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Summary

We report on our computation of a moderately large data-base of
paramodular forms for GSp(4) for weight ≥ 3. We compute with
algebraic modular forms on orthogonal groups of positive definite
quadratic forms in five variables.



Why paramodular forms?

▶ A natural generalisation of the modularity of elliptic curves
proved by Wiles et al is understanding the relation between
analytic objects and higher dimensional abelian varieties.

▶ Yoshida suggested that an abelian surface should be related to
a Siegel modular form of degree 2 (automorphic forms for the
group GSp(4)).

▶ Brumer and Kramer conjectured that abelian varieties should
correspond to Siegel modular forms transforming under the
paramodular group of degree N.

▶ The spaces of paramodular forms present a nice theory of
newforms proven by Roberts and Schmidt.
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Orthogonal spaces

Let V be a finite-dimensional Q-vector space equipped with a
quadratic form Q : V → Q. The orthogonal group of Q is the
group of Q-linear automorphisms of V which preserve Q, that is

O(V ) := {g ∈ GL(V ) : Q(gx) = Q(x) for all x ∈ V }.

Also let
SO(V ) := O(V ) ∩ SL(V ).



Orthogonal spaces

Two integral lattices Λ,Λ′ ⊂ V are isometric if there exist
g ∈ O(V ) such that gΛ = Λ′ and we denote it by Λ ≃ Λ′. Same
with isometric for Λp = Λ⊗ Zp over Vp = V ⊗Qp.

The genus of Λ is the set of lattices which are everywhere locally
isometric to Λ, namely

Gen(Λ) := {Λ′ ⊂ V : Λp ≃ Λ′
p for all primes p}.

The class set Cl(Λ) is the set of isometry classes in Gen(Λ), which
is finite by the geometry of numbers.

We also let SO(Λ) := {g ∈ SO(V ) : gΛ = Λ}.



Ortogonal modular forms

Let Λ1, . . . ,Λh represent Cl(Λ), with Λ1 = Λ, and
ρ : SO(Q) → GL(W ) a finite dimensional representation.

The space of (special) orthogonal modular forms of level Λ and
weight ρ is the space

M(SO(Λ), ρ) =
{
f : Cl(Λ) → W : f ([Λi ]) ∈ W SO(Λi )

}
≃

h⊕
i=1

W SO(Λi ).

For the trivial representation this is just Ch.

Using p-neighbors we get Hecke operators in the space of
orthogonal modular forms (in our case we need two types of
operators, Tp,1 and Tp,2).



Radical character

We define a representation of dimension one for every d ∥ disc(Λ),

θd : O(V ) → C×,

which is called the radical character (formerly known as the spin
character).



Relation with paramodular forms

▶ The relation between modular forms on SO(5) and
automorphic forms on GSp(4) with trivial central character is
predicted by Langlands functoriality.

▶ An explicit correspondence was conjectured by Ibukiyama
(1980) involving two steps: a correspondence between
(para)modular forms of GSp(4) and its compact twist
GU(2,B), where B is a definite quaternion algebra; and a
correspondence between modular forms of GU(2,B) and those
of SO(Q) for a suitable chosen quinary quadratic form Q.

▶ The first correspondence was proved by van Hoften (2021)
and Rösner–Weissauer (2021), and extended by
Dummigan–Pacetti–R–Tornaŕıa (2021), where the second
correspondence was also proved.



Dummigan-Pacetti-R-Tornaŕıa

More precisely we can compute the space Snew
k,j (K (N)) of

paramodular newforms of level N and weight (k , j) under the
following assumptions:

1. There is a prime p0 such that p0 ∥ N, and

2. k ≥ 3 and j ∈ 2Z≥0.
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p-neighbors

▶ Algorithms to compute with orthogonal modular forms using
lattice methods were exhibited by Greenberg–Voight.

▶ These algorithms take as input an integral, positive definite
quadratic form on a lattice Λ and compute the action of
Hecke operators on spaces of functions on the class set of Λ,
with values in a weight representation.

▶ The Hecke operators are computed as p-neighbors, after
Kneser, using an algorithm to test lattice isomorphism due to
Plesken–Souvignier.

▶ For evaluating the Hecke operator Tp,1, the running time
complexity is dominated by O(hp3) isometry tests, where h is
the class number of the lattice; for Tp,2, it is dominated by
O(hp4) isometry tests.



Algorithmic improvements

▶ Two p-isotropic vectors will produce the same target when we
apply the p-neighbor relation if they are in the same orbit of
the isometry group Aut(Λ). So, given a p-isotropic vector v
we compute its orbit under Aut(Λ) when v is minimal with
respect to the lexicographic order.

▶ We can precompute the automorphism group of all lattices in
the genus, and their conjugations into a single quadratic
space, saving the cost of conjugation when computing the
spinor norm.

For one of the implementations, for N = 61 we get a speedup
factor of 11, with #Aut(Λ) = 48.



Implementation

For reliability, we carried out and compared two separate
implementations to compute the data, one in C and one in
PARI/GP. Eventually, these gave the same output.

We used Magma for some of the linear algebra, and SageMath for
auxiliary operations on the data we produced.
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An Example

Consider the space S3,0(K (312)). Since 312 = 23 · 3 · 13, we
choose the quadratic form given by DPRT. Explicitly we take
Λ = Z5 equipped with the quadratic form having the following
Gram matrix: 

2 0 1 0 1
0 2 −1 −1 1
1 −1 4 −1 0
0 −1 −1 6 0
1 1 0 0 12


The class set of Λ has cardinality 15.



An Example

Computing the spaces M(SO(Λ), θd) for squarefree d | 312 we find
that their dimensions are given as in the following table.

d 1 2 3 6 13 26 39 78 Total

(G)-new 1 0 0 5 = 3 + 1 + 1 0 1 4 = 3 + 1 0 11
(G)-old 1 1 1 1 1 2 0 1 8
(P)-new 2 0 0 3 0 2 2 0 9
(P)-old 8 0 0 2 0 7 2 0 19
(Y)-new 1 0 0 1 0 1 3 0 6
(Y)-old 1 1 0 0 1 1 0 0 4

Total 14 2 1 12 2 14 11 1 57



An Example

We can calculate the space of Yoshida lifts:

Mnew(SO(Λ))(Y) ≃ (Snew
2 (Γ0(26))⊗ Snew

4 (Γ0(12)))

⊕ (Snew
2 (Γ0(39))⊗ Snew

4 (Γ0(8)))

⊕ (Snew
2 (Γ0(52))⊗ Snew

4 (Γ0(6))),

leading to the corresponding dimension counts in the last table.
Furthermore, the only Yoshida lifts that occur as oldforms are the
images of the forms in

Mnew(SO(Λ156))(Y) ≃ Snew
2 (Γ0(26))⊗ Snew

4 (Γ0(6)).



An Example

Similarly, we find that

Mnew(SO(Λ))(P) ≃ Snew,−
4 (Γ0(312))⊕ Snew,+

4 (Γ0(24)),

(plus and minus signs for the Atkin–Lehner involution), and

Mold(SO(Λ))(P) ≃
⊕

d |24,d ̸=24

Snew,−
4 (Γ0(13d))⊕ Snew,+

4 (Γ0(d))

⊕
⊕
d |6

Snew,−
4 (Γ0(13d))⊕ Snew,+

4 (Γ0(d)).



An Example

Finally, since we are able to compute the Hecke eigenvalues at
good primes for each of the newforms, we can decompose
Snew
3,0 (K (312))(G) to newform subspaces.

The following table lists the Galois orbits of the Hecke eigenforms
in this space, giving rise to such a decomposition.

dimension field
Traces A-L signs

a5 a7 a11 a17 2 3 13

1 Q −1 −13 −6 63 + + −
1 Q −11 3 −16 3 + − +
1 Q 1 −15 14 135 − + +
1 Q 2 −6 −52 44 − − −
1 Q −13 −3 −4 −37 − − −
3 3.3.961.1 −1 −25 −24 −71 + − +
3 3.3.961.1 −12 28 2 −90 − − −

http://www.lmfdb.org/NumberField/3.3.961.1
http://www.lmfdb.org/NumberField/3.3.961.1


Computations

We computed the spaces of paramodular forms of level N and
weight (k, j), the Hecke eigenforms and the eigenvalues of the
Hecke operators in the following ranges:

▶ (k , j) = (3, 0), D = N ≤ 1000, good Tp,i with pi < 200

▶ (k , j) = (4, 0), D = N ≤ 1000, good Tp,1 with p < 100, good
Tp,2 with p < 30

▶ (k , j) = (3, 2), D = N ≤ 500, good Tp,1 with p < 100, good
Tp,2 with p < 30



Computations

Newspace and newform data computed:

(k , j)
Newspaces Newforms

sqfree N nonsqfree N total sqfree N nonsqfree N total

(3, 0) 2 764 4 820 7 584 52 181 23 853 76 034
(3, 2) 1 363 3 072 4 435 72 551 29 226 101 777
(4, 0) 2 856 7 783 10 639 287 974 132 380 420 354



Future directions

▶ Compute the Hecke eigenvalues in the bad primes.

▶ Compute for more weights.

▶ Implement level-raising maps between spaces of orthogonal
modular forms.

https://github.com/assaferan/omf5_data

https://gitlab.fing.edu.uy/grama/quinary

Thanks!

https://github.com/assaferan/omf5_data
https://gitlab.fing.edu.uy/grama/quinary
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