The relative class number one problem for function fields, III

Kiran S. Kedlaya

Department of Mathematics, University of California San Diego
kedlaya@ucsd.edu

These slides can be downloaded from https://kskedlaya.org/slides/.
Jupyter notebooks available from https://github.com/kedlaya/same-class-number.

LMFDB, Computation, and Number Theory (LuCaNT)
ICERM, Providence, RI
July 13, 2023

Supported by ☀️ (grant DMS-2053473) and UC San Diego (Warschawski Professorship).

I acknowledge that my workplace occupies unceded ancestral land of the Kumeyaay Nation.
Contents

1. The relative class number one problem and its status
2. The problem at hand
3. Review of canonical curves
4. Canonical curves of genus 6 and 7
5. Computation and results
6. Next steps
The relative class number one problem

Let F'/F be an extension of degree d of function fields associated to a cover $C' \to C$ of curves1 over finite fields. Let g, g' be the genera of F and F'. Let q, q' be the cardinalities of the base fields2 of F, F'.

Let h, h' be the class numbers3 of F and F'. The ratio h'/h equals $\#A(\mathbb{F}_q)$ for A the Prym (abelian) variety of C'/C, and hence an integer. Following Leitzel–Madan (1976), we ask: in what cases does $h'/h = 1$?

To make this a potentially finite problem, we only specify the isomorphism classes of F and F', not the inclusion (this only makes a difference when $g \leq 1$). We also ignore the trivial cases where $\dim(A) = 0$:

- $g = g' = 0$;
- $q = q'$ and $1 \leq g = g'$.

1All curves are smooth, projective, and geometrically irreducible (a/k/a “nice”).

2By “base field” I mean the integral closure of the prime subfield.

3That is, $h = \#J(C)(\mathbb{F}_q)$ and $h' = \#J(C')(\mathbb{F}_{q'})$.
A heuristic for finiteness

By the Weil bound, \(h'/h = \#A(\mathbb{F}_q) \geq (\sqrt{q} - 1)^{2 \dim(A)} > 1 \) if \(q \geq 5 \). So assume hereafter \(q \leq 4 \).

The condition \(h'/h = 1 \) means \(\#A(\mathbb{F}_q) \) is abnormally small. This implies (roughly) that the Frobenius trace \(T_{A,q} \) of \(A \) is abnormally large. Since

\[
T_{A,q} = T_{C',q} - T_{C,q},
T_{C',q} = q + 1 - \#C'(\mathbb{F}_q) \leq q + 1,
T_{C,q} = q + 1 - \#C(\mathbb{F}_q),
\]

this means \(T_{C,q} \) is abnormally small and so \(\#C(\mathbb{F}_q) \) is abnormally large.

Using “linear programming” bounds on \(\#C(\mathbb{F}_q) \) in terms of \(g \), one can establish an effective finiteness result. By also accounting for \(d \) (Riemann–Hurwitz, Deuring–Shafarevich, splitting behavior), one can make this bound practical.
An answer, part I

I reported some partial results at ANTS-XV (Bristol, June 2022).

- **Solved** when F'/F is **constant** (i.e., $F' = F \cdot \mathbb{F}_{q'}$). We thus need only treat the case where F'/F is **geometric** (i.e., $q' = q$).

- **Solved** when $q > 2$, i.e., $q \in \{3, 4\}$. Assume hereafter $q = 2$.

- **Solved** when $g \leq 1$ (we get $g' \leq 6$). Assume hereafter $g \geq 2$, so that $d := [F' : F] \leq \frac{g' - 1}{g - 1}$ by Riemann–Hurwitz.

- **Reduced to a finite computation**: the zeta functions $\zeta_F, \zeta_{F'}$ of F, F' form one of 208 known pairs. In all cases, $g \leq 7, g' \leq 13$.

- **Solved** when $g \leq 5$ and F'/F is a **cyclic** extension, by a table lookup for F plus explicit class field theory (Magma).

For the last step, LMFDB includes a complete census of genus-g curves over \mathbb{F}_2 for $g \leq 3$ (Sutherland), $g = 4$ (Xarles), and $g = 5$ (Dragutinović).

\[\text{4} \text{The case } g = 0 \text{ was handled by Mercuri–Stirpe and Shen–Shi; we get } g' \leq 4.\]

\[\text{5} \text{Reminder: the data of } \zeta_F \text{ and } (\#C(\mathbb{F}_{q_i}))_{i=1}^g \text{ are equivalent.}\]
I reported another partial result at AGC²T (Luminy, June 2023).

Theorem

Let F'/F be a finite geometric extension of function fields with $q = 2$, $g > 1$, $h'/h = 1$. Then F'/F is cyclic.

The proof strategy: for each pair $(\zeta_F, \zeta_{F'})$ with $3 \leq d \leq 7$ listed in the ANTS-XV data, check that the noncyclic options for the Galois group lead to abelian varieties with untenable point counts.

A useful slogan here is

the most radical [extreme] covers are radical [cyclic]:

the class number condition puts severe pressure on point counts and splitting of places, and cyclic covers are most resistant to this pressure.

6These are certain isogeny factors of the Jacobian of the Galois closure. Compare Paulhus’s ANTS-X paper.
The problem at hand

Contents

1. The relative class number one problem and its status
2. The problem at hand
3. Review of canonical curves
4. Canonical curves of genus 6 and 7
5. Computation and results
6. Next steps
The only remaining cases of the relative class number one problem are $q = 2$, $g \in \{6, 7\}$, and F'/F is unramified of degree 2. Again it will suffice to find all F with a given ζ_F, then use Magma to find F' and h'/h.

If $g = 6$ then $\# C(\mathbb{F}_2), \ldots, \# C(\mathbb{F}_{2^6})$ appears in this list:

<table>
<thead>
<tr>
<th>$# C(\mathbb{F}_2)$</th>
<th>$# C(\mathbb{F}_{2^2})$</th>
<th>$# C(\mathbb{F}_{2^3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 14, 16, 18, 14, 92</td>
<td>5, 11, 11, 31, 40, 53</td>
<td>6, 10, 9, 38, 11, 79</td>
</tr>
<tr>
<td>4, 14, 16, 18, 24, 68</td>
<td>5, 11, 11, 31, 40, 65</td>
<td>6, 10, 9, 38, 21, 67</td>
</tr>
<tr>
<td>4, 14, 16, 26, 14, 68</td>
<td>5, 11, 11, 39, 20, 53</td>
<td>6, 10, 9, 38, 31, 55</td>
</tr>
<tr>
<td>4, 16, 16, 20, 9, 64</td>
<td>5, 11, 11, 39, 20, 65</td>
<td>6, 14, 6, 26, 26, 68</td>
</tr>
<tr>
<td>5, 11, 11, 31, 20, 65</td>
<td>5, 13, 14, 25, 15, 70</td>
<td>6, 14, 6, 26, 26, 80</td>
</tr>
<tr>
<td>5, 11, 11, 31, 20, 77</td>
<td>5, 13, 14, 25, 15, 82</td>
<td>6, 14, 6, 26, 36, 56</td>
</tr>
<tr>
<td>5, 11, 11, 31, 20, 89</td>
<td>5, 13, 14, 25, 15, 94</td>
<td>6, 14, 6, 34, 16, 56</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 53</td>
<td>5, 13, 14, 25, 25, 46</td>
<td>6, 14, 6, 34, 26, 44</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 65</td>
<td>5, 13, 14, 25, 25, 58</td>
<td>6, 14, 12, 26, 6, 44</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 77</td>
<td>5, 13, 14, 25, 25, 70</td>
<td>6, 14, 12, 26, 6, 56</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 89</td>
<td>5, 15, 5, 35, 20, 45</td>
<td>6, 14, 12, 26, 6, 66</td>
</tr>
</tbody>
</table>
Where am I now? (part 2 of 2)

If $g = 7$ then $\#C(\mathbb{F}_2), \ldots, \#C(\mathbb{F}_{2^7})$ appears in this list:

- $6, 18, 12, 18, 6, 60, 174$
- $6, 18, 12, 18, 6, 72, 132$
- $6, 18, 12, 18, 6, 84, 90$
- $7, 15, 7, 31, 12, 69, 126$
- $7, 15, 7, 31, 22, 45, 112$
- $7, 15, 7, 31, 22, 57, 70$
- $7, 15, 7, 31, 22, 57, 84$

Note that $\#C(\mathbb{F}_2)$ is “large” (in particular nonzero) but not “extremely large”: for $g \in \{6, 7\}$, the maximum number of points on a genus-g curve over \mathbb{F}_2 is 10. Hence we do expect to find some curves C, so methods based on ruling out curves cannot cover the entire range.
We instead construct an iteration over a (possibly redundant) set of isomorphism representatives for genus-g curves over F_2.

Previous calculations of this sort (e.g., in the work of Faber7–Grantham on the gonality of curves over finite fields) use singular plane models. Here, we instead use Mukai’s descriptions of canonically embedded genus-g curves in terms of linear sections of homogeneous varieties, with some extra effort paid to descending special linear systems to finite base fields.

7This is Xander, not Carel.
Contents

1 The relative class number one problem and its status

2 The problem at hand

3 Review of canonical curves

4 Canonical curves of genus 6 and 7

5 Computation and results

6 Next steps
Special linear systems

Let C be a curve of genus g over a finite field k. A g^r_d is a line bundle of degree d whose space of global sections has dimension $r + 1$; if such a bundle is basepoint-free, then it defines a degree-d map to \mathbb{P}^r_k. For example, the canonical bundle is a g^r_d for $r = g - 1, d = 2g - 2$.

Since k is finite, every Galois-invariant divisor class on C contains a k-rational divisor. In particular, if C_k admits a unique g^r_d for some r, d, then so does C.

For example, the Castelnuovo–Severi inequality implies that if $g > (d - 1)^2$, then C_k can have at most one g^1_d. We say C is hyperelliptic if it admits a unique g^1_2 and trigonal if it is not hyperelliptic but admits a unique g^1_3.

By contrast, over \mathbb{Q}, when $g > 2$ it is possible for a curve to be “geometrically hyperelliptic” by being a double cover of a pointless genus-0 curve.
The canonical embedding

The canonical system defines a map \(\iota : C \rightarrow \mathbb{P}_{k}^{g-1} \) which is an embedding unless \(C \) is hyperelliptic (then \(\iota \) is a 2-1 cover of a rational normal curve).

By Petri’s theorem\(^9\), \(\iota(C) \) is cut out (schematically) by quadrics unless

- \(C \) is trigonal,
- \(g = 6 \) and \(C \) is a smooth plane quintic.

This implies that the usual classification of curves of genus up to 5 remains valid when \(k \) is finite:\(^{10}\)

- If \(g = 2 \), then \(C \) is hyperelliptic.
- If \(g = 3 \), then \(C \) is hyperelliptic or a CI\(^{11}\) of type (4) in \(\mathbb{P}_{k}^{2} \).
- If \(g = 4 \), then \(C \) is hyperelliptic or a CI of type \((2) \cap (3)\) in \(\mathbb{P}_{k}^{3} \).
- If \(g = 5 \), then \(C \) is hyperelliptic, trigonal, or a CI of type \((2) \cap (2) \cap (2)\) in \(\mathbb{P}_{k}^{4} \).

\(^9\)More precisely, by Saint-Donat’s version valid in any characteristic.

\(^{10}\)For \(k \) perfect, we must insert “geometrically” before “hyperelliptic/trigonal”.

\(^{11}\)complete intersection
The Maroni invariant of a trigonal curve

For C trigonal, the quadrics vanishing on $\iota(C)$ cut out a Hirzebruch surface

$$F_n = \text{Proj}_{P^1_k} \left(\mathcal{O}_{P^1_k} \oplus \mathcal{O}(n)_{P^1_k} \right)$$

embedded in P^{g-1} by $|b + (n + 1 + i)f|$ for some $i \geq 0$ where f is a fiber of $F_n \to P^1_k$ and b is the unique irreducible curve with $b^2 = -n$.

We call n the **Maroni invariant** of C. We have $b \cdot C = \frac{g-3n+2}{2}$, so so $n \in \{0, \ldots, \frac{g+2}{3}\}$ and $n \equiv g \pmod{2}$.

For $n = 0$, $F_{0,k} \cong P^1_k \times P^1_k$ and C_k is a $(3, \frac{g+2}{2})$-hypersurface. Since $\frac{g+2}{2} \neq 3$ for $g \geq 5$, this description descends to k.

For $n > 0$, F_n is an $(n,1)$-hypersurface in $P^1_k \times P^2_k$. Blowing down along b yields the weighted projective space $P(1 : 1 : n)_k$.
Contents

1 The relative class number one problem and its status
2 The problem at hand
3 Review of canonical curves
4 Canonical curves of genus 6 and 7
5 Computation and results
6 Next steps
The Brill-Noether stratification for $g = 6$

From a corresponding result of Mukai over \overline{k}, we deduce that for $g = 6$, C has one of the following forms.

- Hyperelliptic.
- Trigonal of Maroni invariant 2: Cl of type $(2, 1) \cap (1, 3)$ in $\mathbb{P}_k^1 \times \mathbb{P}^2_k$.
- Trigonal of Maroni invariant 0: Cl of type $(3, 4)$ in $\mathbb{P}_k^1 \times \mathbb{P}_k^1$.
- Bielliptic: \(^{12}\) double cover of a genus 1 curve.
- Smooth quintic: Cl of type (5) in \mathbb{P}_k^2.
- A Cl of type $(1)^4 \cap (2)$ in the Grassmannian $\text{Gr}(2, 5) \subset \mathbb{P}_k^9$ in its Plücker embedding.

\(^{12}\)Again by Castelnuovo–Severi, this cover is unique for $g > 5$, and so descends to k.
The Brill-Noether stratification for $g = 7$

By Mukai again, for $g = 7$, C has one of the following forms.

- **Hyperelliptic.**
- **Trigonal of Maroni invariant 3:** Cl of type (9) in $\mathbb{P}(1 : 1 : 3)_k$.
- **Trigonal of Maroni invariant 1:** Cl of type $(1, 1) \cap (3, 3)$ in $\mathbb{P}^1_k \times \mathbb{P}^2_k$.
- **Bielliptic.**
- **Not bielliptic but admits a self-adjoint g^2_6:** Cl of type $(3) \cap (4)$ in $\mathbb{P}(1 : 1 : 1 : 2)_k$.
- **Admits two distinct g^2_6’s over k:** Cl of type $(1, 1) \cap (1, 1) \cap (2, 2)$ in $\mathbb{P}^2_k \times \mathbb{P}^2_k$.
- **Admits two distinct g^2_6’s only over \overline{k}:** Cl of type $(1, 1) \cap (1, 1) \cap (2, 2)$ in the quadratic twist of $\mathbb{P}^2_k \times \mathbb{P}^2_k$.
- **Tetragonal** (admits a g^1_4 but not a g^1_3 or g^2_6): Cl of type $(1, 1) \cap (1, 2) \cap (1, 2)$ in $\mathbb{P}^1_k \times \mathbb{P}^3_k$.
- **None of the above, see below.**
Generic canonical curves of genus 7

Let V be the vector space k^{10} equipped with the quadratic form13 $\sum_{i=1}^{5} x_i x_{5+i}$. Let $\text{SO}(V)$ be the index-2 subgroup of the orthogonal group of V on which the Dickson invariant is trivial.

The 10-dimensional orthogonal Grassmannian OG parametrizes Lagrangian (maximal isotropic) subspaces of V. It admits a canonical spinor embedding $\text{OG} \hookrightarrow \mathbb{P}_k^{15}$ on which $\text{SO}(V)$ acts transitively.

There are two connected components of OG, stabilized by $\text{SO}(V)$. Given $L_0 \in \text{OG}(k)$, we may characterize the component OG^+ containing L_0 as parametrizing L with $\dim_k(L \cap L_0) \equiv 1 \pmod{2}$.

Theorem (after Mukai)

*Every canonical genus-7 curve over k arises as a CI of type $(1)^9$ in OG^+.***

13For k finite, there is a second form with no Lagrangian subspaces defined over k; but the fact that curves always have points over large odd-degree extensions means we don’t need to worry about the second form.
Contents

1. The relative class number one problem and its status
2. The problem at hand
3. Review of canonical curves
4. Canonical curves of genus 6 and 7
5. Computation and results
6. Next steps
Review of point count conditions

For $g = 6$, we are looking for C for which $\#C(\mathbb{F}_2), \ldots, \#C(\mathbb{F}_{2^6})$ appears in:

<table>
<thead>
<tr>
<th>$C(\mathbb{F}_2)$</th>
<th>$C(\mathbb{F}_3)$</th>
<th>$C(\mathbb{F}_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 14, 16, 18, 14, 92</td>
<td>5, 11, 11, 31, 40, 53</td>
<td>6, 10, 9, 38, 11, 79</td>
</tr>
<tr>
<td>4, 14, 16, 18, 24, 68</td>
<td>5, 11, 11, 31, 40, 65</td>
<td>6, 10, 9, 38, 21, 67</td>
</tr>
<tr>
<td>4, 14, 16, 26, 14, 68</td>
<td>5, 11, 11, 39, 20, 53</td>
<td>6, 10, 9, 38, 31, 55</td>
</tr>
<tr>
<td>4, 16, 16, 20, 9, 64</td>
<td>5, 11, 11, 39, 20, 65</td>
<td>6, 14, 6, 26, 26, 68</td>
</tr>
<tr>
<td>5, 11, 11, 31, 20, 65</td>
<td>5, 13, 14, 25, 15, 70</td>
<td>6, 14, 6, 26, 26, 80</td>
</tr>
<tr>
<td>5, 11, 11, 31, 20, 77</td>
<td>5, 13, 14, 25, 15, 82</td>
<td>6, 14, 6, 26, 36, 56</td>
</tr>
<tr>
<td>5, 11, 11, 31, 20, 89</td>
<td>5, 13, 14, 25, 15, 94</td>
<td>6, 14, 6, 34, 16, 56</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 53</td>
<td>5, 13, 14, 25, 25, 46</td>
<td>6, 14, 6, 34, 26, 44</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 65</td>
<td>5, 13, 14, 25, 25, 58</td>
<td>6, 14, 12, 26, 6, 44</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 77</td>
<td>5, 13, 14, 25, 25, 70</td>
<td>6, 14, 12, 26, 6, 56</td>
</tr>
<tr>
<td>5, 11, 11, 31, 30, 89</td>
<td>5, 15, 5, 35, 20, 45</td>
<td>6, 14, 12, 26, 6, 66</td>
</tr>
</tbody>
</table>

For $g = 7$, we are looking for C for which $\#C(\mathbb{F}_2), \ldots, \#C(\mathbb{F}_{2^7})$ appears in:

<table>
<thead>
<tr>
<th>$C(\mathbb{F}_2)$</th>
<th>$C(\mathbb{F}_3)$</th>
<th>$C(\mathbb{F}_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 18, 12, 18, 6, 60, 174</td>
<td>7, 15, 7, 31, 12, 69, 126</td>
<td>7, 15, 7, 31, 22, 57, 70</td>
</tr>
<tr>
<td>6, 18, 12, 18, 6, 72, 132</td>
<td>7, 15, 7, 31, 22, 45, 112</td>
<td>7, 15, 7, 31, 22, 57, 84</td>
</tr>
<tr>
<td>6, 18, 12, 18, 6, 84, 90</td>
<td>7, 15, 7, 31, 22, 45, 112</td>
<td>7, 15, 7, 31, 22, 57, 84</td>
</tr>
</tbody>
</table>
Initial cases

- If $g = 6$, then C cannot be hyperelliptic: we have $\#C(\mathbb{F}_4) > 10 = 2\#\mathbb{P}^1(\mathbb{F}_4)$ except in three cases where $\#C(\mathbb{F}_{16}) = 38 > 34 = 2\#\mathbb{P}^1(\mathbb{F}_{16})$.

- If $g = 7$, then C cannot be hyperelliptic: we have $\#C(\mathbb{F}_4) \geq 15 > 10 = 2\#\mathbb{P}^1(\mathbb{F}_4)$.

- If $g = 7$ and $\#C(\mathbb{F}_2) = 6$, then C cannot be trigonal: we have $\#C(\mathbb{F}_4) = 18 > 15 = 3\#\mathbb{P}^1(\mathbb{F}_4)$.

- If $g = 7$ and $\#C(\mathbb{F}_2) = 7$, then C cannot be trigonal of Maroni invariant 3: we have $\#C(\mathbb{F}_2) = 7$ which exceeds the number of smooth points of $\mathbb{P}(1 : 1 : 3)(\mathbb{F}_2)$.

Also, for C bielliptic, we can identify options for the genus-1 curve, then use Magma to compute all double covers of the right genus.
A paradigm for the remaining cases

In each remaining case, we are looking for certain complete intersections $X_1 \cap \cdots \cap X_m$ inside some homogeneous variety X over \mathbb{F}_2.

- Compute $S := X(\mathbb{F}_2)$ and $G := \text{Aut}(X)(\mathbb{F}_2)$.
- Compute orbit representatives for the G-action on subsets of S of size at most g. More on this below.14
- For each representative subset of size in $\{4, 5, 6\}$ (if $g = 6$) or $\{6, 7\}$ (if $g = 7$), use linear algebra to find all tuples of hypersurfaces X_1, \ldots, X_{m-1} of the desired degrees containing these \mathbb{F}_2-points.
- For each choice, impose linear conditions on X_m to ensure that $X_1 \cap \cdots \cap X_m$ has exactly the specified set of \mathbb{F}_2-rational points. This crucially exploits the fact that the base field is \mathbb{F}_2; a similar strategy is used by Faber–Grantham.14

14For $g = 7$, $X = \text{OG}^+$, we use a slightly different setup that requires only the action on 6-element subsets.
Let G be a finite group acting on a finite set S. We need to compute orbit representatives for the action of G on k-element subsets of S without instantiating in memory the full list of k-element subsets.

For this we use an inductive combinatorial construction called an **orbit lookup tree**. It answers the question: given a sequence x_1, \ldots, x_k, find a permutation π of $\{1, \ldots, k\}$ and an element $g \in G$ such that for each i, \(\{g(x_{\pi(1)}), \ldots, g(x_{\pi(i)})\} \) is an orbit representative for i-element subsets.

In some cases, a strategy introduced by Auel–Kulkarni–Petok–Weinbaum based on decomposing $k[G]$-modules may be superior.
Summary of the computation

<table>
<thead>
<tr>
<th>Type of C</th>
<th>Dim</th>
<th>$#C$</th>
<th>$#C'$</th>
<th>Time15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g = 6$, hyperelliptic</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>$g = 6$, trigonal, Maroni 2</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>10m</td>
</tr>
<tr>
<td>$g = 6$, trigonal, Maroni 0</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>2m</td>
</tr>
<tr>
<td>$g = 6$, bielliptic</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>$g = 6$, plane quintic</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>$g = 6$, generic</td>
<td>15</td>
<td>38</td>
<td>2</td>
<td>4h</td>
</tr>
<tr>
<td>$g = 7$, hyperelliptic</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>$g = 7$, trigonal, Maroni 3</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>$g = 7$, trigonal, Maroni 1</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>5m</td>
</tr>
<tr>
<td>$g = 7$, bielliptic</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>5m</td>
</tr>
<tr>
<td>$g = 7$, self-adjoint g_6^2</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>5m</td>
</tr>
<tr>
<td>$g = 7$, rational g_6^2</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>30m</td>
</tr>
<tr>
<td>$g = 7$, irrational g_6^2</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>45m</td>
</tr>
<tr>
<td>$g = 7$, tetragonal, no g_6^2</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>2h</td>
</tr>
<tr>
<td>$g = 7$, generic</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>1h</td>
</tr>
</tbody>
</table>

15These are wall times on a laptop. Don’t take them too seriously; there are many confounding factors at work.
The final results

Theorem

(a) There are two isomorphism classes of curves C of genus 6 over \mathbb{F}_2 admitting an étale double covering $C' \to C$ such that $\#J(C')(\mathbb{F}_2) = \#J(C)(\mathbb{F}_2)$. The curves C are Brill–Noether general with automorphism groups C_3 and C_5.

(b) There is a unique isomorphism class of curves C of genus 7 over \mathbb{F}_2 admitting an étale double covering $C' \to C$ such that $\#J(C')(\mathbb{F}_2) = \#J(C)(\mathbb{F}_2)$. The curve C is bielliptic with automorphism group D_6.

In the latter case, C admits the affine model

$$\text{Spec } \frac{\mathbb{F}_2[x, y, z]}{(y^2 + (x^3 + x^2 + 1)y + x^2(x^2 + x + 1), z^2 + z + x^2(x + 1)y)}.$$
A full census of genus-6 and genus-7 curves

It would be desirable to have a full census of genus-g curves over \mathbb{F}_2 for $g = 6, 7$. This would provide a valuable consistency check, and also serve as a rich resource for future investigation (ideally as part of LMFDB).

A further consistency check\(^{16}\) would be provided by computing\(^{17}\) $\#M_g(\mathbb{F}_2)$ using explicit generators/relations for the Chow ring. For $g = 6$, this has been achieved using very recent work of Canning–H. Larson.\(^{18}\)

It should be possible to upgrade our existing code to remove the filtering on zeta functions to achieve a full census. For $g = 6$, this is work in progress with Jun Bo Lau, but extra help would be welcome.

\(^{16}\)Such a count can even be used to **certify** the validity of a census: it is easy to compute automorphism groups and check pairwise nonisomorphism for an explicit list of curves, this providing a concrete lower bound on stacky $\#M_g(\mathbb{F}_2)$.

\(^{17}\)This point count is **stacky**: the isomorphism class of a curve C has weight $\frac{1}{\# \text{Aut}(C)}$.

\(^{18}\)Odd coincidence: Hannah is also lecturing in Providence at this hour!
Into the wild: beyond genus 7

Since M_g has dimension $3g - 3$, we expect $\#M_g(\mathbb{F}_2)$ to be roughly 2^{3g-3}. So it might be feasible to compile a census19 of genus-g curves over \mathbb{F}_2 for $g = 8, 9, 10$.

Conveniently, Mukai also has similar descriptions of canonical curves in these genera. For example, a general canonical genus-8 curve is a linear section of $\text{Gr}(2, 6) \subset \mathbb{P}_k^{14}$.

However, it will take significant implementation skill to keep the complexity down to a manageable level.

19Faber-Grantham encountered a single zeta function that they had to show did not occur in genus 9. Fortunately they were able to do this by “pure thought”.