 + g(t)) =

∫
g′(t)

1 + g(t)
dt.

3.2. Precision of log(x(t))-term.

Lemma 3.4. Let D be a residue disc of X(Qp) and choose z ∈ D and a local
coordinate at z as in §3.1.

(1) If z ∈ {∞±}, then log(x(t)) = − log(t);
(2) If x(z) = 0, then log(x(t)) = log(t);
(3) Otherwise,

log(x(t)) =

∞∑
n=0

Cnt
n ∈ Qp[[t]],

with ordp(C0) ≥ 1 and ordp(Cn) ≥ − ordp(n) for all n ≥ 1.
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Proof. The first two cases are trivial. For the remaining case, we have

x(t) = α

(
1 +

∞∑
i=1

bit
i

)
, for some bi ∈ Zp, α ∈ Z×p .

Therefore,

log(x(t)) = log(α) + log

(
1 +

∞∑
i=1

bit
i

)
= log(α) +O(t),

which shows the claim on the constant term. In order to bound the valuation
of the other terms, we apply Lemma 3.2 to f(T ) =

∑∞
n=1

(−1)n+1

n Tn and g(t) =∑∞
i=1 bit

i. �

3.3. Precision of Log-terms. Let E be an elliptic curve over Qp given by
the Weierstrass equation

E : y2 = x3 +A2x
2 +A4x+A6, Ai ∈ Zp.

Recall that, for P ∈ E(Qp), we have

Log(P ) =

∫ P

∞
ω, where ω =

dx

2y
,

and the integral is first defined by formal anti-differentiation in the formal group
of E at p and then extended to E(Qp) by linearity.

In order to obtain the expansion of Log in a local coordinate T for a residue
disc, we may break up the path of integration: given P0 ∈ E(Qp) reducing to P
modulo p and with T (P0) = 0, we have

Log(P ) = Log(P0) +

∫ P

P0

ω,

where the latter integral can be computed by expanding ω as a power series in T ,
formally integrating and evaluating at T (P ).

Lemma 3.5. Let T be a local coordinate for an arbitrary point P0 in a residue
disc of E(Qp). Then

Log2(P (T )) =

∞∑
n=0

CnT
n,

where ordp(C0), ordp(C1) ≥ 0 and ordp(Cn) ≥ −blogp(n− 1)c − ordp(n) for n ≥ 2.
Moreover, if p - #E(Fp), then ordp(C0) ≥ 2 and ordp(C1) ≥ 1.

Proof. We are interested in finding lower bounds for the valuation of the
coefficients of

Log2(P (T )) = Log2(P0) + 2 Log(P0)

∫ P (T )

P0

ω(T ) +

(∫ P (T )

P0

ω(T )

)2

.

Since ω is holomorphic and non-vanishing and T reduces to a uniformiser modulo
p, we have

ω(T ) = f(T )dT for some f(T ) ∈ Zp[[T ]]×.

Therefore,

(3.2)

∫ P (T )

P0

ω(T ) = c0T +
c1
2
T 2 +

c2
3
T 3 + · · · , for some ci ∈ Zp, c0 ∈ Z×p .
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Let m > 0 be the smallest integer such that mP0 belongs to the disc at infinity.
Since m is a divisor of #E(Fp), by the Hasse bound [Sil09, V, Theorem 1.1] we
know that 0 ≤ ordp(m) ≤ 1. We have

Log(P0) =
Log(mP0)

m
.

Now, by (3.2) with P0 = ∞ we see that ordp(Log(mP0)) ≥ 1 and hence, by the
above considerations on the valuation of m, ordp(Log(P0)) ≥ 1−ordp(#E(Fp)) ≥ 0.
The statements about the constant and linear coefficient follow.

By (3.2), the n-th coefficient in the T -expansion of the integral of ω(T ) has
valuation at least − ordp(n). As for(∫ P (T )

P0

ω(T )

)2

=
(
c0T +

c1
2
T 2 +

c2
3
T 3 + · · ·

)2
=

∞∑
n=2

αnT
n

we have

ordp(αn) ≥ min
i+j=n
i,j≥1

ordp

(
1

ij

)
≥ −blogp(n− 1)c − ordp(n),

since ordp(i), ordp(j) ≤ blogp(n− 1)c, but also min{ordp(i), ordp(j)} ≤ ordp(n).
�

3.4. Precision of λp-terms. Let E be as in §3.3. We are ultimately interested
in applying the considerations of this subsection to the case where E is E1 or E2.
To simplify our task (or, in fact, to obtain better bounds; see below), we make the
following

Assumption 1. The prime p is of ordinary reduction for E1 and E2.

Thus we assume here that p is a prime of good ordinary reduction for E, so we
can and shall work with the canonical local height at p. This is defined in terms of
the canonical p-adic sigma function1

σp(T ) = T +O(T 2) ∈ Zp[[T ]]

of Mazur–Tate [MT91], as follows. We view σp as a function on points of E(Qp)
in the formal group Ef by setting

σp(P ) := σp

(
−x(P )

y(P )

)
, for P ∈ Ef (Qp).

If P ∈ Ef (Qp) \ {O}, its canonical local height at p is then given by

(3.3) λp(P ) = −2 log(σp(P )).

Note that, in this case, λp(P ) depends on the choice of a branch of the p-adic
logarithm and general theory on heights suggests that we should choose the branch
of the logarithm which is trivial at p (cf. [BBBM21, Remark 2.1]). In practice,
for our applications to computing ρ̃ this will not matter, in view of the global
cancellation of the logarithmic terms.

1If we do not assume that p is of ordinary reduction for E, we can replace the Mazur–Tate p-adic
sigma function with some other p-adic sigma function σ′

p(T ) = T +O(T 2) ∈ Qp[[T ]]; for example,

Bernardi’s [Ber81]. The precision bounds then need to be modified appropriately, since σ′
p(T )

does not, in general, have p-adically integral coefficients.
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If P is non-torsion and does not reduce to the point at infinity, then let m be
a positive integer such that mP ∈ Ef (Qp). If we choose the smallest such m, then
m divides #E(Fp). We define

(3.4) λp(P ) = − 2

m2
log

(
σp(mP )

φm(P )

)
,

where φm ∈ Z[A2, A4, A6][x, y] is the m-th division polynomial [Sil09, Exercise
3.7]. This is characterised uniquely up to multiplication by ±1 by the following
properties:

• div(φm) =
∑
Q∈E[m](Q)−m2(∞);

• φ2m is a polynomial in x only with leading term m2xm
2−1 and coefficients

in Z[A2, A4, A6].

The value λp(P ) for P 6∈ Ef (Qp) as above is independent of the branch of the
p-adic logarithm and the definition can be extended to torsion points by continuity.

We want to study λp as a function on a residue disc. By (3.3), if T is a local
coordinate at the point at infinity, λp can be expressed in terms of T as −2 log(f(T ))
where f(T ) ∈ TZp[[T ]]×. Thus, the analysis can be obtained by applying Lemma
3.2 and is similar to §3.2. We postpone it until we also understand the argument
of the logarithm in (3.4) as a power series.

So let P (T ) be the parametrisation of a disc on an elliptic curve not reducing
to the point at infinity modulo p and let m such that mP (T ) reduces to infinity for
all T ∈ pZp.

Lemma 3.6. With the above assumptions, we have

σp(mP (T ))

φm(P (T ))
= c0 +O(T ) ∈ Zp[[T ]] with c0 ∈ Z×p .

Proof. Since φm(P (T )) ∈ Zp[[T ]], by the p-adic Weierstrass preparation the-
orem we may factor it as

pnF (T )u(T )

where n is an integer, u(T ) ∈ Zp[[T ]]× is a unit power series and F (T ) is a dis-

tinguished polynomial. In particular, the zeros in Qp of F (T ) all have positive
valuation, and hence correspond to m-torsion points in the disc of P (T ) (since
P (T ) converges on |T |p < 1).

Now we turn our attention to σp(mP (T )). First note that mP (T ) may be
viewed as a point of E over Frac(Zp[[T ]]) (since x(T ), y(T ) ∈ Zp[[T ]]). Thus, we
may use the p-adic Weierstrass preparation theorem to study

τ = −x(mP (T ))

y(mP (T ))
∈ Frac(Zp[[T ]]).

We would like to show that τ ∈ Zp[[T ]] with constant term divisible by p. Since τ
has no poles for |T |p < 1, we must have τ ∈ Q ·Zp[[T ]]. For every |T0|p < 1, we have
|τ(T0)|p < 1; hence picking T0 with |T0|p close enough to 1 shows that τ ∈ Zp[[T ]].
Indeed, write τ = αg(T ), where α = pk and g(T ) =

∑∞
i=0 ciT

i ∈ Zp[[T ]] \ pZp[[T ]].
Let r be minimal such that ordp(cr) = 0. Then, for every T0 with |T0|p < 1 and for
every i > r

|ciT i0|p ≤ |T i0|p < |T r0 |p = |crT r0 |p.
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Furthermore, if |T0|p > |ci|1/(r−i)p for all i < r, then for all i < r we have

|ciT i0|p < |T0|rp = |crT r0 |p;

hence, |g(T0)|p = |T r0 |p. If k < 0, we may pick T0 that further satisfies |T r0 |p >
|α−1|p, which gives

|τ(T0)|p = |αT r0 |p > 1,

a contradiction. Finally, since τ(0) ∈ pZp, we have the claim on the constant term.
So σp(mP (T )) ∈ Zp[[T ]]; it has simple zeros in the open unit disc precisely at

the m-torsion points in the disc P (T ). Comparing with φm(P (T )), we get that

σp(mP (T ))

φm(P (T ))
∈ Q · Zp[[T ]].

Moreover this quotient is non-vanishing on |T |p < 1, hence in fact it is, up to
multiplication by pk for some k ∈ Z, a unit power series. This implies that at a given
T0 in the open unit disc, the valuation of the quotient is −k. But picking T0 ∈ pZp
such that mP (T0) 6= ∞, we have that ordp(φm(P (T0))) = ordp(d(mP (T0))) =
ordp(T (mP (T0))) = ordp(σ(mP (T0))), hence k = 0. Here d denotes the square-
root of the denominator of the x-coordinate and the first equality holds true because
p is a prime of good reduction (see e.g. [Wut04, Proposition 1]). �

Corollary 3.7. Let T be a local coordinate at a point P ∈ E(Qp), which we
assume either at infinity or not in the disc of infinity and let m be the order of the
reduction of P modulo p. Then

λp(P (T )) = −2δ log(T ) +

∞∑
n=0

CnT
n,

where δ = 1 if P is the point at infinity and 0 otherwise, and ordp(C0) ≥ 1 −
2 ordp(m), ordp(Cn) ≥ − ordp(n)− 2 ordp(m) for n ≥ 1.

Proof. In view of Lemma 3.6 and the considerations preceding it, the corollary
follows by Lemma 3.2, similarly to the proof of Lemma 3.4. �

Remark 3.8. While we found it convenient to work out precision estimates
for λp using multiplication-by-m on E/Frac(Zp[[t]]), we found it computationally
more convenient to use the following formula for λp(P (T )). Let E2(E,ω) be the
value of the weight two Katz Eisenstein series [Kat73,Kat76] at the pair (E,ω)
and let

c =
4A2 − E2(E,ω)

12
∈ Qp, η = (x+ c)

dx

2y
.

Then, setting P0 = P (0), we have

(3.5) λp(P (t)) = λp(P0) + 2

∫ P (t)

P0

ω0η + 2

∫ P0

∞
η ·
∫ P (t)

P0

ω.

The integrals involving P (t) are all formal integrals; the remaining integral of η is
a Coleman integral of a differential of the second kind and can be computed using
division polynomials (or the Coleman integration algorithm of [BBK10]); we omit
details, but formula (3.5) can be derived from [BBM16, (4.1)] invoking suitable
height comparison results.

If p ≥ 5, we can compute E2(E,ω) and λp(P0) using an algorithm of Harvey
[Har08], which builds on one by Mazur–Stein–Tate [MST06] and is implemented
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18 FRANCESCA BIANCHI AND OANA PADURARIU

in SageMath [Sag22]. If p = 3, we use an algorithm of Balakrishnan [Bal16],
available at [Bal].

3.5. Precision of ρ̃. We can now use the considerations of §§3.2, 3.3, 3.4 to
deduce lower bounds for the p-adic valuation of the coefficients of the expansion of
ρ̃(z) in a residue disc.

Lemma 3.9. Let z ∈ X(Qp) such that z is not a ramification point of ϕi and
let t be a local coordinate at z. Let Ti be a local coordinate for ϕi(z). Then

Ti(ϕi(z(t))) = t · u(t) for some u(t) ∈ Zp[[t]]×.

Proof. Since ϕi is unramified at z, we have that ϕ∗i Ti is a uniformiser for z.
This applies to X/Qp, as well as X/Fp, so ϕ∗i Ti is a local coordinate. �

Lemma 3.10. Let z ∈ X(Qp) such that z is a ramification point for ϕi and let
t be a local coordinate at z. Let Ti be a local coordinate for ϕi(z). Then

Ti(ϕi(z(t))) = t2 · u(t) for some u(t) ∈ Zp[[t]]×.

Proof. The ramification index of any such point is 2. �

Remark 3.11. The ramification points of ϕ1 are those satisfying x = 0; the
ramification points of ϕ2 are the points at infinity.

Proposition 3.12. Let t be a local coordinate at a point z ∈ X(Qp) as in §3.1
and let

ε = min{ordp(α1),−2 ordp(#E1(Fp)), ordp(α2),−2 ordp(#E2(Fp))}.

Then, under Assumption 1 on ordinarity,

ρ̃(z(t)) =

∞∑
n=0

Cnt
n ∈ Qp[[t]]

with ordp(C0), ordp(C1) ≥ ε and, for all n ≥ 2, ordp(Cn) ≥ −blogp(n− 1)c −
ordp(n) + ε. Moreover, if p - #E1(Fp) ·#E2(Fp), then ordp(C0) ≥ 1 + ε.

Proof. This follows from Lemmas 3.4, 3.5, Corollary 3.7 and Lemmas 3.9,
3.10, in view of Lemma 3.2. �

Let M ≥ 2 be an integer and let ρ̃M (t) ∈ Qp[t] be a polynomial of degree less
than M such that

ρ̃M (t)− ρ̃(z(t)) = O(tM ).

Lemma 3.13. Let N = M − blogp(M − 1)c − blogp(M)c+ ε. Then

ρ̃M (pt)− ρ̃(z(pt)) = O(pN ).

Proof. Let n ≥M . By Proposition 3.12, the coefficient of the term of degree
n in ρ̃(z(pt)) has valuation bounded from below by

n− blogp(n− 1)c − ordp(n) + ε ≥ n− blogp(n− 1)c − blogp(n)c+ ε.

The right hand side of this inequality is (not necessarily strictly) increasing for n
an integer ≥ 2. �
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Let w ∈ Ω. Let k be the minimal valuation of a coefficient of ρ̃M (pt) − w. If
k < N , then ρ̃M (pt) − w is non-zero modulo N . If p−k(ρ̃M (pt) − w) has a zero in
Z/pN−kZ whose derivative is non-zero modulo pd(N−k)/2e, then by Hensel’s lemma
it lifts uniquely to a zero of ρ̃(z(pt))− w in Zp (we use [Con, Theorem 8.2 (1)] to
determine to which precision we know the lift).

Furthermore, any zero in Zp of ρ̃(z(pt)) reduces modulo pN−k to a zero of
p−kρ̃M (pt). When it comes to zeros not corresponding to known rational points,
the uniqueness of the lifting is not so important. Indeed, suppose that we found
a root modulo pN

′
that could or could not lift (perhaps not uniquely), and that

we suspect does not correspond to a rational point of X. Then in the Mordell–
Weil sieve step (§§4.2, 4.3) we will try to show that such a root cannot possibly
correspond to a point in X(Q).

On the other hand, it is important to show that the zeros corresponding to our
known rational points are isolated, so that we can discard such roots at once before
the Mordell–Weil sieve step. Because of the extra automorphisms X possesses, we
actually expect some of these to be non-simple.

Proposition 3.14. Let z ∈ X(Q) such that x(z) = 0, or y(z) = 0, or z is a
point at infinity and let t be the local coordinate at z of §3.1. Let w ∈ Ω such that
ρ̃(z) = w. Then

ρ̃(z(t))− w = t2f(t) for some f(t) ∈ Qp[[t]].

Proof. The point z is fixed by the hyperelliptic involution or one of the au-
tomorphisms (x, y) 7→ (−x, y) and (x, y) 7→ (−x,−y). Let θ be the automorphism
fixing z. Then ρ(θ(z)) = ρ(z), since upon noticing that ϕi ◦ θ is either the identity
or multiplication by −1, we see that each of the terms making up ρ̃(z) is invariant
under θ. Now, in view of our choice of t, we have θ∗t = −t. Therefore,

ρ̃(z(t)) = ρ̃(z(−t)),

and hence ρ̃(z(t)) has trivial coefficient of t2k+1 for all non-negative k. Finally since
ρ̃(0) = w, the proposition follows. �

Our strategy is then the following:

(i) If ρ̃M (pt) − w = O(t2), then we verify that we are in the situation of
Proposition 3.14. We do this by checking that the coefficient of t2 is non-
zero, and that t = 0 corresponds to a point at infinity, or with vanishing
x- or y-coordinate.

(ii) In the other cases, we check that the recovered roots can be lifted uniquely
using Hensel’s lemma.

(iii) We return an error if a root does not meet the conditions of (i) or (ii).

4. Computations

We now explain how we used the results of Sections 2 and 3 together with the
Mordell–Weil sieve to prove Theorem 1.2, that is, to compute the rational points
on a database ∆ of genus 2 curves over Q that have points everywhere locally, are
bielliptic and have a rank 2 Jacobian.

We describe three main steps in our implementation. First, we explain in §4.1
how we obtained the dataset ∆, and how we computed, for each curve X ∈ ∆,
various inputs for the quadratic Chabauty and Mordell–Weil sieve computations.
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For instance, we need to choose a set of primes with respect to which to apply the
quadratic Chabauty technique described in the previous sections. For a given prime,
we discussed in Section 3 the theoretical results needed for an implementation of the
quadratic Chabauty method. Therefore, we only explain here (§4.2) how to turn the
output of this computation into an input for a Mordell–Weil sieve. Finally in §4.3,
we explain how to use the Mordell–Weil sieve, and, in particular, its Magma [BCP97]
implementation available at [BDM+], to complete the determination of the rational
points on X.

The remaining §4.4 and §4.5 concern some exceptional curves in our database.

4.1. Step 1: The database and some preliminary computations. All
the computations of this step were performed in Magma [BCP97] (see [BPa]).
Recall that our database contains 413 curves in total, 411 of which belong to the
database [BSS+16], available on the LMFDB [LMF22]. To the present date, the
LMFDB contains all 66,158 genus 2 curves over Q with absolute discriminant at
most 106 that have an integral model of the form

y2 + (h3x
3 + h2x

2 + h1x+ h0)y = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

with hi ∈ {0, 1}, and fi satisfying at least one of the following conditions:

• |fi| ≤ 90;
• |fi| ≤ 2(3.51)6−i;
• |fi| ≤ (7.13)4−|i−3|;

•
∑6
i=0dlog10(|fi|+ 1)e ≤ 10.

From these curves we extracted 411 curves as follows. First, we are interested
in curves that are locally solvable, and we can filter the LMFDB search to return
such curves only. Secondly, a genus 2 curve X over Q is bielliptic (over Q) if and
only if the Q-automorphism group of X has a subgroup isomorphic to Z/2Z×Z/2Z.
Finally, if X is bielliptic, there exist elliptic curves E1 and E2 such that the Jacobian
J of X is (Richelot) isogenous to E1×E2 [Ric36,Ric37,CF96,Smi05]; therefore,
the Mordell–Weil rank of J is equal to the sum of the ranks r1 and r2 of E1 and
E2. We use this to identify the curves with a rank 2 Jacobian.

If r1 or r2 is equal to zero, we may apply elementary methods to determine
X(Q). Therefore, we hereafter restrict our attention to the 354 curves X ∈ ∆ for
which r1 = r2 = 1. For each such X, we compute the following data.

A “bielliptic” model. The equation for X as given in the LMFDB is of the
form y2 + f1(x)y = f2(x), for some f1(x), f2(x) ∈ Z[x] of degrees at most 3 and 6,
respectively. In order to apply Theorem 2.4, we need to find a bielliptic model of
the form y2 = a6x

6 + a4x
4 + a2x

2 + a0 ∈ Z[x], or, equivalently, models for E1 and
E2 of the form

E1 : y2 = x3 + a4x
2 + a2a6x+ a0a

2
6,

E2 : y2 = x3 + a2x
2 + a4a0x+ a6a

2
0.

Equations for E1 and E2 of this form (though not necessarily integral) are com-
puted internally by Magma’s function RichelotIsogenousSurfaces. We use this to
compute an integral bielliptic model for X.

A candidate list of rational points. Let X(Q)known be the set of rational points
of X such that the naive height of the x-coordinate, with respect to the bielliptic
model from above, is less than 104. We compute X(Q)known using the Magma
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function RationalPoints. The ultimate goal of our computation will be to prove
that X(Q) = X(Q)known.

Generators of J(Q). In order to apply Theorem 2.4, we only need to know a
point of infinite order on each of E1 and E2. However, for the subsequent Mordell–
Weil sieve step, we assume that we know generators for the full Mordell–Weil group
J(Q). The Magma function MordellWeilGroupGenus2, implemented by Stoll, suc-
cessfully determined these for every curve. We denote by B1 and B2 generators for
J(Q)/J(Q)tors.

A set of primes for quadratic Chabauty. In order to apply Theorem 2.4, we
need to pick a prime p of good reduction. In addition, in the precision estimates of
§3.4, we assumed that each of E1 and E2 has ordinary reduction at p. In general,
it is expected that Theorem 2.4 will not suffice by itself to determine X(Q), since
it will only return a p-adic approximation of a superset of X(Q). The strategy that
we will describe in detail in the next steps entails using the Mordell–Weil group
J(Q) and reduction maps to J(F`), for various primes `, to refine the superset
and prove that X(Q) = X(Q)known. This method is often more likely to succeed
if the quadratic Chabauty computation is performed for more than one prime p.
We therefore compute, for each curve, the three smallest primes p1, p2, p3 of good
ordinary reduction. See Remark 4.1 for possible improvements in the choice of
primes.

4.2. Step 2: Extra points in bielliptic quadratic Chabauty. In the
following discussion we assume that our curve has at least one known Q-rational
point b. While some modification of this would be applicable in the other case
too, we decided to treat curves with no known rational points separately: see §4.4.
Our code for this stage of the computation is written in SageMath [Sag22] and is
available at [BPb].

We perform the bielliptic quadratic Chabauty algorithm on X for the three
primes p1, p2, p3. Fix i ∈ {1, 2, 3}. Using the precision estimates of Section 3, we
compute the set

Ai = {z ∈ X(Qpi) : ρ̃i(z) ∈ Ωi},
where ρ̃i(z) and Ωi are the function and set from Theorem 2.4, respectively, for
the prime pi. By Theorem 2.4, the set Ai contains X(Q); it may or may not
contain other points in X(Qpi). Let Aextra,i be the set of pi-adic points in Ai which
have not been recognised as points in X(Q)known. The points in Aextra,i are only
known modulo pmi

i , for some integer mi depending on our chosen working precision.
If Aextra,i 6= ∅, our strategy to prove that the points in Aextra,i are not reductions
modulo pmi

i of points in X(Q) is to feed them into the Mordell–Weil sieve (described
in §4.3), following the strategy outlined in [BBM17, Sections 5-7]. We describe
here the preliminary step (which essentially amounts to applying Section 6 of loc.
cit. to our setting).

Let ι be the Abel–Jacobi map on X(Q) with respect to b:

ι : X(Q) ↪−→ J(Q), P 7→ [P − b].

Let Pi ∈ Aextra,i be one of our extra points and assume for the sake of contradiction
that Pi corresponds to a point P ∈ X(Q). Then there exist integers a1, a2 ∈ Z and
a torsion point T ∈ J(Q) such that

(4.1) ι(P ) = a1B1 + a2B2 + T.
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We can compute a1, a2 modulo pni
i , for some ni ≤ mi, by noting that, for each

j ∈ {1, 2}, we have

Log(ϕj(P ))− Log(ϕj(b)) = a1 Log(ϕj,∗(B1)) + a2 Log(ϕj,∗(B2)).

Therefore, for every Pi ∈ Aextra,i, we obtain at most #J(Q)tors possibilities
for the image of ι(P ) in J(Q)/pni

i J(Q), under our running assumption that Pi
corresponds to a point P ∈ X(Q).

The goal of the sieve is to show that such cosets in J(Q)/pni
i J(Q) cannot arise

from points in X(Q) by considering reduction maps modulo several primes.
We can consider more than one quadratic Chabauty prime in {p1, p2, p3} as

follows. Suppose k 6= i. Then there must also exist Pk ∈ Aextra,k such that P
reduces modulo pmk

k to Pk. Using the Chinese remainder theorem, we then obtain
cosets of pni

i p
nk

k J(Q) in J(Q) that we want to eliminate in the Mordell–Weil sieve
step.

We refine this strategy by noticing that some elements in Aextra,k may be ruled
out from corresponding to P in the following way. First note that elements of Ωi
are sums over the bad primes q of Q-rational multiples of logi(q), where logi is
the pi-adic logarithm, and that for k 6= i the set Ωk ⊂ Qpk can be obtained from
Ωi ⊂ Qpi just by replacing each occurrence of logi with logk. Moreover, if Pi ∈ Ai
and Pk ∈ Ak both correspond to P ∈ X(Q), we must have

ρ̃i(P ) =
∑
q bad

vq logi(q), ρ̃k(P ) =
∑
q bad

vq logk(q),

where, for every q, the number vq is rational (the same one for i and k). It fol-
lows that we only need to compare points in Aextra,i and Aextra,k corresponding to
compatible elements in Ωi and Ωk.

Since Ai is closed under the hyperelliptic involution and the automorphisms
(x, y) 7→ (−x,±y) of X, for one of the three primes it suffices to compute Ai
modulo automorphisms. We do so for p1.

4.3. Step 3: The Mordell–Weil sieve. The Mordell–Weil sieve is a pow-
erful tool for obtaining information about the rational points of a curve of genus
greater than 1. It first appears in Scharaschkin’s Phd thesis [Sch99] as a strat-
egy to prove that a curve has no rational points. However, it can also be used
in conjunction with methods such as classical or quadratic Chabauty to deter-
mine the set of rational points when we know that this is non-empty. See for
instance [Fly04,PSS07,BS08,BS10a] for successful sieving computations. Here
we apply to the curve X of §4.2 the technique of [BBM17, Sections 5-7] and the
Magma implementation thereof available at [BDM+]; see [BPa].

We retain the notation of §4.2. Let I be a subset of {1, 2, 3}, and let M =∏
j∈I p

nj

j . In §4.2, we reduced the problem of determining X(Q) to that of showing

that some subset CM of the quotient J(Q)/MJ(Q) does not contain the image of
a point in X(Q), under the composition of the embedding ι with the canonical
quotient map π : J(Q) → J(Q)/MJ(Q). More generally, by applying the Chinese
remainder theorem, we can work with M = M ′

∏
j∈I p

nj

j for some integer M ′

coprime to pj for all j ∈ I.
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Let S be a finite set of primes of good reduction for X and consider the com-
mutative diagram

X(Q) J(Q)/MJ(Q)

∏
`∈S

X(F`)
∏
`∈S

J(F`)/MJ(F`),

π◦ι

αS

βS

where the vertical and bottom maps are the natural ones. Because of the commu-
tativity of the diagram, we succeed in determining X(Q) if we can find a set S for
which

(4.2) αS(CM ) ∩ βS

(∏
`∈S

X(F`)

)
= ∅.

We use the repository [BDM+] to choose a set S of primes in such a way that (4.2)
has some likelihood of holding. The strategy is to pick primes ` for which the order
of J(F`)/MJ(F`) is large relative to the number of points in X(F`) (or relative to
its Hasse–Weil approximation ` + 1). In particular, we pick primes ` ≤ 104 for
which

#J(F`)/MJ(F`)
`+ 1

> 2.

Remark 4.1. We could (but did not) apply a similar strategy in the choice
of the primes p1, p2, p3. Namely, we could restrict to primes p for which, for some

integer n, the ratio #J(F`)/p
nJ(F`)

`+1 is large, for at least one choice of ` ≤ 104. We

refer the reader to [BBM17, Section 7] for a discussion on how to simultaneously
make optimal choices for the set S and the integer M .

Our cosets CM are naturally partitioned into #Ω1 = #Ω2 = #Ω3 subsets (as
explained in §4.2). We run a separate sieve for each such subset.

For M ′ ∈ [1, 2, 4], we do the following:

(1) Let S be a suitable set of primes (in the sense above) for M ′p41p
4
2p

4
3.

(2) For I ∈ [{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}], run the sieve with respect to M =
M ′
∏
j∈I p

4
j and the set S. If (4.2) holds for some I, stop.

The reason why we avoid considering I ∈ {{1}, {2}, {3}} is explained in [BBM17,
Section 6].

Of course, even if the sieve does not succeed in eliminating the whole of CM , we
should not discard the information on which cosets are sieved out when changing
M .

If J(Q)tors is non-trivial, we may also try to takeM ′ to be a divisor of #J(Q)tors.
For our database, the choices of nj = 4 for each j ∈ {1, 2, 3} and M ′ ∈ {1, 2, 4}∪

{divisors of #J(Q)tors} were successful for every curve. If one were to apply the
technique to one specific curve (rather than to a database), it might be advisable
to make more ad hoc choices.

4.4. Curves with no known rational points. In §4.2–4.3, we explained
our strategy for determining X(Q) when X(Q)known 6= ∅. If X(Q)known = ∅, we
skip the quadratic Chabauty computations and directly apply a Mordell–Weil sieve
to prove that X(Q) = ∅. To this end, we implemented [BPa] a simple sieve that
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uses only one good prime ` and the fact that X is bielliptic (cf. [Sik15, Example
8.3]). Let ϕ = (ϕ1, ϕ2). Then we have a commutative diagram

X(Q) E1(Q)× E2(Q)

X(F`) E1(F`)× E2(F`),

ϕ

red` red`

ϕ

where red` denotes reduction modulo `. If ϕ(X(F`)) ∩ red`(E1(Q)× E2(Q)) is the
empty set, we are done.

Our implementation relies on functions in [BS10b] for constructing explicit

maps Ei(Fp)
∼−→ Ai, where Ai is an abstract abelian group.

We applied this to two curves in ∆: the ones with LMFDB labels 473256.a.946512.1
and 826672.a.826672.1. We used the prime ` = 331 and ` = 181, respectively. These
two curves are examples of violation of the Hasse principle.

Remark 4.2. We could have replaced J with E1×E2 also in the commutative
diagram of §4.3. We chose not to do so, since the code [BDM+] was directly
applicable. However, the fact that X is bielliptic is implicitly used. Indeed, an
important ingredient in §4.3 is the computation of the Mordell–Weil group J(Q). In
the bielliptic case, the Magma implementation for this uses the isogeny J ∼ E1×E2.

4.5. Sharp quadratic Chabauty computations. For 6 curves we succeeded
in determining the set of rational points using quadratic Chabauty only (i.e. with-
out performing §4.3). This may be of some interest in the context of conjectures on
sharpness of more general Chabauty–Kim sets (cf. [BDCKW18, Conjecture 3.1]).

The curves, together with the relevant primes used for quadratic Chabauty, are
listed in the following table.

LMFDB label Bielliptic model Prime(s) #X(Q)
99856.b.99856.1 y2 = x6 + 22x4 − 19x2 + 4 p1 = 3 8

322624.b.322624.1 y2 = x6 − 2x4 − 7x2 + 4 p1 = 3 8
614656.a.614656.1 y2 = x6 − 83x4 + 19x2 − 1 p1 = 3 6
571536.a.571536.1 y2 = x6 − 12x4 + 36x2 − 4 p1 = 5 2
274576.a.274576.1 y2 = x6 − 4x4 − 4x2 − 4 p1 = 3, p2 = 7 2
489648.a.489648.1 y2 = −3x6 + 4x4 + 4x2 − 4 p1 = 5 4

In particular, for the first four listed curves, the set Aextra,1 is empty (cf. §4.2). For
274576.a.274576.1, neither Aextra,1, nor Aextra,2 is empty; however, there exists no
pair (ω1, ω2) ∈ Ω1×Ω2 of compatible elements for which both Aextra,1 and Aextra,2

contain a point.
Finally, for 489648.a.489648.1, for each point P1 in the (non-empty) Aextra,1,

we find that at least one of the coefficients a1, a2 in (4.1) has negative p1-adic
valuation, a contradiction to their being integers.
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