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Modular algorithms for Gross–Stark units and
Stark–Heegner points

Håvard Damm-Johnsen

Abstract. In recent work, Darmon, Pozzi and Vonk explicitly construct a
modular form whose spectral coefficients are p-adic logarithms of Gross–Stark
units and Stark–Heegner points. Here we describe how this construction gives
rise to a practical algorithm for explicitly computing these logarithms to spec-
ified precision, and how to recover the exact values of the Gross–Stark units
and Stark–Heegner points from them.

Key tools are overconvergent modular forms, reduction theory of quadrat-
ic forms and Newton polygons. As an application, we tabulate Gross–Stark
units in narrow Hilbert class fields of real quadratic fields with discriminants
up to 10000, for primes less than 20, as well as Stark–Heegner points on elliptic
curves.
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1. Introduction

The classical theory of complex multiplication, developed by Kronecker, We-
ber, Fueter, Deuring, Shimura and others, gives an explicit description of abelian
extensions of imaginary quadratic fields K. They are generated by elliptic units,
which are canonical units in class fields of K. In [Sta80], Stark proved that log-
arithms of elliptic units appear as the value of derivatives of Hecke L-functions at
s = 0, and conjectured the existence of units over arbitrary base fields, so-called
Stark units. Heegner and Birch used CM theory to construct points on modular
curves, called Heegner points, also defined over class fields of K. By determining
the heights of their images on elliptic curves, Gross and Zagier [GZ86] made an
important contribution towards the Birch–Swinnerton-Dyer conjecture.
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2 HÅVARD DAMM-JOHNSEN

Let F be a real quadratic field and p a rational prime. While there is no direct
analogue of the construction of elliptic units over F , Gross [Gro81] constructed
what are now known as Gross–Stark units, formal powers of p-units in class fields of
F , and formulated a p-adic analogue of Stark’s conjectures for these. His conjecture
related the value of derivatives of p-adic L-functions at s = 0 to local norms of
Gross–Stark units, which was proved in [DDP11]. This was refined to a statement
with norms removed in [DKV18], and recently Dasgupta and Kakde proved an
integral version where formal units are replaced with proper units [DK23].

The computation of Gross–Stark units over real quadratic fields was studied
in [TY13] when p splits in F , and [FL22] for p inert in F . In the real-analytic
setting, in [CR00] Cohen and Roblot used Stark’s conjectures to compute wide
Hilbert class fields of real quadratic fields, and similar algorithms form the basis
for general algorithms to compute ray class fields in pari/GP.

By analogy with Heegner points, Darmon’s work [Dar01] uses p-adic analysis
to construct points on elliptic curves. These so-called Stark–Heegner points are
conjectured to be defined over ring class fields of F . While this conjecture is still
wide open in general, it is supported by extensive computational evidence. Efficient
algorithms for computing Stark–Heegner points were first introduced in [DG02]
and [DP06]. Since then, the literature on algorithmic aspects of Stark–Heegner
points has expanded rapidly, a selection of which is [Gre09, GM13, GM14,
GMS15, GM15].

In [DV21], Darmon and Vonk introduce rigid meromorphic cocycles which take
the p-adic theory beyond Stark’s conjectures. Their framework gives an analogue
of singular moduli for real quadratic fields, for which the techniques in this paper
are expected to generalise. As a by-product, they recover a common framework
for Stark units and Stark–Heegner points: in subsequent work, Darmon, Pozzi and
Vonk [DPV23] use p-adic families of Hilbert modular forms to give an explicitly
computable modular form whose spectral expansion encodes both Gross–Stark units
and Stark–Heegner points.

More specifically, the authors construct a classical modular form G from a
parallel weight 1 Hilbert Eisenstein series E1,1 over a real quadratic field F in
which p is inert. First, they define the anti-parallel weight deformation of E1,1,
and modify by a linear combination of Eisenstein families. Then they restrict the
argument to the diagonally embedded upper half plane h in h×h, and differentiate
with respect to the weight. This is shown to be a p-adic modular form, to which they
finally apply Hida’s ordinary projector to get the modular form G ∈ M2(Γ0(p)).
They also prove that the form is non-trivial when F has no unit of negative norm.

A straightforward consequence of the theorems in [DPV23] is the following:
Theorem 1.1. Suppose F has no unit of negative norm. Then

〈G, f〉Γ0(p)
=

{
1
p−1 logp u if f = E

(p)
2 ,

Lalg(1, f) logEf
Pf if f is a cuspidal eigenform with coefficients in Q.

Here u is a Gross–Stark unit, E(p)
2 the Eisenstein series on M2(Γ0(p)), and

Lalg(1, f) the algebraic part of the special value L(1, f) of the L-function attached
to f . Ef is the elliptic curve associated to f via the Eichler–Shimura construction,
logEf

the formal logarithm on Ef , and Pf a Stark–Heegner point on Ef , conjec-
turally defined over the narrow Hilbert class field of F . A more precise statement
may be found in Theorem 2.2.
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 3

The goal of this paper is to show that the steps defining G can be made
completely explicit in a computer algebra system such as sage [The22] or magma
[BCP97], and in particular we can compute the spectral coefficients of G to arbi-
trary precision. A key tool is algorithms for overconvergent modular forms due to
Lauder [Lau11, Lau14], with necessary modifications for p ∈ {2, 3} from [Von15].
As a proof of concept, we compute tables of Gross–Stark units over Q(

√
D) for

fundamental discriminants D < 10000 and p < 20, and Stark–Heegner points on
elliptic curves for D < 100, p < 20. This can be viewed as a numerical verification
of the aforementioned conjecture stated in [DV22]. For p equal to 2 or 3, these
tables are virtually complete, with only a handful of omissions due to the large
height of the polynomials.
Example 1.2. Let D = 8441 = 23 · 367. Then F ..= Q(

√
D) has narrow class

number 26, and combining Algorithm 2 and Algorithm 5 gives the polynomial

(1.1)

343x26−328 · 74700593x25 + 321 · 413213377697x24

−314 · 1491793680346193x23 + 311 · 48103058975883121x22

−38 · 1176950719953501830x21 + 38 · 841442767734656470x20

−36 · 5230173358710191479x19 + 37 · 1983729129037937219x18

−35 · 28800297384178354201x17 + 36 · 13798304822142405250x16

−32 · 1314012089988186633625x15 + 32 · 1350085297035065778356x14

−12074610496660929030725x13 + 32 · 1350085297035065778356x12

−32 · 1314012089988186633625x11 + 36 · 13798304822142405250x10

−35 · 28800297384178354201x9 + 37 · 1983729129037937219x8

−36 · 5230173358710191479x7 + 38 · 841442767734656470x6

−38 · 1176950719953501830x5 + 311 · 48103058975883121x4

−314 · 1491793680346193x3 + 321 · 413213377697x2

−328 · 74700593x + 343.

The roots of this polynomial are 3-units generating the narrow Hilbert class field
of F , a degree 52 extension of Q, and their square roots are Gross–Stark units
attached to narrow ideal classes in F , as defined in Section 3.
Example 1.3. Let p = 11 and consider E : y2+y = x3−x2−10x−20, a model for
X0(11). Using Algorithm 6 we find the points on E described in Table 1. For each

Table 1. Table of Stark–Heegner points on E : y2+y = x3−x2−
10x− 20, for D < 100.

D X Y P

21 x2 + 3x+ 4 x2 + 3x+ 4 11x2 − 6x+ 11

24 x2 + 8 x2 + 10x+ 57 11x2 − 14x+ 11

28 x2 + 71
16x+ 23

4 x2 − 101
64 x+ 599

64 11x2 − 6x+ 11

57 x+ 1065
304 x2 + x+ 1130412905

28094464 11x2 − 3x+ 11

76 x+ 1065
304 x2 + x+ 1130412905

28094464 11x2 − 3x+ 11

row, the polynomials in columns X and Y are the minimal polynomials of the x- and
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4 HÅVARD DAMM-JOHNSEN

y-coordinates, respectively, of a Stark–Heegner point on E defined over the narrow
Hilbert class field of Q(

√
D). This field is generated over Q(

√
D) by a root of the

polynomial P in the final column. For example, for D = 24, (2
√
−2, 5 + 4

√
−2) is

a Stark–Heegner point on X0(11) defined over Q(
√
24,
√
−2), which is the splitting

field over Q(
√
24) of 11x2 − 14x+ 11.

Our paper is structured as follows: in Section 2 we first give a precise defi-
nition of Gross–Stark units and describe properties of Stark–Heegner points, then
discuss the results of [DPV23] and explain how to use the classical reduction the-
ory of indefinite binary quadratic forms to greatly improve the efficiency of the
resulting algorithms. Next, in Section 3 we use the Brumer–Stark conjecture to
recover a Gross–Stark unit from its p-adic logarithm, and describe how to compute
a Stark–Heegner point from its formal logarithm. We also discuss how to verify the
correctness of the data computed. Finally, we present data computed and make
some observations.

The algorithms in our paper are implemented in both magma and sage, and
can be found in the repositories https://github.com/havarddj/drd and https:
//github.com/havarddj/hilbert-eisenstein.

Acknowledgements: I am very grateful to Jan Vonk for suggesting the prob-
lem and for continued guidance and suggestions, and to James Newton for helpful
conversations and comments on the paper. Thanks to Alex Braat for suggesting
the statement of Lemma 3.9, Samuel Frengley for help with magma, and to Alex
Horawa and George Robinson for enlightening conversations. Finally, I am grateful
to the anonymous reviewers who provided a large number of comments improving
the content, language and exposition of the article.

2. The modular algorithm

2.1. Notation. For the remainder of the paper, F will denote a real quadratic
extension of Q of discriminant D, and OF its ring of integers. Its different ideal,
which is principal and generated by

√
D, will be denoted d. If α ∈ F , let α′ be its

conjugate.
We let Cl+ be the narrow Hilbert class group of F , so that Cl+ ∼= G ..=

Gal(H/F ) where H is the narrow Hilbert class field of F , the maximal abelian
extension of F unramified at all finite places, of degree h+. For σ ∈ G, the corre-
sponding class in Cl+ is denoted Aσ, and conversely a class A in Cl+ determines
an automorphism σA ∈ G. The narrow ideal class group is strictly larger than
the wide ideal class group if and only if F has no units of norm −1, and in light
of Theorem 1.1 we restrict our attention to this case. Under this assumption, the
principal ideal d defines an element of order 2 in Cl+. Furthermore, H is a CM
extension of the wide Hilbert class field, and the automorphism κ = σd plays the
role of complex conjugation in G. We frequently write ᾱ instead of κ(α) if the
meaning is clear from the context.

Let p be a rational prime inert in F . Then p splits completely in H, and we fix a
prime P of H above p. This determines an isomorphism of completions Fp ∼= HP.
A function f : Cl+ → C is odd if f(A[d]) = −f(A) for all A ∈ Cl+. The field
generated by the values of a character ψ is denoted by Q(ψ).

We say an element α ∈ F is totally positive if ρ(α) > 0 for all embeddings
ρ : F ↪→ R, and we write α � 0. If X ⊂ F is any subset, we set X+

..= {α ∈ X :
α� 0}.

29 Jun 2023 06:07:20 PDT

230121-Damm Version 2 - Submitted to LuCaNT

https://github.com/havarddj/drd
https://github.com/havarddj/hilbert-eisenstein
https://github.com/havarddj/hilbert-eisenstein


GROSS–STARK UNITS AND STARK–HEEGNER POINTS 5

Given an integral ideal a of F , let N(a) ..= #(OF /a), and this extends to
fractional ideals by N(a/b) ..= N(a)/N(b), and to elements α ∈ F× by N(α) =
N((α)), where (α) denotes the fractional ideal generated by α. By convention, we
also set N(x) = x2 when x is an indeterminate. For any number field K, µ(K)
denotes the set of all roots of unity in K.

If P is a non-zero prime ideal ofH and α ∈ H×, then we set |α|P = N(P)− ordP α,
where ordP α denotes the power of P appearing in the prime ideal factorisation of
(α). This is the so-called normalised absolute value with respect to P, and in
particular N(P) = p2 in the present setting. All of our absolute values will be
normalised, and we refer to [Gro81, p. 980] for a general definition which applies
to both the finite and infinite places of H.

The p-units in H is the group OH [1/p]× ..= {α ∈ H× : |α|v = 1 if v - p}, where
v runs over all places of H. In particular, α ∈ OH [1/p]× has absolute value 1 under
every embedding H ↪→ C. This is a finitely generated abelian group by a version
of Dedekind’s unit theorem, [NS13, Cor. 11.7].

2.2. Gross-Stark units and Stark–Heegner points. Gross [Gro81, Prop. 3.8]
proved the existence and uniqueness of a “formal power of a p-unit” u ∈ OH [1/p]×⊗
Q characterised by the properties
(2.1) ordP σ(u) = ζ(0, Aσ) for all σ ∈ G and ū = 1/u,

where the bar denotes complex conjugation, and ζ(s,Aσ) is the partial L-function
defined by the Dirichlet series ζ(s,Aσ) =

∑
a≤OF , [a]=Aσ

N(a)−s, which admits a
meromorphic continuation to C in the usual manner. This depends only on the
choice of prime P of H above p. In [DPV23, Eq. (4)], the authors twist by
elements of G to get units uA ..= σA(ū) indexed by A ∈ Cl+, equal to uτ when
A = [Z+ τZ] in their notation. It is therefore characterised by
(2.2) ordPσ uA = −ζ(0, AAσ−1) for all σ ∈ G and ūA = 1/uA.

This is referred to as the Gross–Stark unit attached to A. Note that these are all
G-conjugate: σ(uA) = uAAσ

.
The Brumer–Stark conjecture, proven up to powers of 2 in [DK23], implies

that ueA, where e = #µ(H), gives an element of OH [1/p]×. More precisely, there
exists an element ε ∈ OH [1/p]× satisfying ε ⊗ 1 = e · u such that H( e

√
ε)/F is an

abelian extension. We set εA ..= σA(ε̄), which we refer to as the Brumer–Stark
unit attached to A. These are the units we compute in Section 3. An immediate
consequence of the second part of Equation (2.2) is that εA lies on the unit circle
under any embedding H ↪→ C. For the remainder of the paper, we will assume
the full Brumer–Stark conjecture. Our computations can then be viewed as a
verification of the conjecture.

We also attach a Gross–Stark unit to a character ψ : G→ C× by setting

(2.3) uψ ..=
∏

A∈Cl+

u
ψ(A)
A =

∏
σ∈G

σ(ū)ψ(Aσ),

which lies in OH [1/p]× ⊗ Q(ψ), and satisfies ordP uψ = −L(0, ψ) and σ(uψ) =
ψ̄(Aσ)uψ for all σ ∈ G. This is compatible with the notation in [DDP11].1

1However, it is different from the formula in [DPV23, Eq. (51)], in which uψ depends on τ ,
and the corresponding formula for ordP uψ in the proof of Lemma 3.5 is off by a factor of ψ(σA),
or ψ(τ) in their notation.
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6 HÅVARD DAMM-JOHNSEN

Stark–Heegner points Pψ,f are defined in [Dar01] and [Das05], and for brevity
we give a description of their properties instead of a strict definition. They are
defined on the modular Jacobian J0(p), which is an elliptic curve when the genus
of X0(p) is one. More generally, if J0(p) splits into a product of abelian varieties of
which one is an elliptic curve E, then there exists a cuspidal eigenform f ∈ S2(Γ0(p))
such that E is isogenous to Ef , and Pψ,f gives a point on these. The reader can
find further details in [DV22, §3.7].

Pick an elliptic curve Ef in the isogeny class. In this setting, Pψ,f comes from an
element of Fp defined via p-adic analytic methods. By [Sil09, Thm. 14.1], Ef (Fp)
is isomorphic to F×

p /q
Z where q is the Tate parameter attached to Ef . We can find

an explicit isomorphism Ef (Fp) → F×
p /q

Z as follows: first find an isomorphism
between Ef and the corresponding Tate curve Eq by computing their Weierstraß
equations and using the command IsIsomorphic in magma. Then compute the
isomorphism Eq → F×

p /q
Z using the formulae in [Sil09, §C.14]. This gives a point

Pψ,f in Ef (Fp). However, it is conjectured in [Dar01] that it is actually defined
over H via the embedding H ↪→ HP

∼= Fp, and in Section 3.2 we verify this
computationally.

2.3. Diagonal restriction derivatives. Let ψ be an odd character on Cl+.
Following [DPV23] we consider the Hilbert modular Eisenstein series E1,1(ψ) of
parallel weight 1 whose q-expansion at the cusp d is given by the series

(2.4) E1,1(ψ)d =
∑
ν∈d−1

+

σ0,ψ(νd)q
tr ν ,

where σ0,ψ(νd) is the divisor sum

(2.5) σ0,ψ(νd) ..=
∑
a|νd

ψ(a).

For p a rational prime inert in F , we also define the p-stabilisation of E1,1(ψ)

by E
(p)
1,1(ψ)(z1, z2)

..= E1,1(ψ)(z1, z2) − pE1,1(ψ)(pz1, pz2). There is a certain p-
adic family of modular forms F+, a linear combination of two Eisenstein families
along with the anti-parallel weight deformation, whose weight 1 specialisation equals
E

(p)
1,1(ψ). Note that F+ is different from the parallel weight Eisenstein family used

in [DPV21], and computing its q-expansion requires a fairly delicate argument
using Galois deformation theory, the details of which are in [DPV23, §3]. Since
E

(p)
1,1(ψ)(z, z) is a classical modular form of level 1 and weight 2 and therefore

identically 0, E(p)
1,1(ψ) vanishes along the diagonally embedded copy of h in its

domain h × h. Taking the derivative of F+ in the weight space and restricting to
weight 1 then gives an overconvergent modular form in one variable, denoted by
∂f+ψ . We refer to this as the diagonal restriction derivative, and its q-expansion is
given as follows:

Proposition 2.1 ([DPV23, Prop. 4.6]). The diagonal restriction derivative is an
overconvergent modular form of weight 2 and tame level 1 with q-expansion

(2.6) ∂f+ψ (q) =
1

2
logp(uψ)−

∞∑
n=1

∑
ν∈d−1

+
tr ν=n

∑
a|(ν)d
(a,p)=1

ψ(a) logp

(
ν
√
D

N(a)

)
qn.
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 7

It has rate of overconvergence r for each r < p/(p+ 1).
The symbol logp denotes the p-adic logarithm, defined by the power series

logp(1 − x) =
∑∞
n=1 x

n/n on its domain of convergence in OFp
, and extended by

setting logp(p) = logp(ζ) = 0 for any root of unity ζ in Fp. To evaluate this at
elements of F , we identify F with its image in Fp.

Applying Hida’s ordinary projection operator eord to ∂f+ψ gives a classical mod-
ular form of level Γ0(p) and weight 2. The space of such forms is spanned by the
Eisenstein series

(2.7) E
(p)
2 (z) =

p− 1

24
+

∞∑
n=1

( ∑
d|n

(d,p)=1

d
)
qn,

along with eigenforms f , which we normalise so that a1(f) = 1 in the q-expansion
at ∞.

Theorem 2.2. Set F = Q(
√
D) and let p be a prime inert in F . Write

(2.8) eord(∂f
+
ψ ) = λ0E

(p)
2 +

∑
f

λff, where λ0, λf ∈ Fp.

Then λ0 = 1
p−1 log uψ, and if an(f) ∈ Q for all n, then λf = Lalg(1, f) logEf

(Pψ,f ),
where Pψ,f is a Stark–Heegner point in Ef (Cp), the elliptic curve attached to f by
the Eichler–Shimura construction, and Lalg(1, f) is the algebraic part of the value
L(1, f).

Conjecture 3.19 in [DV22] states that the points Pψ,f are in fact algebraic,
defined over the narrow Hilbert class field of F .

Proof of Theorem 2.2. By [DPV23, Prop. 4.7], G ..= eord(∂f
+
ψ ) can be

written as a generating series2

(2.9) 2G(z) = logp(uψ) +

∞∑
n=1

logp(TnJw[ψ])q
n.

Meanwhile, by [DPV23, eq. 29] the cocycle Jw decomposes as follows:

(2.10) Jw =
2

p− 1
JDR + 2

∑
f

Lalg(1, f)J
−
f mod JZ

univ,

Plugging the expression for Jw into the n-th Fourier coefficient for n ≥ 1 coprime
to p, we obtain

an(G) =
2

p− 1
logp TnJDR[ψ] + 2

∑
f

Lalg(1, f) logp TnJ
−
f [ψ]

(2.11a)

=
2

p− 1
logp(JDR[ψ]) · an(E(p)

2 ) +
∑
f

Lalg(1, f) logp(J
−
f [ψ]) · an(f).(2.11b)

Theorem B of [DPV23] combined with the proof of Theorem 4.8 in the same paper
implies that JDR[ψ] = u24ψ , and conjecture 3.19 in [DV22] implies that J−

f [ψ] maps

2There is a sign missing in the proof of Thm. 4.8 which propagates back to Prop. 4.7. As
written, the constant term of the Eisenstein series in the spectral expansion is off by a factor of
−1. We assume here that the statement of Thm. 4.8 is correct as written.
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8 HÅVARD DAMM-JOHNSEN

to Pψ,f ∈ Ef (Fp) under the Tate uniformisation. Denoting the composite of the
Tate map and logp by logEf

, we get that

(2.12) an(G) =
24

p− 1
logp(uψ) · an(E

(p)
2 ) +

∑
f

Lalg(1, f) logEf
Pψ,f · an(f).

As in the proof of [DPV23, Prop. 4.7], there exists a modular form in M2(Γ0(p))
with prime to p coefficients an(G), which we denote by g. Now g−G is an oldform
in M2(Γ0(p)) as all its coefficients of index coprime to p vanish, hence equals 0, and
this completes the proof. �

This construction can be made completely explicit in a computer algebra system
such as magma or sage, at least to finite p-adic precision:

(1) Compute the terms {an}Mn=1 of the q-expansion of ∂f+ψ in Equation (2.6)
up to a certain bound M by enumerating the elements ν ∈ d−1

+ of trace n
and factorising νd. Since logp(xy) = logp x+ logp y for any x, y ∈ Fp, we
only need to evalute this once per n.

(2) Compute a basis for the space of overconvergent modular forms to suffi-
ciently high precision using [Lau11, Algorithm 1].

(3) Solve for ∂f+ψ and its constant term in this basis.
(4) Compute the ordinary projection as a matrix on the basis, and apply to

the vector defining ∂f+ψ to get eord(∂f+ψ ). This is described in detail in
step (6) of [Lau14, Alg. 2.1].

(5) Solve for eord(∂f+ψ ) in an eigenbasis of M2(Γ0(p)), which can be found
explicitly using built-in methods in sage and magma.

In practice, the first step is very slow due to the cost of evaluating ψ(a) for
many a. Moreover, the coefficients of ∂f+ψ lie in an extension of Fp generated by
the values of ψ, which is of high degree if the narrow class number of F is large.

2.4. Improvements using quadratic forms. To get around these difficul-
ties, we combine two observations: the first is that if we split the sum into a sum
over classes A ∈ Cl+, then it suffices to compute sums corresponding to all pairs
(ν, a) where a | νd and a has class A in the narrow class group, which lie in Fp. The
second is that by the correspondence between ideals of Q(

√
D) and indefinite bi-

nary quadratic forms of discriminant D, we can use reduction theory to enumerate
all such ideals.
Proposition 2.3 ([Cox11, Ex. 7.21]). There is a map between ideals of Q(

√
D)

and indefinite binary quadratic forms of discriminant D, induced by the map

(2.13) a = αZ+ βZ 7→ N(xα− yβ)
N(a)

,

This map respects the class group structure: two ideals are in the same narrow
ideal class if and only if the corresponding quadratic forms are equivalent under the
action of SL2(Z),

(2.14)
(
r s
t u

)
·Q = Q(rx+ sy, tx+ uy).

We say that an indefinite quadratic form Q(x, y) = ax2+ bxy+ cy2 is reduced
if |
√
D − 2|a|| < b <

√
D. Any given form is equivalent to at most finitely many

reduced forms.
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 9

Proposition 2.4. Let F = Q(
√
D) be a real quadratic field and A ∈ Cl+ a fixed

class with associated reduced quadratic form Q0. Then there is a bijection between

(2.15) I(n,A) ..=

{
(a, ν) :

ν ∈ d−1
+ , tr ν = n

a | (ν)d, [a] = A

}
and

(2.16) M(n,A) ..=

{
(Q = ax2 + bxy + cy2, γ) : γ ∈ Nn, Q ∼ Q

γ
0 ,

a > 0 > c

}
,

where Nn is a set of double coset representatives of
(2.17) SL2(Z) \ {γ ∈ Mat2(Z) : det γ = n}/ StabSL2(Z)(Q0).

Proof. This is essentially [LV22, Lemma 4.1], except we identify τ with its
associated quadratic form. �

We call an element Q ∈M(n,A) a nearly reduced form since although it might
not be reduced in the strict sense, it is an element of the reduced cycle of Q0, as
defined in [BV07, Ch. 6]. Note that Nn can be found as a subset of the coset
representatives of SL2(Z) \ {det γ = n}, which we can choose to be

(2.18)
(
n/m j
0 m

)
, m|n, 0 ≤ j ≤ m− 1, (m,n/m) = 1.

The sets M(n,A) and M(d,A) for d | n are not independent: if Q ∼ Qγn0
for some γn ∈ Nn, then we can find corresponding elements γd and γn/d such
that γn = γdγn/d, and so we can generate it in M(n,A) by applying suitable
Hecke matrices to pairs in M(d,A). This gives a recursive algorithm for computing
M(n,A), described in Algorithm 1.

It is convenient to work with so-called odd indicator functions on Cl+, meaning
functions of the form

(2.19) 1∗
A(B) ..= 1A(B)− 1A[

√
D](B) =


1 if B = A,

−1 if B = A[
√
D],

0 otherwise.
We can pass between odd characters and odd indicator functions via the change of
basis formulae

(2.20) ψ(A) =
1

2

∑
B∈Cl+

ψ(B)1∗
B(A) and 1∗

A(B) =
2

h+

∑
ψ odd

ψ(B)ψ̄(A).

These are simple consequences of the orthogonality relations for characters, see
[Ser77, §2.3]. By linearity, we obtain the following version of Proposition 2.1:

Corollary 2.5. Fix an indefinite quadratic form Q corresponding to a class A ∈
Cl+. The series ∂f+Q (q) = logp(uA) +

∑∞
n=1 an(∂f

+
Q ), where

(2.21)

an(∂f
+
Q ) = −

∞∑
n=1


∑

(Q,γ)∈M(n,A)
Q=〈a,b,c〉
(a,p)=1

logp

(
−b+ n

√
D

2a

)
−

∑
(Q,γ)∈M(n,A[

√
D])

Q=〈a,b,c〉
(a,p)=1

logp

(
−b+ n

√
D

2a

)
qn,

defines an r-overconvergent modular form of weight 2 and tame level 1 for any
r < p/(p+ 1).
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10 HÅVARD DAMM-JOHNSEN

Algorithm 1: Compute the set M(n,A) of nearly reduced forms.
Input:

• A fundamental discriminant D,
• A class A in Cl+ represented by a reduced quadratic form Q0,
• A positive integer n.

Output: A set of sets {M(d,A)} indexed by divisors d | n.

if n = 1 then
return {{Q,1}}

Mn ← ∅ // Initialise Mn

p← smallest prime dividing n
d← n/p

Md ←M(d,A)

Hp ←
{(

p/m j
0 m

)
: m ∈ {1, p}, 0 ≤ j ≤ m− 1

}
for (Qd, γd) ∈Md do

for δ ∈ Hp do
Q′ ← Qδd
if Q′ 6∼SL2(Z) Q for all (Q, γ) ∈Mn then

Q1, . . . , Qc ← ReducedCycle(Q′)
Mn ←Mn ∪ {(Q1, δγm) . . . , (Qc, δγm)}

return {Md : d | n}

Proof. Define ∂f+Q (q) ..= 2
h+

∑
ψ odd ψ̄(A)∂f

+
ψ (q), which has the effect of re-

placing ψ(a) in Equation (2.6) with 1∗
A([a]). Being a linear combination of over-

convergent modular forms, it is itself overconvergent of the same weight, level and
rate of overconvergence.

Using Proposition 2.4, we can rewrite the series in terms of M(n,A) and
M(n,A[

√
D]), showing that Equation (2.21) holds for the non-constant terms. To

compute the constant term of ∂f+Q (q), note that formally, uψ =
∑
A∈Cl+ ψ(A) · uA,

so
(2.22)
2

h+

∑
ψ odd

ψ̄(A) · uψ =
∑
A∈Cl+

2

h+

∑
ψ odd

ψ̄(A)ψ(A) · uA =
∑
A∈Cl+

1∗
A · uA = uA · u−1

A[
√
D]
.

The condition ūA = 1/uA is equivalent to uA[
√
D] = u−1

A , so 2
h+

∑
ψ odd

1
2 logp uψ =

logp(uA). �

This gives a reasonably efficient algorithm for computing logp uA, described in
algorithm 2. The step KatzBasis is described in step 3 of [Lau11, Algorithm 1].
Roughly speaking, a Katz basis form is the ratio of a classical modular form of
weight 2+ (p− 1)i and Eip−1. Computing finitely many of these to sufficiently high
finite precision, these span a subspace of M†

2 (SL2(Z)) in which we can uniquely
detect ∂f+Q . Further details and proofs can be found in [Kat73, Chap. 2].

The function FindConstTerm first solves a linear system obtained by solving
for the higher order coefficients of ∂f+Q in terms of those in B, so that the constant
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 11

Algorithm 2: Algorithm for computing logp uA.

Input: A real quadratic field F = Q(
√
D), a rational prime p inert in F , a

class A ∈ Cl+ represented by a reduced quadratic form Q0, and an
integer N .

Output: logp uA as an element of Fp to p-adic precision N .

m← p ·N
Compute {M(n,A)}n≤m using Algorithm 1
Compute {an(∂f+Q )}n≤m using Equation (2.21)
B ← KatzBasis(M†

2 (SL2(Z))) mod pN , qm)

logp uA ← FindConstTerm({an}n≤m, B)

return logp uA mod pN

term of ∂f+Q is a linear combination of the constant terms of the Katz basis forms.
The number of terms m computed in the q-expansion of ∂f+Q ensures that it can
always be found in the Katz basis from [Lau11, Algorithm 1], although in practice
smaller values of m are often sufficient.

With a little extra work we can compute the spectral expansion of eord(∂f+Q ).
To compute the ordinary projection, we use a trick due to Lauder. The idea is to
compute a matrix for the Up-operator acting on the Katz basis B from Algorithm 2,
computed to precision dimMk′(SL2(Z)), where k′ ..= 2 + (p − 1)bN(p + 1)/pc.
Since this approximate basis is finite, the matrix Up has finite rank. Raising the
matrix to the power 2m and applying to the vector defining ∂f+ψ then gives the
ordinary projection. We denote this step by OrdinaryProjection in Algorithm 3.
Here FindInSpace(G,M) solves for G = eord(∂f

+
Q ) in terms of the eigenbasis for

Algorithm 3: Algorithm for the spectral expansion of eord(∂f+Q ).

Input: A real quadratic field F = Q(
√
D), a rational prime p inert in F , a

character ψ : Cl+ → C× and a positive integer m.
Output: The coefficients λ0 and λf of eord(∂f+ψ ) as elements of Fp,

represented with p-adic precision N .

m← dimM2+(p−1)bN(p+1)/pc(SL2(Z))
Compute B mod (pm, qN ) and {an(∂f+ψ )}Nn=0 as in Algorithm 2
G← OrdinaryProjection({an(∂f+ψ )}Nn=0, B)

M ←M2(Γ0(p))⊗ Fp
return FindInSpace(G, M)

M2(Γ0(p)) and returns the corresponding coefficients, which are precisely λ0 and
the λf for eigenforms f . The same algorithm works for eord(∂f+ψ ).

3. From logarithms to invariants

In this section we explain how to recover uA from logp uA and Pψ,f from λf .
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12 HÅVARD DAMM-JOHNSEN

3.1. Recovering a Gross–Stark unit from its p-adic logarithm. The
“virtual units” uA are difficult to work with because they are formal powers of
units in H, and thus do not have a unique minimal polynomial. Instead, we use
the Brumer–Stark conjecture and look instead for the (conjectural) element εA ∈
O×
H [1/p] satisfying e · uA = εA ⊗ 1, where e ..= #µ(H). This property implies that

logp uA = 1
e logp εA. Note that while uA is determined uniquely by Equation (2.2)

because O×
H [1/p] ⊗ Q is torsion-free, εA is only unique up to roots of unity in H.

This ambiguity is natural for several reasons. First, the Brumer–Stark units over
Q constructed in [Gro81] are Gauss sums, which by definition require a choice of
a root of unity to determine the additive character. Second, εA being defined only
up to torsion in O×

H [1/p] mirrors the fact that Stark–Heegner points are defined up
to torsion in E(H).

We can find the exact value of e without computing the unit group of OH
directly by noting that any root of unity in H will lie in the genus field of F , the
largest subextension of H which is abelian over Q. This has the following classical
description:

Proposition 3.1 ([Lem00, Prop. 2.19]). Let F = Q(
√
D), and let D = D1 · · ·Dt

be the factorisation of D into prime discriminants, meaning each Di is either
−4, −8, 8 or (−1)(p−1)/2p for an odd prime p. Then the genus field of F equals
Q(
√
D1, . . . ,

√
Dt).

Since the only quadratic extensions with other roots of unity than ±1 are
Q(
√
−1) and Q(

√
−3), we obtain the following:

Corollary 3.2. We have #µ(H) > 2 if and only if either of the following holds:
(1) D ≡ 0 mod 3, in which case H contains a cube root of unity.
(2) D ≡ 0 mod 4 and D/4 ≡ 3 mod 4, in which case H contains

√
−1.

The kernel of logp is much larger than that of the archimedean log, containing
powers of p as well as roots of unity. Passing from logp εA to εA requires knowing
both ordP εA and εA mod P. We can deal with the latter by looping through all the
roots of unity in HP, of which there are p2 − 1, and test each product separately.
This, along with the computation of the Katz basis, are the main bottlenecks in
the algorithm for large values of p. Certain Stark units modulo p appear in a recent
conjecture of Harris–Venkatesh [HV19], and it would be interesting to see if an
analogous conjecture could describe the mod P reduction of uA.

To find the P-valuation, we use a classical theorem due to C. Meyer which we
now describe. Let A ∈ Cl+ be a narrow ideal class, and recall that the corresponding
partial ζ-function is given by

(3.1) ζ(s,A) ..=
∑

a≤OF , [a]=A

1

N(a)s
, Re(s) > 1.

Let ζ−(s,A) ..= 1
2 (ζ(s,A)− ζ(s,A[(

√
D)])). This is non-zero if and only if F has no

unit of negative norm, which is our running assumption.
Let η denote the fundamental unit of F , by assumption satisfying N(η) = 1,

and fix a representative a ≤ OK for A with Z-basis 1, w. Then η · a = a, and so we
can find integers a, b, c and d such that

εw = aw + b and ε = cw + d.
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 13

This is done explicitly in Algorithm 4. Since the action of η is invertible and pre-

serves the order of the basis, the matrix γA ..=

(
a b
c d

)
has determinant 1. Passing

to the quadratic form Q = Q1x
2 +Q2xy+Q3y

2 associated to a by Proposition 2.3
and writing η = u+ t

√
D, a straightforward computation shows that

(3.2) γA =

(
t+Q2u 2Q3u
−2Q1u t−Q2u

)
.

Let Φ: SL2(Z)→ R denote the Dedekind symbol defined by

(3.3) Φ

(
a b
c d

)
..=

{
b/d if c = 0,
a+d
c − 12 sgn(c) · s(a, c) if c 6= 0,

where s(a, c) is the Dedekind sum

(3.4) s(a, c) ..=

|c|∑
k=1

((
ak

c

))((
k

c

))
for (a, c) = 1, c 6= 0,

with ((x)) = 0 if x ∈ Z and ((x)) = x− bxc − 1/2 otherwise.
By adding a correction term to Φ, Rademacher showed that the eponymous

Rademacher symbol,

(3.5) Ψ(γ) ..= Φ(γ)− 3 sgn(c(a+ d)),

depends only on the conjugacy class of γ.

Theorem 3.3 (Meyer). Fix a class A ∈ Cl+, and let γA ∈ SL2(Z) be the
associated matrix. Then

(3.6) ζ−(0, A) =
1

12
Ψ(γA).

This follows from a version of Kronecker’s limit formula for real quadratic fields,
and the proof is described in [DIT18].

Corollary 3.4. Let uA be a Gross–Stark unit attached to a narrow ideal class A.
Then

(3.7) ordP uA = − 1

12
Ψ(γA).

Similarly, for the associated Brumer–Stark unit εA,

(3.8) ordP εA = − e

12
Ψ(γA),

where e = #µ(H).

Proof. By Equation (2.2),

ordP uA =
1

2
(ordP uA − ordP uA[

√
D])(3.9a)

= −1

2
(ζ(0, A)− ζ(0, A[

√
D])(3.9b)

= −ζ−(0, A) = −
1

12
Ψ(γA).(3.9c)

The second claim follows immediately from the identity e · uA = εA ⊗ 1. �
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14 HÅVARD DAMM-JOHNSEN

Algorithm 4: Compute ordP εA using Meyer’s formula.
Input: An indefinite binary quadratic form

Q(x, y) = Q1x
2 +Q2xy +Q3y

2 of square-free discriminant D,
representing a narrow ideal class A of F = Q(

√
D).

Output: ordP εA.

t, u← PellSolution(D) // Solve Pell's equation in Q(
√
D) to

find fundamental unit ε = u+ t
√
D.

γA ..=

(
a b
c d

)
←
(
t+Q2u 2Q3u
−2Q1u t−Q2u

)
if c = 0 then

Φ← b/d

else
Φ← a+d

c − 12 sgn(c) · DedekindSum(a, c)
Ψ← Φ− 3 sgn(c(a+ d))
return −e ·Ψ/12

Algorithm 4 describes how to efficiently compute ordP εA using Meyer’s theo-
rem.

The fundamental solution of Pell’s equation grows very quickly as D gets large,
so computing Dedekind sums by evaluating Equation (3.4) directly can be very
slow for large values of D. Instead we use a formula from [Apo90, Ex. 3.10]: By
replacing c by −c and a by a mod c, we can assume that 0 < a < c. Let r0 ..= c,
r1 ..= a and define rj recursively to be the remainders in the Euclidean algorithm
applied to a and c, satisfying rj+1 ≡ rj−1 mod rj and 1 = rn+1 < . . . rj+1 <
rj . . . < r0 for all 1 ≤ j ≤ n− 1. Then

(3.10) s(a, c) =
1

12

n+1∑
j=1

(
r2j + r2j−1 + 1

rjrj−1

)
− (−1)n + 1

8
.

This is very efficient in practice.

Remark 3.5. It is also possible to compute the value of ζ−(0, A) using a theorem
due to Zagier, [Zag81, §14, Satz 2], which expresses ζ−(0, A) as an elementary sum
of numbers appearing in the reduction algorithm for indefinite quadratic forms. We
thank an anonymous referee for pointing this out. Having implemented both Zagier
reduction and Algorithm 4 in the sage library, we see that Zagier’s formula is much
faster in practice. However, if we compute the automorph using reduction theory
instead of by solving Pell’s equation, then the algorithms perform roughly equally
well.

By the minimal polynomial of ε we mean the irreducible polynomial P of mini-
mal degree satisfying P (ε) = 0 with coefficients in OF not all divisible by the same
prime, such that the leading term is a positive power of p.

Lemma 3.6. Let ε be a Brumer–Stark unit in OH [1/p]×, and let P (T ) =
∑d
i=0 aiT

i =
ad
∏
σ∈G(T − σ(ε)) be its minimal polynomial. Then
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 15

(1) ε is a primitive element of H over F , H = F (ε).
(2) P is of degree h+, and after possibly twisting ε by a root of unity in H,

has rational integer coefficients.
(3) P is reciprocal, ai = ad−i for all 0 ≤ i ≤ d.

Proof. (i) We follow the strategy of [Rob97, Théorème 2.3]. Suppose σ(ε) = ε
for some σ ∈ G. For any character χ : G→ C×, let LS(s, χ) denote the L-function
of χ with the Euler factor at p = (p) ⊂ OF removed. Since σp = 1, χ(σp) = 1, and
so we have LS(0, χ) = 0. A consequence of the Brumer–Stark conjecture, see for
example [Tat81, Prop. (5.5) and Conj. (4.2)], is that ε satisfies

(3.11) L′
S(0, χ) = −

1

e

∑
σ′∈G

χ(σ′) log |σ′(ε)|P

for all χ. It follows that

L′
S(0, χ) = −

1

e

∑
σ′∈G

χ(σ′) log |σ′(ε)|P(3.12a)

= −1

e

∑
σ′∈G

χ(σ′) log |σ′σ(ε)|P(3.12b)

= − χ̄(σ)
e

∑
σ′′∈G

χ(σ′′) log |σ′′(ε)|P(3.12c)

= χ̄(σ)L′
S(0, χ).(3.12d)

If χ is odd, then L′
S(0, χ) 6= 0 by [Gro81, Eq. 3.1], so σ ∈

⋂
χ odd kerχ. Fix an odd

character ψ, and note that there is a bijection between even characters χ and the
set of characters ψ · ψ′ where ψ′ runs over all odd characters. Now
(3.13)∑
χ∈Ĝ

χ(σ) =
∑
χ odd

χ(σ) +
∑
χ even

χ(σ) = (1 + ψ(σ))
∑
ψ′ odd

ψ′(σ) = 2#{χ odd} = h+,

and so σ = 1.
(ii) The degree of P is h+ since ε is primitive. Let τ be an RM-point in the sense

of [DPV23]. As described in [DV21, §3.2], Gal(H/Q) ∼= Gal(H/F ) o Gal(F/Q),
and we can identify the image of the generator of Gal(F/Q) with σP.

By the Shimura reciprocity conjecture [DV21, Conj. 3.14], σP(JDR[τ ]) =

JDR[τ
′]. If we let τ be the RM point corresponding to the identity class in Cl+,

then JDR[τ ] = JDR[τ
′], and so JDR[τ ] is fixed by σP. Thus the minimal polynomial

of JDR[τ ] is fixed by σP, and as εA is a conjugate of JDR[τ ] up to roots of unity in
H, the result follows.

(iii) P being reciprocal is equivalent to P (T ) = T dP (1/T ), which is true if for
any non-zero root v of P , 1/v is also a root of P . But with κ denoting complex
conjugation in G, Equation (2.2) implies κ(σ(ε)) = 1/σ(ε). �

Knowing the P-valuations of all the conjugates of ε lets us bound the valuations
of the coefficients of P :

Lemma 3.7. Let v0 . . . , vd/2−1 be the P-valuations of the conjugates of ε which
are positive, ordered so that v0 ≥ v1 ≥ . . . ≥ vd/2−1 ≥ 0, and vd/2 = 0. Then for
any i = 0, . . . , d/2 we have ordp(ai) ≥

∑d/2−i
j=0 vd/2−j. In particular, ordp(ad) =

ordp(a0) =
∑d/2
j=0 vj.
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16 HÅVARD DAMM-JOHNSEN

Proof. By Lemma 3.6 (iii), the Newton polygon of P is symmetric around the
vertical line x = d/2, and its slopes are precisely equal to the p-valuations of the
roots of P , the conjugates of u. Since P is normalised, we know that ordp ad/2 = 0,
so the Newton polygon of P intersects the x-axis at the point (0, d/2). To estimate
the remaining coefficients, note that the Newton polygon of P will always lie in the
convex hull of the polygon determined as follows: the boundary is symmetric around
the line x = d/2, and is determined by the points (i,

∑d/2−i
j=0 vj) for 0 ≤ i ≤ d/2.

Since the y-coordinate of a point determining the Newton polygon of P is the
P-valuation of the corresponding coefficient, this gives the required inequality. �

x

y

(0,5)

(1,2)
(2,1)

(3,0)

(4,1)
(5,2)

(6,5)

Figure 1. The largest possible Newton polygon determined by
the P-valuations of the conjugates of a Brumer–Stark unit over
Q(
√
469), where the vector of valuations is given by

(−3,−1,−1, 1, 1, 3).

Let α = (α1, α2) ∈ Z/pm × Z/pm be an approximation of expp(logp εA), where
for a fixed generator s of Qp2 over Qp we define the natural map
(3.14) Zp2 = Zp[s]→ Z/pm × Z/pm by a+ bs 7→ (a mod pm, b mod pm).

To find the minimal polynomial P of α, we apply the LLL algorithm to look for
linear integral relations between powers of α. This is a common application of the
LLL algorithm, and a more detailed exposition can be found in [Coh93, §2.7.2].
Roughly speaking, the LLL algorithm takes as input a basis b1, . . . , bd for a Euclidean
lattice Λ ⊂ Rn, and returns a “better” basis b∗1, . . . , b∗d for Λ, in the sense that b∗1
has relatively small norm and that the vectors are approximately orthogonal. Let
v0, . . . , vd/2−1 be the P-valuations of the conjugates of ε ordered as in Lemma 3.7,
computed using Algorithm 4. We want to find a short nontrivial vector in the
lattice spanned by the rows of the following (d/2 + 3)× (d/2 + 3)-matrix:

(3.15)



1 0 . . . 0 pv0(1 + αd)1 pv0(1 + αd)2
0 1 . . . 0 pv1(α1 + αd−1)1 pv1(α1 + αd−1)2
0 0 . . . 0 pv2(α2 + αd−2)1 pv2(α2 + αd−2)2
...

...
. . .

...
...

...
0 0 . . . 1 (αd/2)1 (αd/2)2
0 0 . . . 0 pm 0
0 0 . . . 0 0 pm
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GROSS–STARK UNITS AND STARK–HEEGNER POINTS 17

A vector

w =
(
n0, . . . , nd/2, nd/2α

d/2
1 +

d/2−1∑
i=0

pvini(α
i + αd−i + pm)1,(3.16)

nd/2α
d/2
2 +

d/2−1∑
i=0

pvini(α
i + αd−i + pm)2

)
,

in the lattice is small only if nd/2αd/2+
∑d/2−1
i=0 pvini(α

i+αd−i) ≡ 0 mod pm. Then
the polynomial

∑d/2
i=0 p

vinix
i +
∑d
i=d/2+1 p

vd/2−ind−ix
i is a good candidate for the

minimal polynomial of P over Q. This suggests the following algorithm:

Algorithm 5: Find the minimal polynomial of εA from the p-adic ap-
proximation of logp εA.

Input:
• α ∈ Qp2 an approximation to expp(logp εA),
• v0, . . . , vd/2−1 as in Lemma 3.7.

Output: The minimal polynomial P ∈ Z[x] of εA.

ζ ← primitive (p2 − 1)-st root of unity in Qp2
for k = 0 to p2 − 1 do

α′ ← ζkα

M ← matrix described in Equation (3.15) with α′ in place of α
v = (ni)← first vector returned by LLL(M)

P ←
∑d/2
i=0 nix

i +
∑d
i=d/2+1 nd−ix

i

if n0 = pr for some r ∈ N then
if IsBSUnitCharPoly(P ) then // Described below

return P .

return 0

In practice, it is convenient to pick A ∈ Cl+ so that ordP εA is as close to 0
as possible. A similar algorithm for recognising an algebraic number from a p-adic
approximation is given in [GHK+06, §4.2].

The function IsBSUnitCharPoly performs a series of tests in order, and returns
False if any test fails:

(1) if P is irreducible over F , hence generates an extension of F of degree h+,
(2) if the absolute discriminant of H ′ ..= F [x]/(P (x)) is a power of D, which

is equivalent to H ′/F being unramified at all finite places,
(3) if H ′/F is abelian.

At this point we know that H ′ ∼= H, but to ensure that P is the minimal
polynomial of a Brumer–Stark unit and not just any generator of H, we
perform a further test:

(4) test if the extension generated by P (xe) is a central extension.
If all of these tests are passed, then it is quite likely, although not absolutely cer-
tain, that the polynomial P has a Brumer–Stark unit as a root. To be absolutely
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18 HÅVARD DAMM-JOHNSEN

certain, one should test if P (xe) generates an abelian extension of F , but this is
computationally unfeasible when both h and e are large.

Remark 3.8. The requirement that the extension should be central was part of
Stark’s original conjecture, see [Sta80, Conj. 1], and in [PRS11, p. 40] Stark notes
that this was sufficient for the factorisation of regulators which motivated it. The
condition that the extension should be in fact be abelian was observed by Tate,
leading to the formulation of the Brumer–Stark conjecture. This is now known to
be true, by the work of Dasgupta and Kakde [DK23].

It would be interesting to know whether “central implies abelian” in this situ-
ation, that is: if α is a p-unit which generates H with Pσ-valuations specified by
Equation (3.8) and e

√
α generates a central extension of F , is the extension actually

abelian?

To describe the test in (4), it is convenient to introduce some notation: Let
K ..= H( e

√
εA) and Ge ..= Gal(K/H). By Kummer theory, Ge ∼= Z/eZ. In this case

Γ ..= Gal(K/F ) is a group extension of Ge and G,
(3.17) 1→ Ge → Γ→ G→ 1.

The following lemma gives a simple criterion for deciding whether Γ is a central
extension, that is, if Ge lies in the centre of Γ, without computing Γ directly:

Lemma 3.9. Let F be a number field, H/F a Galois extension containing all
e-th roots of unity, and α ∈ H×. Define χcyc : G ..= Gal(H/F ) → (Z/eZ)× by
ζχcyc(σ) = σ(ζ) for any ζ ∈ µe(H). Then K ..= H( e

√
α)/F is a central extension if

and only if for all σ ∈ G there exists some β ∈ H× such that σ(α) = αχcyc(σ)βe.

Proof. There is a natural action of G on Ge ..= Gal(K/H) by conjugation,
σ · g ..= σgσ−1, which is well-defined precisely because Ge is abelian. The extension
K/F is central if and only if the action is trivial. Let ∆ be a set of representatives
of H×/(H×)e, and note that this admits a natural action of G. The Kummer
pairing ([Gra03, §I.6]) gives a G-equivariant isomorphism Ge ∼= Hom(∆, µe(K)).
The action of Ge on the right-hand side is given by (σ · φ)(α) = φ(σ−1(α))χcyc(σ),
where χcyc(σ) is defined by σ · ζe = ζ

χcyc(σ)
e . The action of G on Ge is trivial

if and only if the action on Hom(∆, µe) is trivial. Each element of this group is
given by ψg : δ 7→ 〈δ, g〉 ..= g

e√
δ

e√
δ

for some g ∈ Ge, and so Γ is central if and only if
(σ · ψg)(δ) = ψg(δ) for all δ ∈ ∆, g ∈ Ge and σ ∈ G. Equivalently,

(3.18)

(
g e
√
σ−1(δ)

e
√
σ−1(δ)

)χcyc(σ)

=
g e
√
δ

e
√
δ

hence g

 e

√
αχcyc(σ)

σ(α)

 = e

√
αχcyc(σ)

σ(α)
,

where α ..= σ−1(δ). This being true for all g is equivalent to αχcyc(σ)

σ(α) being an e-th
power for all σ. Finally, note that G acts transitively on ∆, so it suffices to check
the criterion for a single α. �

This test can be implemented quite easily, and is mainly bottlenecked by the
computation of Gal(H/F ), at least when [H : F ] is reasonably large.

Remark 3.10. A test for whether an extension is abelian is found in [Coh12,
Algorithm 4.4.6]. In short, the Takagi existence theorem gives a bijection between
abelian extensions K/F and certain Takagi subgroups of a ray class group Clm F ,
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where m is a sufficiently large modulus. However, this is very slow when e and h
are large, because it requires computing the ray class group of F of modulus equal
to the relative discriminant of H( e

√
α)/F , which is relatively large.

3.2. Detecting Stark–Heegner points. Our method of finding Stark–Heegner
points is much more primitive, because we don’t have an equivalent of the Brumer–
Stark conjecture.

Let E/Q be an elliptic curve with split multiplicative reduction at p. Recall
from Theorem 2.2 that if E has associated eigenform f ∈ M2(Γ0(p)), then the
corresponding spectral coefficient λf = −Lalg(1, f) logE(Pψ,f ) involves a point Pψ,f
conjecturally defined over H. To find this, we make use of the Tate curve Eq
isomorphic to E, which is described explicitly with the formulae in [Sil09, §C.14].
From this we can find an explicit isomorphism F×

p /q
Z φ−→ Eq(Fp), where q is an

element satisfying |q| < 1 generating a discrete subgroup. An approximation to
α ..= expp(−λf/Lalg(1, f)) can then be mapped to a point on the Tate curve Eq(Fp).
Mapping further into E(Fp), we may compute using descent a generating set {g}
for E(H) and attempt to write the image of α as an integral combination of them.
Since Pψ,f is only defined up to torsion, it is reasonable to look for a dependence
between the formal logarithms of α and the generators {g}. To ensure convergence
of the corresponding power series, we replace α by αp−1 and each g by (p − 1)g.
Then we look for an integer relation by applying the LLL-algorithm to a suitable
lattice as in the previous section. Following the convention in pari/gp, we call this
step lindep.

In summary, we have Algorithm 6.

Algorithm 6: Find Stark–Heegner point Pψ,f from λf .
Input:

• A normalised eigenform f in M2(Γ0(p)) with Hecke field Q,
• an elliptic curve E with associated eigenform f ,
• λf ∈ (Z/pmZ)2 an approximation to −Lalg(1, f) logEf

(Pψ,f ) ∈ Fp.
Output: The point Pψ,f on the elliptic curve E

Eq ← TateCurve(E) // Using formulae in [Sil09, §C.14]
φ← Isomorphism(F×

p /q
Z, Eq) // As in [Sil09, Thm. 14.1]

β ← φ(−λf/Lalg(1, f))

H ← NarrowHilbertClassField(F )

E(H)← MordellWeilGroup(E/H)

L← [logEq
((p− 1)β)]

// Compute formal logarithms of non-torsion generators of
E(H):

for g ∈ Generators(E(H)) do
if Order(g) == 0 then

L← L ∪ {logE((p− 1)g)}

(n1, (ng))← lindep(L) // Find integer relation between formal
logarithms using LLL.

return
∑
g ng · g/n1 ∈ E(H)
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By linearity, the algorithm works equally well when λf comes from ∂f+Q , in
which case the corresponding Stark–Heegner point is a weighted sum of points Pψ,f .
The algebraic part of the L-value can be computed either directly in magma using
the intrinsic LRatio, or by using the BSD formula and the invariants of E since
L(s, f) = L(s,E), or even analytically by approximating L(1, E) and computing
the periods of E.

One limitation of Algorithm 6 is that computing E(H) is very slow when [H :
Q] > 4. We hope to resolve this in the future by improving the algorithms for
detecting polynomials from p-adic approximations to their roots.

In the table below we have computed the minimal polynomials of the X and Y
coordinates of the Stark–Heegner points coming from ∂f+ψ on the curve E : y2+xy+

y = x3−x2−x−14. This is a model for X0(17), for which we have Lalg(1, f) = 1/4,
so λf = − 1

4 logE Pψ,f . Here ψ denotes the genus character associated with Q(
√
D):

since all the fields Q(
√
D) for D < 100 with no fundamental unit of negative norm

such that
(
D
17

)
= −1 have narrow class number 2, there is a unique nontrivial

character. This satisfies ∂f+ψ = −∂f+Q , where Q is a quadratic form with class
corresponding to the inverse different in Cl+. Note that this matches the table on
p. 545 of [DPV21].

Table 2. Table of Stark–Heegner points on E : y2 + xy + y =
x3 − x2 − x− 14, for D < 100.

D X Y

12 x2 − 6x+ 10 x2 − 2x+ 10

24 x2 + 2
9
x+ 89

9
x2 + 230

27
x+ 25

28 x2 − 6x+ 10 x2 + 10x+ 41

44 x2 − 14x+ 338 x2 − 26x+ 7394

56 x2 + 2
9
x+ 89

9
x2 + 230

27
x+ 25

57 x2 + 2306
1225

x+ 6521
1225

x2 + 111042
42875

x+ 15319
8575

88 x2 + 2
9
x+ 89

9
x2 − 182

27
x+ 401

9

92 x2 − 6x+ 10 x2 − 2x+ 10

3.3. Tables of Brumer–Stark units. Below we show some tables of mini-
mal polynomials of Brumer–Stark units in different ranges. Full tables are in the
author’s github repository, https://github.com/havarddj/drd.

Table 3. Minimal polynomials of Brumer–Stark units for p = 3,
D < 330.

D PD D PD D PD

44 3x2 + 5x + 3 152 3x2 + 2x + 3 236 27x2 + 5x + 27

56 3x2 + 2x + 3 161 27x2 + 38x + 27 248 27x2 − 46x + 27

77 3x2 + 5x + 3 188 243x2 − 298x + 243 284 2187x2 − 4090x + 2187

92 27x2 + 38x + 27 209 3x2 + 5x + 3 305 9x4 + 5x3 + 17x2 + 5x + 9

140 81x4 + 6x3 − 149x2 + 6x + 81 221 9x4 − 2x3 − 5x2 − 2x + 9 329 243x2 − 298x + 243

Given the data computed, it is natural to study the “horizontal properties” of
Brumer–Stark units, meaning the behaviour of the p-units ε as elements of Q̄ as D
varies.
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Table 4. Minimal polynomials of Brumer–Stark units for p = 2,
2000 ≤ D ≤ 2101.

D PD

2005 212x8 + 24 · 1055x7 + 22 · 9419x6 + 57995x5 + 66831x4 + 57995x3 + 22 · 9419x2 + 24 · 1055x + 212

2013 230x4 − 23 · 57677665x3 − 1118365527x2 − 23 · 57677665x + 230

2021 29x6 + 22 · 111x5 + 21 · 123x4 − 101x3 + 21 · 123x2 + 22 · 111x + 29

2037 218x4 + 23 · 16215x3 − 263887x2 + 23 · 16215x + 218

2045 26x4 − 9x3 − 65x2 − 9x + 26

2077 23x2 + 15x + 23

2085 224x4 − 23 · 6289393x3 + 70333881x2 − 23 · 6289393x + 224

2093 28x4 − 21 · 217x3 + 645x2 − 21 · 217x + 28

2101 213x6 + 26 · 79x5 − 23 · 1009x4 − 10161x3 − 23 · 1009x2 + 26 · 79x + 213

The coefficients of the polynomials are all of roughly the same magnitude, de-
spite the strong conditions on the p-valuation of the constant terms. In particular,
the logarithmic height of the middle coefficient is roughly ordp a0, which is easily
computed in terms of L-values using Equation (2.2). A classical result of Schur
says that the coefficients of cyclotomic polynomials can be arbitrarily large. It
would be interesting to know whether the same holds for our polynomials, nor-
malised to be monic. The largest value we find is 822.637, across the tables for
p ∈ {2, 3, 5, 7, 11}. Figure 2 shows the absolute value of the middle coefficient of
the normalised polynomials against the discriminant for different p.

2000 4000 6000 8000 10000
D

10

20

30

40

50

|ad/2/a0|

p= 2
p= 3
p= 5
p= 7

Figure 2. Normalised middle coefficients for various primes p.

If we plot the roots of the minimal polynomials on the unit circle as D varies, it
is natural to ask how the Brumer–Stark units distribute. It is well-known that the
set of Galois orbits of primitive N -th roots of unity becomes equidistributed with
respect to the Haar measure as N tends to infinity. One might expect a similar
thing to hold for a sequence of Brumer–Stark units, as the size of the corresponding
orbits tend to infinity. A weaker statement is that the Brumer–Stark units, for p
fixed, become dense in the unit circle as D →∞.

Questions like these will be addressed in the author’s forthcoming DPhil thesis.
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