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Abstract. We compute tables of paramodular forms of degree two and co-
homological weight via a correspondence with orthogonal modular forms on

quinary lattices.

1. Introduction

Number theorists have a longstanding tradition of making tables of modu-
lar forms (for a brief history, see [CMFs21, §2]), with myriad applications to
arithmetic and geometry. Moving beyond GL2, there has been substantial inter-
est in similar catalogues of Siegel modular forms, as computed first for Sp4(Z)
by Kurokawa [Kur78] and then more systematically by Skoruppa [Sko92], Raum
[Rau10], and others. Moving beyond trivial level, we find several interesting fami-
lies of congruence subgroups of symplectic groups. Among them, the paramodular
groups have recently received considerable interest, owing in part to their agree-
able theory of newforms [RS07] as well as applications in the Langlands program
[BK19, Gro16]. Direct computations of paramodular forms have focused on the
more troublesome case of (noncohomological) weight 2 [PY15, BPY16, PSY17]
(analogous to weight 1 classical modular forms), working with Fourier expansions
using clever and sophisticated techniques.

In this paper, we report on our computation of a moderately large data-
base of paramodular forms for GSp4 (i.e., degree 2), but via a complementary
approach in weight ≥ 3: we compute with algebraic modular forms [Gro99] on
orthogonal groups of positive definite quadratic forms in five variables. Instead of
working with Fourier expansions, we access only the underlying systems of Hecke
eigenvalues (enough for Galois representations and L-function). An explicit cor-
respondence between orthogonal and paramodular forms was first conjectured by
Ibukiyama [IK17, Ibu19] and recently proven by van Hoften [vH21], Rösner–
Weissauer [RW21], and Dummigan–Pacetti–Rama–Tornaŕıa [DPRT21]. Our ap-
proach using quinary quadratic forms is analogous to the use of ternary quadratic
forms to compute classical modular forms introduced by Birch [Bir91] (see also
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[Tor05, Ram14, Hei16, HTV]). Our algorithms involve lattice methods, as de-
scribed by Greenberg–Voight [GV14] and further developed and investigated by
Hein [Hei16], Ladd [Lad18], and Rama [Ram20, Ram20git].

The tables computed here supersede data computed by Rama–Tornaŕıa [RT20]
(squarefree level N ≤ 1000): we compute systematically in nonsquare level N ≤
1000, in higher weight, and with more Dirichlet coefficients. Our data is available
online [ALRTV23], and it is being incorporated into the L-functions and Modular
Forms Database (LMFDB) [LMFDB].

Acknowledgements. The authors would like to thank Ariel Pacetti for help-
ful conversations and the anonymous referees for their feedback.

2. Background

Siegel paramodular forms. We begin with a brief review of some back-
ground and setting up notation. Let g ∈ Z≥1, let V := Q2g, and equip V with the
symplectic pairing

(2.1)

〈 , 〉 : V × V → Q

〈x, y〉 = xᵀ
(

0 I
−I 0

)
y

where I is the g × g-identity matrix. Let GSp2g(Q) be the group of symplectic
similitudes of V , namely

(2.2) GSp2g(Q) := {(α, µ) ∈ GL2g(Q)×Q× : 〈αx, αy〉 = µ〈x, y〉 for all x, y ∈ V }.

Projection onto the second factor yields a character µ : GSp2g(Q) → Q×, whose
kernel Sp2g(Q) := kerµ is the group of symplectic isometries of V . Let

GSp+
2g(Q) := {α ∈ GSp2g(Q) : det(α) > 0} < GSp2g(Q).

The Siegel upper half-space is

(2.3) Hg := {z ∈ Mg(C) : zᵀ = z and Im(z) > 0},
the space of g × g complex symmetric matrices whose imaginary part is positive
definite. The group GSp+

2g(Q) acts on Hg by(
a b
c d

)
z = (az + b)(cz + d)−1

for α ∈ GSp+
2g(Q) and z ∈ Hg.

Let ρ : GLg(C)→ GL(W ) be a representation of GLg(C) on a finite-dimensional
C-vector space W , and let Γ ≤ Sp2g(Q) be a discrete subgroup. The space Mρ(Γ)
of Siegel modular forms of level Γ and weight ρ is the space of holomorphic functions
f : Hg →W such that

(2.4) f(γz) = ρ(cz + d)f(z) for all γ =

(
a b
c d

)
∈ Γ

together with the requirement that f is holomorphic at the cusps of Γ if g = 1.
When g = 1 and ρ : C× → C× is x 7→ xk, we write Mk(Γ) = Mρ(Γ); when g = 2

and ρ = ρk,j := detk ⊗Symj(std), we write Mk,j(Γ) = Mρ(Γ).
This paper is concerned with certain families of discrete subgroups for g = 1

and g = 2. Let N be a positive integer. We write Γ0(N) ≤ Sp2(Q) = SL2(Q) for
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the Iwahori subgroup of level N and K(N) ≤ Sp4(Q) for the paramodular subgroup
of level N ; explicitly,

Γ0(N) :=

(
Z Z
NZ Z

)
∩ SL2(Q), K(N) :=


Z Z Z N−1Z
NZ Z Z Z
NZ Z Z Z
NZ NZ NZ Z

 ∩ Sp4(Q).

In particular, we will be interested in the space Mk,j(K(N)) of Siegel paramod-
ular forms of level N and weight (k, j) ∈ Z2

≥0, and we write Mk(N) = Mk(Γ0(N))
for the space of classical modular forms of level N and weight k.

The Siegel operator Φ: Mk,j(K(N))→Mj+k(N) is defined by

Φ(f)(z) = lim
t→∞

f

(
z 0
0 it

)
,

and we say that f ∈Mk,j(K(N)) is a cusp form if Φ(f) = 0. We write Sk,j(K(N))
for the subspace of paramodular cusp forms.

Hecke operators. For α ∈ GSp+
4 (Q), define a right action of GSp+

4 (Q) on
Mk,j(K(N)) by

(2.5) (f |k,jα)(z) = µ(α)j+k−3ρk,j(cz + d)−1f(αz).

In particular, the condition (2.4) for ρk,j is equivalent to (f |k,jα)(z) = f(z) for all
α ∈ K(N) (since µ(α) = 1).

For p prime, let λp,1 := diag(1, 1, p, p) ∈ M4(Z) and λp,2 := diag(1, p, p2, p) ∈
M4(Z). For i = 1, 2, let {αp,i,r}r be representatives for K(N)\K(N)λp,iK(N), so
that

(2.6) K(N)λp,iK(N) =
⊔
r

K(N)αp,i,r;

we define the Hecke operator Tp,i : Mk,j(K(N))→Mk,j(K(N)) by

Tp,i(f) =
∑
r

f |k,jαp,i,r.

The operators Tp,i do not depend on the choice of representatives {αp,i,r}, and they
restrict to operators on cusp forms Sk,j(K(N)) [PSY18, Proposition 5.2], which
we also denote Tp,i. The Hecke operators Tp,i for p - N pairwise commute, and an
eigenform f ∈ Sk,j(K(N)) is a common eigenvector.

Paramodular oldforms and newforms. The spaces Sk,j(K(N)) of paramod-
ular cusp forms admit a theory of oldforms and newforms due to Roberts–Schmidt
[RS06]. Let p be a prime number. Then there are three level-raising operators,
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defined as follows:

(2.7)

θN,p : Sk,j(K(N))→ Sk,j(K(Np))

θN,p(f) = f |k,j


p

p
1

1




1
1

−1
1



+

p−1∑
c=0

f |k,j


p

p
1

1




1
1
c 1

1


and
(2.8)

θ′N,p : Sk,j(K(N))→ Sk,j(K(Np))

θ′N,p(f) = f |k,j


p

1
1

1/p

+

p−1∑
c=0

f |k,j


1 c/(pN)

1
1

1


and finally

(2.9)

ηN,p : Sk,j(K(N))→ Sk,j(K(Np2))

ηN,p(f) = f |k,j


p

1
1

p−1


These three operators commute with each other, with the level-raising operators
for other primes, and with the operators T`,i for all ` - Np [RS06, §4].

For p | N , the subspace of p-oldforms in Sk,j(K(N)) is defined as the sum

(2.10)
Sp-old
k,j (K(N)) := θN/p,pSk,j(K(N/p)) + θ′N/p,pSk,j(K(N/p))

+ ηN/p2,pSk,j(K(N/p2))

where the last term only occurs if p2 | N ; the space of oldforms is then

(2.11) Sold
k,j (K(N)) :=

∑
p|N

Sp-old
k,j (K(N)).

The subspace of p-newforms Sp-new
k,j (K(N)) ⊆ Sk,j(K(N)) is the orthogonal com-

plement of the subspace of p-oldforms under the Petersson inner product, and the
subspace of newforms Snew

k,j (K(N)) is the orthogonal complement of the subspace
of oldforms.

Definite orthogonal modular forms. To compute paramodular forms, in
fact we compute certain orthogonal modular forms. These spaces of orthogonal
modular forms are again defined by a level Λ and a weight W , as follows.

Let V be a finite-dimensional Q-vector space equipped with a quadratic form
Q : V → Q and T : V × V → Q the associated bilinear form. The orthogonal group
of Q is the group of F -linear automorphisms of V which preserve Q, namely

O(Q) := {g ∈ GL(V ) : Q(gx) = Q(x) for all x ∈ V };
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elements of O(Q) are called isometries. Let

SO(Q) := O(Q) ∩ SL(V )

(the subgroup of isometries that preserve an orientation).
Let ρ : SO(Q)→ GL(W ) be a representation. We will sometimes refer to ρ by

the underlying space W . If W is the irreducible representation of SO(Q) of highest
weight λ, we write W = Wλ.

Let Λ ⊂ V be a lattice, the Z-span of a Q-basis for V . Suppose that Q(Λ) ⊆ Z,
in which case we say Λ is integral. For two lattices Λ,Λ′ ⊆ V , if there is an isometry
g ∈ O(V ) such that Λ′ = g(Λ), we say that Λ and Λ′ are isometric, and write Λ ' Λ′.

Making analogous definitions, we have Λp := Λ ⊗ Zp a Zp-lattice in V ⊗ Qp.
The genus of Λ is the set of lattices which are everywhere locally isometric to Λ,
namely

(2.12) Gen(Λ) := {Λ′ ⊂ V : Λp ' Λ′p for all primes p}.

There is a natural action of O(V ) on Gen(Λ) and the class set of Λ is the set of
global isometry classes

Cls Λ := O(V )\Gen(Λ).

By the geometry of numbers, the class set is finite; let h = h(Λ) := # Cls Λ < ∞.
Let Λ1, . . . ,Λh be a set of representatives for Cls Λ, and let

(2.13) Γi := SO(Λi) := {g ∈ SO(V ) : g(Λi) = Λi}

The space of (special) orthogonal modular forms of level Λ and weight W is the
space

(2.14) MW (SO(Λ)) =

h⊕
i=1

WΓi .

If W = Wa,b, we also write Ma,b(SO(Λ)) := MW (SO(Λ)). When W is trivial,
(a, b) = (0, 0), and MW (SO(Λ)) ' CCls Λ ' Ch.

For the correspondence with paramodular forms, we also need to define certain
twists of these spaces by certain characters as follows. Let p | N be prime, and let
Rp := rad(Λp ⊗ Z/(2p)Z) be the radical of Λ := Λp ⊗ Z/(2p)Z, where

(2.15) rad(Λ) := {x ∈ Λ : T (x, y) = 0 for all y ∈ Λ},

(extending T to Λ). Since gpRp = Rp for all gp ∈ Aut(Λp), we may define a
homomorphism θp : Aut(Λp) → {±1} by θp(gp) := det(gp|Rp). Given a unitary
divisor d ‖ N (so d | N and gcd(d,N/d) = 1), we define the associated radical
character θd :

⋂
p|d Aut(Λp) → {±1} by θd =

∏
p|d θp [DPRT21, §7]. Although

θd is not defined on all of SO(V ), as it is defined almost everywhere, using weak
approximation we choose representatives Λi of the class set so that it is defined on
Aut(Λi) for all i.

Finally, we write

(2.16) Ma,b(SO(Λ), θd) := MWa,b⊗θd(SO(Λ)).
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Definite orthogonal methods for paramodular forms. The relation be-
tween modular forms on SO(5) and automorphic forms on GSp(4) with trivial cen-
tral character is predicted by Langlands functoriality. An explicit correspondence
was conjectured by Ibukiyama in [IK17, Ibu19] involving two steps: a correspon-
dence between (para)modular forms of GSp(4) and its compact twist GU(2, B),
where B is a definite quaternion algebra; and a correspondence between mod-
ular forms of GU(2, B) and those of SO(Q) for a suitable chosen quinary qua-
dratic form Q. The first correspondence was proved by van Hoften [vH21] and
Rösner–Weissauer [RW21], and extended by Dummigan–Pacetti–Rama–Tornaŕıa
[DPRT21], where the second correspondence was also proved.

More precisely [DPRT21, Theorem 9.8], we can compute the space Snew
k,j (K(N))

of paramodular newforms of level N and weight (k, j) under the following assump-
tions:

(1) There is a prime p0 such that p0 ‖ N (i.e., p0 exactly divides N); and
(2) k ≥ 3 and j ∈ 2Z≥0.

(When j is odd, the space is {0}.) Suppose that these conditions hold. Then
[DPRT21, Theorem 5.14] there exists a unique genus of positive definite integral
quinary quadratic forms of (half-)discriminant N with Eichler invariants −1 at
p0 and +1 at all other primes [DPRT21, §5]. We choose one quadratic form
Q = QN,p0 in the genus, corresponding to a lattice Λ, noting that the corresponding
space of orthogonal modular forms is independent of this choice.

Following notation in [DPRT21, §8] and for notational convenience, write
a := k+ j− 3 and b := k− 3, noting a ≡ b (mod 2). Let Wa,b be the corresponding
weight representation of SO5(C); and for each d ‖ N , let θd be the associated
radical character. Let Ma,b(SO(Λ), θd) for the space of orthogonal modular forms
for QN,p0 with weight representation Wa,b and character θd.

Now let Sp0-new
k,j (K(N))(G) ⊆ Sk,j(K(N)) be the space of p0-new paramodular

cusp forms of general type (G). The condition (G) of general type concerns the type
of the automorphic representation, following Schmidt [Sch18, §1.1]: it excludes the
forms of Saito–Kurokawa type (P) on both sides and the forms of Yoshida type (Y)
appearing as orthogonal modular forms. See the section on detecting lifts below
for further discussion. Similarly, let Ma,b(SO(Λ), θd)(G) ⊆ Ma,b(SO(Λ), θd) be the
subspace of forms of general type (G).

Theorem 2.17 ([DPRT21, Theorem 9.8]). There is an isomorphism of Hecke
modules

Sp0-new
k,j (K(N))(G) '

⊕
d‖N

Ma,b(SO(Λ), θd)(G).

In the isomorphism of Theorem 2.17, the paramodular forms corresponding to
the summand Ma,b(SO(Λ), θd)(G) have their Atkin-Lehner signs εp determined by
d: we have εp0 = −1 if and only if p0 - d, and for primes p 6= p0 we have εp = −1 if
and only if p | d.
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3. Algorithmic comments

Algorithm overview. Algorithms to compute with orthogonal modular forms
using lattice methods were exhibited by Greenberg–Voight [GV14]; a recent over-
view with many concrete examples is given by Assaf–Fretwell–Ingalls–Logan–Secord–
Voight [AFILSV22, §3]. These algorithms take as input an integral, positive def-
inite quadratic form on a lattice Λ and compute the action of Hecke operators on
spaces of functions on the class set of Λ, with values in a weight representation.
The Hecke operators are computed as p-neighbors, after Kneser, using an algorithm
to test lattice isomorphism due to Plesken–Souvignier. For evaluating the Hecke
operator Tp,1, the running time complexity is dominated by O(hp3) isometry tests,
where h is the class number of the lattice; for Tp,2, it is dominated by O(hp4)
isometry tests.

In this way, we can compute the Hecke operators for all good primes p - N and
bad primes p ‖ N [RT20], giving the Euler factors at these primes. See the section
below on Euler factors for bad primes p2 | N .

In order to compute all Dirichlet coefficients an for n ≤M for the L-series at-
tached to f , we need to compute the Hecke operators Tp,1 for p ≤M and the Hecke

operators Tp,2 for p ≤
√
M . Hence the running time complexity for computing all

of the first M coefficients of the L-series is dominated by a total of O

(
hM4

logM

)
isometry tests.

Implementation. For reliability, we carried out and compared two separate
implementations to compute the data, one in C and one in PARI/GP [PARI/GP].
Eventually, these gave the same output. The code can be found at https://

github.com/assaferan/omf5 and https://gitlab.fing.edu.uy/grama/quinary.
We have also used SageMath [S+09] for auxiliary operations on the data we pro-
duced.

Remark 3.1. In [AFILSV22], the authors present a Magma [Magma] implemen-
tation, to be found at https://github.com/assaferan/ModFrmAlg, which agrees
with the other two. It is more general (working in arbitrary dimension and over
a totally real base field); our implementation is specialized, and more efficient for
this case.

Algorithmic improvements. In order to make the calculations of Hecke op-
erators mentioned in the previous section more efficient, it is possible to take ad-
vantage of the action of the isometry group of the lattice. Indeed, two p-isotropic
vectors in the same orbit of the isometry group Aut(Λ) will produce the same target
lattice when applying the p-neighbor relation. It is also possible to save on isometry
testing via taking the first few entries of the theta series for the lattice.

To carry out this idea (which has been observed before), we present a few
algorithmic improvements to further speed up the computation by a constant factor.
First, instead of precomputing all the orbits of isotropic vectors under Aut(Λ), we
order the isotropic vectors in a lexicographical order. Given a Zp-isotropic vector v,
we compute its orbit under Aut(Λ), and proceed with the computation only when
it is the minimal vector in its orbit.

Using the automorphism group speeds up the running time by the average
size of an orbit, hence by a factor of # Aut(Λ). Note that even over all rank
5 lattices Λ, the sizes # Aut(Λ) remain bounded, hence this is only a constant
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factor improvement. Precomputation of the orbits [AFILSV22, §3] also yields this
improvement, but at the cost of using O(p3) memory for Tp,1 and O(p4) memory for
Tp,2; here we reduce these memory costs without performing additional isometry
tests or short vector computations.

Second, we precompute the automorphism group of all lattices in the genus,
and their conjugations into a single quadratic space, saving the cost of conjugation
when computing the spinor norm. The factor that this improvements yields depends
on the ratio Tconj/Tθ between the time spent on conjugation of matrices and the
time spent on computing short vectors. In practice, in our C implementation, this
improves the running time by an average factor of 1.3.

If we have a list of the lengths of short vectors of the lattice we need only check
for isometry with those members of the genus with the same list. For a given genus
we measure the cost Tisom of isometry testing and the cost Tθ(B) of computing
the short vectors of length up to B, and we choose B that optimizes the total cost
α(B)Tisom+Tθ(B), where α(B) is the average number of collisions, with the lattices
in the genus averaged by the size of their automorphism groups. This follows from
the fact that the frequency of appearance of a lattice Λ as a p-neighbor is inversely
proportional to # Aut(Λ), as proven by Chenevier [Che22]. In practice, in our C
implementation, this yields an average speed up factor of 6.84.

Example 3.2. For the case N = 61 with trivial weight, in the C implementation,
it takes 113 s to compute all eigenvalues for p < 100 without these improvements.
With all of them put together it takes 10.28 s, giving a speedup factor of 11.

Example 3.3. For the case N = 61, in the Pari/GP implementation, it takes 3881
s to compute a row for the space of quinary modular forms for the representation
(a, b) = (1, 0) (corresponding to (k, j) = (4, 0)) and the character θ61 without the
isometry improvement. With the isometry improvement it took 451 s for a row that
corresponds to a quadratic form with 96 automorphisms. And 859 s for a row that
corresponds to a quadratic form with 12 automorphisms. This gives us a speedup
factor of 8.6 and a factor of 4.5 respectively.

Example 3.4. Again for the case N = 61, in the Pari/GP implementation, it
takes 4440 s to compute all a row for the space of quinary modular forms for weight
(a, b) = (1, 1) and the character θ61, without the isometry improvement. With the
isometry improvement it took 779 s for a row that corresponds to a quadratic form
with 96 automorphisms. And 1188 s for a row that corresponds to a quadratic
form with 12 automorphisms. This gives us a factor of 5.7 and a factor of 3.7,
respectively.

Detecting lifts. Among the orthogonal forms we compute, like Eisenstein
series in the classical case, we have forms that arise from lifts (endoscopy). Since
those lifts are classified and can be computed in other ways, we focus on what
remains on computing newforms of type (G).

To discard forms of type (P) corresponding to Saito–Kurokawa lifts, a single
good Euler factor is enough: a form of type (P) will have a Satake parameter p1/2

that cannot otherwise appear by the Ramanujan conjecture for non-CAP forms
[Wei09].

To discard forms of type (Y) corresponding to Yoshida lifts, it suffices to find
that a single good Euler factor is irreducible. If all the computed degree 4 Euler fac-
tors are product of two degree 2 factors, we look in tables to conjecturally identify
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the form as a Yoshida lift, as we know exactly which Yoshida lifts should appear
[DPRT21, Proposition 9.1]. To identify the lifts, a simple inspection and compar-
ison of the traces often suffices, otherwise we compute the lift from the classical
modular forms and compare the Euler factors.

Newforms and oldforms. In all cases, we have a good guess as to what is
new and old; computing inductively we can verify that a form is not a lift and not
an oldform. However, old lifts and nonlifts may appear in the space of orthogonal
modular forms with multiplicity, so we need to know if there are newforms that look
like lifts or oldforms up to the precision computed, in which case we can increase the
precision (compute more Hecke eigenvalues). In this way, we rigorously compute
a subset of newforms, but need additional certification to be sure that the forms
that look like oldforms are in fact old (and do not just agree with oldforms to the
precision computed).

To improve upon this, we refer to the local newform theory of Roberts–Schmidt
[RS07], which gives precise formulas for the multiplicity of paramodular oldforms
for forms of types (G) and (Y) [RS07, Theorem 7.5.6] as well as type (P) [RS07,
Theorem 5.5.9].

We plan to analyze this multiplicity and implement degeneracy maps in future
work, to certify our list of oldforms.

4. Running the calculation

Example. We begin with an example to illustrate the calculations we per-
formed.

Consider the space S3,0(K(312)). Since 312 = 23 · 3 · 13, we choose p0 = 13,
and produce a lattice Λ with (half-)discriminant 312 and Eichler invariant −1 at
13 and +1 at 2 and 3. Explicitly we take Λ = Z5 equipped with the quadratic form
having the following Gram matrix:

2 0 1 0 1
0 2 −1 −1 1
1 −1 4 −1 0
0 −1 −1 6 0
1 1 0 0 12


A quick computation shows that the class set of Λ has cardinality 15. Computing
the spaces M0,0(SO(Λ), θd) for squarefree d | 312 we find that their dimensions are
given as in Table 1.

d 1 2 3 6 13 26 39 78 Total

(G)-new 1 0 0 5 = 3 + 1 + 1 0 1 4 = 3 + 1 0 11
(G)-old 1 1 1 1 1 2 0 1 8
(P)-new 2 0 0 3 0 2 2 0 9
(P)-old 8 0 0 2 0 7 2 0 19
(Y)-new 1 0 0 1 0 1 3 0 6
(Y)-old 1 1 0 0 1 1 0 0 4

Total 14 2 1 12 2 14 11 1 57
Table 1. Dimensions of subspaces of M0,0(SO(Λ), θd)(A) for d | 312

30 Jun 2023 16:46:12 PDT

230122-Assaf Version 2 - Submitted to LuCaNT
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As explained in the previous section, we calculate the space of Yoshida lifts:

(4.1)

Mnew
0,0 (SO(Λ))(Y) ' (Snew

2 (Γ0(26))⊗ Snew
4 (Γ0(12)))

⊕ (Snew
2 (Γ0(39))⊗ Snew

4 (Γ0(8)))

⊕ (Snew
2 (Γ0(52))⊗ Snew

4 (Γ0(6))),

leading to the corresponding dimension counts in Table 1. Furthermore, the only
Yoshida lifts that occur as oldforms are the images of the forms in

Mnew
0,0 (SO(Λ156))(Y) ' Snew

2 (Γ0(26))⊗ Snew
4 (Γ0(6))

under the level-raising operators θ2, θ
′
2 : S3,0(K(156))→ S3,0(K(312)).

Similarly, we find that

Mnew
0,0 (SO(Λ))(P) ' Snew,−

4 (Γ0(312))⊕ Snew,+
4 (Γ0(24)),

(plus and minus signs for the Atkin–Lehner involution), and

(4.2)

Mold
0,0 (SO(Λ))(P) '

⊕
d|24,d6=24

Snew,−
4 (Γ0(13d))⊕ Snew,+

4 (Γ0(d))

⊕
⊕
d|6

Snew,−
4 (Γ0(13d))⊕ Snew,+

4 (Γ0(d));

this yields further dimension counts in Table 1.
Finally, using our precomputed data from lower levels, we find that

dimS3,0(K(156))(G) = 3, dimS3,0(K(104))(G) = 1.

Using the more precise data of their Atkin-Lehner eigenvalues and applying the cor-
responding level-raising operators, we find that they contribute to an 8-dimensional
subspace, distributed between the different subspaces as described in the second row
of Table 1.

The subspace orthogonal to all of the above is the space of Siegel paramodular
newforms of type (G) [DPRT21, Theorem 9.8], given in the top row. For these,
we have also included in the table the decomposition of the subspaces into Hecke
irreducible submodules, i.e., Galois orbits of paramodular newforms.

It then follows that dimSnew
3,0 (K(312))(G) = 11, and the space is composed of

7 Galois orbits of newforms, out of which 5 newforms have rational eigenvalues and
the 2 remaining orbits have dimension 3. Table 2 gives the dimensions of various
subspaces of S3,0(K(312)).

type new old total
(G) 11 8 19
(P) 9 19 28

Total 20 27 47
Table 2. Dimensions of subspaces of S3,0(K(312))

Table 3 gives the dimensions of the cuspidal new subspaces of automorphic
type (G) with specified eigenvalues for the Atkin-Lehner operators and the Fricke
involution.

Finally, since we are able to compute the Hecke eigenvalues at good primes for
each of the newforms, we can decompose Snew

3,0 (K(312))(G) to newform subspaces.
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2 3 13 Fricke dimension
+ + − − 1
+ − + − 4
− + + − 1
− − − − 5

Plus space + 0
Minus space − 11

Table 3. Dimensions of Atkin–Lehner subspaces of Snew
3,0 (K(312))(G)

Table 4 lists the Galois orbits of the Hecke eigenforms in this space, giving rise to
such a decomposition.

dimension field
Traces A-L signs

a5 a7 a11 a17 2 3 13

1 Q −1 −13 −6 63 + + −
1 Q −11 3 −16 3 + − +
1 Q 1 −15 14 135 − + +
1 Q 2 −6 −52 44 − − −
1 Q −13 −3 −4 −37 − − −
3 3.3.961.1 −1 −25 −24 −71 + − +
3 3.3.961.1 −12 28 2 −90 − − −

Table 4. Decomposition of Snew
3,0 (K(312))((G)) into newform subspaces

Here, the field 3.3.961.1 is given by its LMFDB label: it is defined by a root of
the polynomial x3 − x2 − 10x+ 8.

Data and running time. The data is available online [ALRTV23]. We
computed the spaces of paramodular forms of level N and weight (k, j), the Hecke
eigenforms and the eigenvalues of the Hecke operators in the following ranges:

• (k, j) = (3, 0), D = N ≤ 1000, good Tp,i with pi < 200
• (k, j) = (4, 0), D = N ≤ 1000, good Tp,1 with p < 100, good Tp,2 with
p < 30

• (k, j) = (3, 2), D = N ≤ 500, good Tp,1 with p < 100, good Tp,2 with
p < 30

The total counts are summarized in Table 5.

(k, j)
Newspaces Newforms

sqfree N nonsqfree N total sqfree N nonsqfree N total

(3, 0) 2 764 4 820 7 584 52 181 23 853 76 034
(3, 2) 1 363 3 072 4 435 72 551 29 226 101 777
(4, 0) 2 856 7 783 10 639 287 974 132 380 420 354

Table 5. Newspace and newform data computed (abbreviating
squarefree to “sqfree”)
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For squarefree levels, we use formulas from Ibukiyama–Kitayama [IK17] and
Ibukiyama [Ibu19] to double-check our results.

We compare the performance of the two implementations (Pari and C) by
comparing the computation time of a single row of the matrix representing the
Hecke operator Tp,1 on the spaces S3,0(K(N)) for various values of N and p. We
note that this step is the bottleneck of the computation, hence this comparison
provides ample evidence for the differences in performance as the parameters scale.

p
N

61 167 262 334

C Pari C Pari C Pari C Pari

31 0.05 s 1.27 s 0.45 s 1.31 s 0.37 s 1.58 s 0.49 s 2.46 s
41 0.10 s 2.86 s 0.80 s 2.84 s 0.94 s 3.56 s 1.02 s 5.53 s
101 1.09 s 41.3 s 6.71 s 41.1 s 7.86 s 50.8 s 12.6 s 79.8 s
127 2.00 s 81.8 s 10.1 s 81.4 s 14.0 s 100 s 20.1 s 158 s
199 6.49 s 312 s 37.16 s 312 s 42.16 s 384 s 75.06 s 607 s

Table 6. Timings for computing Tp,1

For Hecke irreducible spaces of dimension ≥ 20, we only store the traces; to
avoid painful calculations in an extension field, we compute modulo a prime p of
degree 1 which is large enough, and reconstruct.

The total data takes approximately 200 MB of disk space and took a total
of 4575 hours of CPU time on a standard processor (Intel Xeon Gold 6240 CPU,
2.60GHz). Computing the eigenvalues for p < 200 took a total of 13869 hours of
CPU time on a standard processor (AMD Ryzen Threadripper 2970WX CPU, 2.20
GHz) equipped with Ubuntu 22.04.2 operating system, achieving maximal memory
usage of 303276 KB.

Bad Euler factors. When p2 | N , the local Euler factor has degree at most
2 and is given by Roberts–Schmidt [RS07, Theorem 7.5.3] in terms of eigenvalues
for a pair of Hecke operators which correspond to p and p2-neighbors [DPRT21,
Proposition 8.5] (extended in the same way for p 6= p0). In practice, for p2 | N we
found easier to guess the appropriate Hecke operator via reconstruction by checking
that the functional equation for the L-function is satisfied (ruling out all possibilities
but one).

The first such bad factor occurs at level 76 = 22 · 19: the bad Euler factors are

L2(f76, X) = 1 + 5X + 23X2

L19(f76, X) = (1 + 19X)(1− 50X + 193X2).

(Since 19 ‖ 76, we compute the latter without any guesswork.) The next one occurs
at level 96 = 25 · 3, with

L2(f96, X) = 1 + 4X + 23X2

L3(f96, X) = (1− 3X)(1 + 8X + 33X2).

We used our truncated Dirichlet series to check that the functional equation is
satisfied up to 22 decimal digits of precision in each case, using both Magma and
Pari/GP.
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In order to rigorously verify the functional equation, one would need the first
C
√
N embedded Dirichlet coefficients (with sufficient precision) for a constant C

(see below), carrying out all floating-point calculations using rigorous error bounds
and interval arithmetic. A generic library to carry out such computations, due
originally to David Platt [CP19], has been developed; it includes functionality to
estimate the constant C as a function of the motivic data. However, for L-functions
of Siegel paramodular forms, it yields an estimated constant of C ≈ 138.84, meaning
one needs the Dirichlet coefficients for pn < 1211 for f76 and for pn < 1361 for f96.
This is in stark contrast to the small constant C = 5 which suffices for genus 2
curves [BSSVY16] or C = 0.08k log k + 24 sufficient for classical modular forms
of weight k [CMFs21]. Therefore, at the moment we satisfy ourselves with the
heuristic of checking the functional equation for the truncated Dirichlet series that
we have computed.

Statistics. Having compiled such a database with substantial amount of in-
formation, using the LMFDB [LMFDB], we are able to provide some arithmetic
statistics of interest, examples of which we present in Table 7 and Table 8, illustrat-
ing the distribution of the dimension of the Galois orbit of a newform of type (G),
and the distribution of the automorphic type, respectively, as the level increases.

level
dimension

1 2 3 4 5 6-10 11-20 21-266 Total

1-100
14 1 15

0.18 % 0.01 % 0.20 %

101-300
258 132 32 42 18 41 11 1 535

3.40 % 1.74 % 0.42 % 0.55 % 0.24 % 0.54 % 0.15 % 0.01 % 7.05 %

301-600
864 384 183 156 92 266 164 155 2264

11.40 % 5.06 % 2.41 % 2.06 % 1.21 % 3.51 % 2.16 % 2.04 % 29.85 %

601-999
1436 693 399 275 169 515 474 809 4770

18.93 % 9.14 % 5.26 % 3.63 % 2.23 % 6.79 % 6.25 % 10.67 % 62.90 %

Total
2572 1210 614 473 279 822 649 965 7584

33.91 % 15.95 % 8.10 % 6.24 % 3.68 % 10.84 % 8.56 % 12.72 %

Table 7. Distribution of levels and dimensions in weight (3, 0)

Interesting examples. When compiling a large amount of modular forms in
a database, it is easy to view them as a whole, but of course each form has its
own unique features and set of characteristics that make them different from any
other form. We seize the opportunity to point out several specific forms of interest,
and refer to their rich history in the literature and in previous works. We focus on
weight (k, j) = (3, 0) in this section.

• The smallest level in which a paramodular form of weight (3, 0) and
automorphic type (G) occurs is 61. This form has Hecke eigenvalues
a2 = −7, a3 = −3, a5 = 3, a7 = −9, . . ., and was first described in [PY15].

• The smallest level in which there is a paramodular newform of weight (3, 0)
with negative sign in the functional equation is 167. This form has Hecke
eigenvalues a2 = −8, a3 = −10, a5 = −4, a7 = −14, . . .. It was found in
[RT20], paving the way for the correspondence presented in [DPRT21].
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level
automorphic type

(G) (P) (Y) Total

1-100
15 169 11 195

0.10 % 1.15 % 0.07 % 1.29 %

101-300
535 787 166 1488

3.53 % 5.19 % 1.09 % 9.81 %

301-600
2264 1613 709 4586

14.93 % 10.64 % 4.68 % 30.25 %

601-999
4770 2476 1647 8893

31.46 % 16.33 % 10.86 % 58.65 %

Total
7584 5045 2533 15162

50.02 % 33.27 % 16.71 %
Table 8. Distribution of automorphic type in weight (3, 0)

• The first level to exhibit a non-rational paramodular newform of type
(G) is 97. The Hecke field is Q(

√
5), and the first Hecke eigenvalues are

a2 = −5 +ϕ, a3 = −4ϕ, a5 = −8 + 12ϕ, a7 = 9− 2ϕ, . . ., where ϕ = 1+
√

5
2 .

• The paramodular newform of type (G) which has the most leading zero
Hecke eigenvalues among the forms computed appears in level 275, with
the first non-zero Hecke eigenvalue being a19 = 59

√
5− 5.

Future directions. An immediate goal is to gather data for higher weights
(k, j) in a range where computation is feasible and find the Euler factors at the bad
primes to have the complete eigensystem for every form.

To understand oldforms and newforms, another direction we may proceed is
to implement natural level-raising maps between the spaces of orthogonal modular
forms, and relating them to the corresponding level-raising map for paramodular
forms. This could be used to construct directly the spaces of newforms, without
computing the exact multiplicity in which each oldform appears.

Finally, we also hope to complete the certification of the L-series for the new-
forms we have found, perhaps by further speeding up the computation, in order to
allows us to compute a sufficient amount of Hecke eigenvalues.
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