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The problem

• Fix a g -dimensional abelian variety A over a finite field Fq.

• For every r ≥ 1, Frobenius polynomial of the base extension
to Fqr is given by

Pr (T ) = T 2g + a
(r)
1 T 2g−1 + · · ·+ qrg =

g∏
j=1

(T −αr
j )(T −αr

j ).

Question:
What is the distribution of the sequence of normalized traces of
Frobenius

xr := −a(r)1 /qr/2 ∈ [−2g , 2g ]?



The problem

• Fix a g -dimensional abelian variety A over a finite field Fq.

• For every r ≥ 1, Frobenius polynomial of the base extension
to Fqr is given by

Pr (T ) = T 2g + a
(r)
1 T 2g−1 + · · ·+ qrg =

g∏
j=1

(T −αr
j )(T −αr

j ).

Question:
What is the distribution of the sequence of normalized traces of
Frobenius

xr := −a(r)1 /qr/2 ∈ [−2g , 2g ]?



The problem

• Fix a g -dimensional abelian variety A over a finite field Fq.

• For every r ≥ 1, Frobenius polynomial of the base extension
to Fqr is given by

Pr (T ) = T 2g + a
(r)
1 T 2g−1 + · · ·+ qrg =

g∏
j=1

(T −αr
j )(T −αr

j ).

Question:
What is the distribution of the sequence of normalized traces of
Frobenius

xr := −a(r)1 /qr/2 ∈ [−2g , 2g ]?



The 35 isogeny classes of abelian surfaces over F2



Our results

• We identify a compact abelian Lie subgroup of USp2g (C)
controlling these distributions via push-forward of the Haar
measure, through U 7→ trU ∈ [−2g , 2g ].

• We classify the possible groups that appear for g = dimA ≤ 3.
This is equivalent to understanding the possible multiplicative
relations between the Frobenius eigenvalues α1, . . . , αg and q.

• If you are interested in learning more, please talk to me or read
our paper: https://arxiv.org/abs/2306.02237!

https://arxiv.org/abs/2306.02237
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Theorem (Ellenberg-Venkatesh-Westerland, 2016)

Let ℓ > 2 be a prime. Write
Lq,n = {L : L = Fq(t)[

√
f (t)], f squarefree, deg f = n}/(isomorphism).

There is a constant Cℓ such that, for any finite abelian ℓ-group A,

lim
q→∞

q ̸≡1 (mod ℓ)
q odd

lim
n→∞
n odd

#{L ∈ Lq,n : ClL ∼= A}
#Lq,n

=
Cℓ

|Aut(A)|
.

Theorem (Ellenberg-Li-Shusterman, 2019)

Fix p to be a prime, and s = 1
2 + it. Let Hg (Fq) be the family of genus g

hyperelliptic curves over Fq. Write ZC for the zeta function of a curve C.

lim
k→∞

lim
g→∞

|{C ∈ Hg (Fpk ) : ZC (s) = 0}|
|Hg (Fpk )|

= 0.

Goal: generalize to Z/dZ-covers of P1
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Tentative Theorem/Goal (K.)

Let d ≥ 2. Let ℓ ∤ d be a prime. Write
Lq,n = {L : L = Fq(t)[

d
√
f (t)], f squarefree, deg f = n}/(isomorphism).

There is a constant Cℓ such that, for any Zℓ[ζd ]-module A of finite
cardinality with “mild conditions”,

lim
q→∞

q ̸≡1 (mod ℓ)
q≡1 (mod d)

lim
n→∞

(d ,n)=1 or d |n

#{L ∈ Lq,n : ClL ∼=Zℓ[ζd ] A}
#Lq,n

=
Cℓ

|AutZℓ[ζd ](A)|
.

Tentative Theorem/Goal (K.)

Fix p to be a prime, and s = 1
2 + it.n Let Dg (Fq) be the family of genus g

tame Z/dZ-covers of P1 over Fq.

lim
k→∞

lim
g→∞

Dgnonempty

|{C ∈ Dg (Fpk ) : ZC (s) = 0}|
|Dg (Fpk )|

= 0.
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Differences in d = 2 and d > 2 cases

Tℓ Pic
0(C ) is a module over Zℓ[ζd ] = Zℓ[X ]/(X d−1 + · · ·+ 1).

Consider surjections Tℓ Pic
0(C ) → A that are Zℓ[ζd ]-equivariant.

The Weil pairing ω : Tℓ Pic
0(C )× Tℓ Pic

0(C ) → Zℓ(1) respects the
ζd -action. Consequently, ω yields a Hermitian pairing over Zℓ[ζd ].

Big monodromy results: how big is the image of

π1(Dg , s̄) → AutZℓ[ζd ](Tℓ Pic
0(Cs̄))

d = 2 by Jiu-Kang Yu (1997)
d = 3 by Jeff Achter and Rachel Pries (2007)
d > 3?
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Say p is a prime of good reduction for E/Q. Then,

Ẽp(Fp) ∼= Z/dp(E)Z× Z/ep(E)Z,

for some integers dp(E) | ep(E). J-P. Serre studied the distribution of primes for

which dp(E) = 1, under GRH.

Let E a,b : Y 2 = X 3 + aX + b.

Theorem (Banks-Shparlinski, 2009)

Let x > 0 and ϵ > 0. Let A := A(x) and B := B(x) be integers satisfying

xϵ ≤ A,B ≤ x1−ϵ, AB ≥ x1+ϵ.

There exists a positive constant C > 0 for which

1

4AB

∑
|a|≤A

∑
|b|≤B

#{p ≤ x : dp(E
a,b) = 1} ∼ C

x

log x
, as x → ∞.

Objective: to consider the case of primes lying in an arithmetic progression.
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Theorem (L., 2023)

Under the same assumptions of Banks-Shparlinski, there exists Cn,k > 0 for which

1

4AB

∑
|a|≤A

∑
|b|≤B

#{p ≤ x : dp(E
a,b) = 1, p ≡ k (mod n)} ∼ Cn,k

x

log x
, as x → ∞.

Given n and k coprime, de�ne nk :=
∏
q|n

k≡1(q)

q, and

Cn,k :=
1

ϕ(n)

∏
ℓ|nk

(
1− 1

ℓ(ℓ2 − 1)

)∏
ℓ′∤n

(
1− 1

|GL2(Z/ℓ′Z)|

)
.

Note that Cn,k > 0 for any n and k coprime.

Proposition (L., 2023)

Fix n. For any k coprime to n, we have n−1 | nk | n1. Thus, Cn,1 ≤ Cn,k ≤ Cn,−1.

If n is a power of two, then n1 = n−1. In this case, Cn,1 = Cn,k = Cn,−1 for any k.
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Theorem (Akbal-Gülo�glu, 2022)

Let E/Q. Assume GRH. If E has a CM, assume that it has a CM by a full ring of

integers of an imaginary quadratic �eld. Then, there exists CE ,n,k ≥ 0

πE (x ; n, k) := #{p ≤ x : dp(E) = 1, p ≡ k (mod n)} ∼ CE ,n,k
x

log x
, as x → ∞.

They also made a following observation:(
∃ a prime ℓ such that Q(E [ℓ]) ⊂ Q(ζn)

and σk : ζn 7→ ζkn �xes Q(E [ℓ])

)
=⇒ πE (x ; n, k) < ∞,

and asked whether the converse is true.

Example (Jones-L., 2022)

Consider an elliptic curve (LMFDB: 71610.s6)

E : Y 2 + XY + Y = X 3 + 32271697X − 1200056843302.

For any prime ℓ, Q(E [ℓ]) ̸⊂ Q(ζ8) while πE (x ; 8, 3) = 0 for any x > 0.

Sung Min Lee (UIC) Congruence Class Bias July 11 2023 4 / 4



Theorem (Akbal-Gülo�glu, 2022)

Let E/Q. Assume GRH. If E has a CM, assume that it has a CM by a full ring of

integers of an imaginary quadratic �eld. Then, there exists CE ,n,k ≥ 0

πE (x ; n, k) := #{p ≤ x : dp(E) = 1, p ≡ k (mod n)} ∼ CE ,n,k
x

log x
, as x → ∞.

They also made a following observation:(
∃ a prime ℓ such that Q(E [ℓ]) ⊂ Q(ζn)

and σk : ζn 7→ ζkn �xes Q(E [ℓ])

)
=⇒ πE (x ; n, k) < ∞,

and asked whether the converse is true.

Example (Jones-L., 2022)

Consider an elliptic curve (LMFDB: 71610.s6)

E : Y 2 + XY + Y = X 3 + 32271697X − 1200056843302.

For any prime ℓ, Q(E [ℓ]) ̸⊂ Q(ζ8) while πE (x ; 8, 3) = 0 for any x > 0.

Sung Min Lee (UIC) Congruence Class Bias July 11 2023 4 / 4



Theorem (Akbal-Gülo�glu, 2022)

Let E/Q. Assume GRH. If E has a CM, assume that it has a CM by a full ring of

integers of an imaginary quadratic �eld. Then, there exists CE ,n,k ≥ 0

πE (x ; n, k) := #{p ≤ x : dp(E) = 1, p ≡ k (mod n)} ∼ CE ,n,k
x

log x
, as x → ∞.

They also made a following observation:(
∃ a prime ℓ such that Q(E [ℓ]) ⊂ Q(ζn)

and σk : ζn 7→ ζkn �xes Q(E [ℓ])

)
=⇒ πE (x ; n, k) < ∞,

and asked whether the converse is true.

Example (Jones-L., 2022)
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Background on Coleman Integrals

Motivating Question 1

Let X be a nice curve of genus g ≥ 2. We know X (Q) is finite [Fal83].
Given such X , how do we compute X (Q)?

Coleman’s theory of p-adic line integration [Col82, Col85]

Let X/Qp be a nice curve with good reduction at p. For each pair of
points P,Q ∈ X (Qp), and a regular differential ω ∈ H0(X ,Ω1), one can
define a p-adic Coleman integral∫ Q

P
ω ∈ Qp

satisfying the usual properties of line integrals from calculus.

Notable property: If P ≡ Q mod p,
∫ Q
P ω can be computed by expanding

ω into a power series in terms of a uniformizer t at P and integrating
term-by-term.
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Computation of Coleman Integrals

For X a hyperelliptic curve, the BBK (Balakrishnan-Bradshaw-Kedlaya)

algorithm computes the Coleman integral
∫ Q
P ω using Kedlaya’s algorithm

which gives the matrix representation of the action of Frobenius on the
basis differentials for H1

dRX .
Balakrishnan-Tuitman extends BBK to work for all curves.

The BBK and BT algorithms relies on knowing the singular plane model for
X . For modular curves, however, their plane models are not always known.

Motivating Question 2

Can we compute Coleman integrals on a modular curve X without
knowing its plane model?

Huang (UCSD) Model-free Coleman Integration LuCaNT 2023 3 / 4



Computing Coleman Integrals on Modular Curves

Let X be a modular curve corresponding to a congruence subgroup Γ. Fix
a prime p a prime of good reduction for X . Given P,Q ∈ X (Qp), Chen,

Kedlaya, and Lau give an algorithm computing the Coleman integral
∫ Q
P ω

for ω ∈ H1(X ,Ω1) without using a plane model for X .

Outline
1 Using the q-expansion of the cusp form corresponding to ω, expand ω

as a power series in terms of a choice of uniformizer at P.

2 The computation of
∫ Q
P ω can be reduced to computing the matrix

representation of the Hecke action Tp on an eigenbasis for S2(Γ) and∫ Pi

P ω, where Tp(P) =
∑p

i=0 Pi , which are tiny integrals by the
Eichler-Shimura congruence relation.

Chen, Kedlaya, and Lau employ the method of complex approximations to
compute specific examples. In recent joint work with Kedlaya and Xu, we
give an p-adic alternative in order to avoid having to approximate complex
numbers.
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Local heights computations: why?
❖ Set-up: Let  be a nice curve of genus . Then .

❖ Goal: To describe explicitly .

❖ Method: quadratic Chabauty (explicitly presented by Balakrishnan & Dogra, ’18 ’21).  This is a 
-adic method that has been successfully used to compute  in many new cases.

❖ Key input: Let  be a prime and  be a trace  correspondence.  There is an associated 
-adic (Coleman Gross) height function  which can be decomposed as

,

    where  .

❖ One challenge: Computing local heights.

C g ≥ 2 #C(ℚ) < ∞

C(ℚ)

p C(ℚ)

p Z ⊂ C × C 0
p hZ : C(ℚ) → ℚp

hZ(Q) = ∑
ℓ

hZ,ℓ(Q)

hZ,ℓ : C(ℚℓ) → ℚp



Local heights computations on hyperelliptic curves: how?

We pick a correspondence  with action on   given by .

y2 = x6 + 2x4 + 6x3 + 5x2 − 6x + 1

Z ⊂ C × C H0(X, Ω1
X) (−1 2

2 1)

hZ,3(x, y) =
− 1

4 logp(3) if x ≡ − 1 mod 3,

+ 1
4 logp(3) if x ≡ + 1 mod 3,

0 otherwise.

Cluster picture Berkovich space decomposition
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Isogeny graphs and isogeny-torsion graphs

Let E be an isogeny class of elliptic curves defined over the rationals.
Then E has a corresponding isogeny graph and a corresponding
isogeny-torsion graph

Theorem

There are 26 isomorphism types of isogeny graphs that are associated
to elliptic curves defined over Q, 16 types of (linear) Lk graphs of
k = 1-4 vertices, 3 types of (nonlinear two-primary torsion) Tk graphs
of k = 4, 6, or 8 vertices, 6 types of (rectangular) Rk graphs of k = 4
or 6 vertices, and 1 (special) S graph.

Theorem (C., Lozano-Robledo).

There are 52 isomorphism types of isogeny-torsion graphs that are
associated to elliptic curves defined over Q. In particular, there are 23
types of Lk graphs, 13 types of Tk graphs, 12 types of Rk graphs, and
4 types of S graphs.

See Tables 1 – 4 in https://arxiv.org/abs/2001.05616



2-adic Galois images (1/2)

Recently, the image of the 2-adic Galois representation at all vertices of all
isogeny-torsion graphs has been classified.



2-adic Galois images (2/2)

Theorem (C.).
Let G be an isogeny-torsion graph associated to a Q-isogeny class of
non-CM elliptic curves defined over Q. Then the image of the 2-adic
Galois representation attached to G is one of 385 arrangements

See Tables 10 – 19 in https://arxiv.org/abs/2302.06094
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Background and Motivation

Let E be an elliptic curve defined over a number field F .

Let N ≥ 2 and E [N] = E (F )[N] be the N-torsion subgroup of E (F ).

F (E [N]) is the field of definition of the coordinates of points in E [N].

F (E [N])/F is a Galois extension.

When is F(E [N])/F an abelian extension?

Halberstadt, Merel, Merel and Stein, and Rebolledo, show that
if p is prime, and F (E [p]) = Q(ζp), then p = 2, 3, 5 or p > 1000.

When F = Q, González-Jiménez and Lozano-Robledo prove that

Q(E [N]) = Q(ζN) only for N = 2, 3, 4, or 5;

if Q(E [N])/Q is abelian, then N = 2, 3, 4, 5, 6, or 8;

for E/Q with CM, if Q(E [n])/Q is abelian, then n = 2, 3, or 4.

Theorem (H. and Lozano-Robledo)

Let E/F have CM and F = Q(j(E )), then F (E [N])/F is only abelian for
N = 2, 3, or 4.



Main theorem

Let K be an imaginary quadratic field, and let OK ,f be an order in K of
conductor f ≥ 1. Let ∆K denote the discriminant of K .



Sketch of proof

Theorem (H. and Lozano-Robledo)

Let E/F have CM and F = Q(j(E )), then F (E [N])/F is only abelian for
N = 2, 3, or 4.

Sketch of proof:

(1) For an elliptic curve E/Q(jK ,f ) with CM by an arbitrary order OK ,f ,
Lozano-Robledo explicitly describes the groups of GL(2,Zp) that can
occur as images of ρE ,p∞ , up to conjugation.

(2) We understand what subgroups of Nδ,ϕ(N) are images of ρE ,N and
we give conditions that will help characterize when a subgroup of
Nδ,ϕ(N) is abelian (e.g. the Cartan subgroup is abelian).

(3) We apply the results from above to all possible images
GE ,N = im ρE ,N from (1) and analyze under what circumstances we
have that GE ,N is abelian.
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Notation

Let H be a subgroup of GL2(Z/nZ) containing −I and let XH be the
corresponding modular curve. If det(H) = (Z/nZ)×, then XH is a
geometrically connected algebraic curve defined over Q and there is an
isomorphism of Riemann surfaces XH(C) ∼= ΓH\H∗, where
H∗ := {z ∈ C : Im(z) > 0} ∪Q ∪ {∞} is the extended complex upper
half-plane, ΓH := {γ ∈ SL2(Z) : γ (mod n) ∈ H}, is a congruence
subgroup and SL2(Z) acts on H∗ by linear fractional transformations.

Let p be an odd prime and let ξ ∈ (Z/prZ)× be a nonsquare element:

Cs(p
r ) :=

{(
a 0
0 d

)
, a, d ∈ (Z/prZ)×

}
;

C+
s (pr ) := Cs(p

r ) ∪
{(

0 b
c 0

)
, b, c ∈ (Z/prZ)×

}
;

Cns(p
r ) :=

{(
a bξ
b a

)
, a, b ∈ Z/prZ, (a, b) 6≡ (0, 0) mod p

}
;

C+
ns(pr ) := Cns(p

r ) ∪
{(

a bξ
−b −a

)
, a, b ∈ Z/prZ, (a, b) 6≡ (0, 0) mod p

}
.
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Modular automorphisms

Let GL+
2 (Q) := {g ∈ GL2(Q) : det g > 0} and let

π : GL+
2 (Q)→ PGL+

2 (Q) := GL+
2 (Q)/{scalar matrices}

be the natural quotient map.

Definition (Modular automorphisms)

If det(H) = (Z/nZ)×, we call an automorphism defined over C of XH

modular if its action on XH(C) = ΓH\H∗ is described by a fractional
linear transformation of H∗ associated to an element m ∈ PGL+

2 (Q) that
normalizes π(ΓH) in PGL+

2 (Q).

Is every automorphism of XH modular?

The answer is no when the genus is 0 or 1. It is not hard to see that in
these cases there are non-modular automorphisms.

It is true, for example, for X0(n) when the genus is at least 2 and
n 6= 37, 63, 108.
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Results

Theorem (Dose, Lido, M., 2022)

1 If p > 3 is a prime, then every automorphism of the modular curves
XCs(pr ), XC+

s (pr ), XCns(pr ), XC+
ns(pr ) with genus at least 2 and pr 6= 11

is modular and

Aut(XCs(pr )) ∼= Aut(XCns(pr )) ∼= Z/2Z,
Aut(XC+

s (pr ))
∼= Aut(XC+

ns(pr ))
∼= {1}.

2 If n ≥ 10400 is odd with prime factorization n =
∏ω(n)

i=1 peii and

H ∼=
∏ω(n)

i=1 Hpi is a subgroup of GL2(Z/nZ) such that, for each
i = 1, . . . , ω(n), either Hpi ∈ {Cs(p

ei
i ),Cns(p

ei
i )} or

Hpi ∈ {C+
s (peii ),C+

ns(peii )}, then every automorphism of XH is
modular and we have

Aut(XH) ∼= N ′/H ′,

where N ′ < SL2(Z/nZ) is the normalizer of H ′ := H ∩ SL2(Z/nZ).
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THANK YOU!
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Introduction

If A is an abelian variety over a number field F then

ApF q » Zr ‘ ApF qtors

Question

What can ApF qtors be?

Let A{Q be an abelian surface and suppose that for a maximal order O in a
division quaternion algebra:

O
»

ã−! EndpAQq.

Such a surface is called an O-PQM surface
(PQM = potential quaternionic
multiplication).

The associated moduli space is
1-dimensional, called a Shimura curve.

Figure: Shimura curve X˚
p6, 1q
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O-PQM surfaces

ArNspQq “ t P P ApQq | N ¨ P “ 0 u

§ ArNspQq is a left O-module and a right GalQ-module.

§ O is a right GalQ-module via the action on the equations defining elements of
O “ EndpAQq.

§ pa ¨ Pqσ “ aσ ¨ Pσ.

The existence of rational torsion places restrictions on where the endomorphisms
are defined.

§ A has potentially good reduction at all primes p.

A rational torsion point also places restrictions on the reduction properties of A
mod p.

For example, if A{Q has a rational torsion point of prime order ` ě 5 then
EndpAQq is a real quadratic field, which forces A to have purely additive reduction
at ` and good reduction everywhere else.
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Main result

Theorem (Laga, S., Shnidman, Voight)

Let A{Q be a O-PQM surface. Then
§ if Ar`spQq ‰ 0 for a prime `, ` P t2, 3u;
§ each of the six groups

t1u,Z{2Z,Z{3Z,Z{6Z, pZ{2Zq2, pZ{3Zq2

occurs as ApQqtors for infinitely many Q-isomorphism classes of O-PQM
surfaces A{Q;

§ all of the remaining possible groups have been ruled out except

Z{4Z,Z{2Zˆ Z{4Z, pZ{2Zq3, pZ{2Zq2 ˆ Z{3,
Z{3Zˆ Z{4Z, pZ{4Zq2, pZ{2Zq2 ˆ Z{4Z,Z{2Zˆ pZ{3Zq2.

Thank you for listening!
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Problem

Problem

Classify all abelian surfaces A/Q with good reduction away from 2.

• This seems quite hard (at least for me)!

(Hopefully easier) subproblem

Classify all isogeny classes of abelian surfaces A/Q with good reduction away from 2 and
with full rational 2-torsion (i.e. Q(A[2]) = Q).
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Faltings–Serre–Livné method

Let A/K be an abelian variety. Its L-function factors as an Euler product,

L(A/K , s) =
∏

p prime

Lp(A/K , s).

Theorem (Faltings–Serre–Livné)

Let A/K and B/K be two abelian varieties. If Lp(A/K , s) = Lp(B/K , s) for some
effectively computable finite set of primes p, then L(A/K , s) = L(B/K , s).

Theorem (Faltings–Serre–Livné (effective))

Let A/Q and B/Q be two abelian varieties with good reduction away from 2 and with full
rational 2-torsion. Then if Lp(A/Q, s) = Lp(B/Q, s) for each p ∈ {3, 5, 7}, then A and B
are isogenous over Q.
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Computations
We brute force the possible Euler factors Lp(A/Q, s) for p = 3, 5, 7 !

• Use that Gal(Q(A[2n])/Q) embeds in GL4(Z/2nZ), for each n ≥ 1.
• Compute the characteristic polynomials for each matrix in the image of each
embedding. This gives a finite number of possibilities for Lp(A/Q, s) mod 2n.

n Q(A[2n]) Gal(Q(A[2n])/Q) #L3(A/Q, s) #L5(A/Q, s) #L7(A/Q, s)

0 Q C1 63 129 207

1 Q C1 17 35 53

2 Q(ζ8) C2 × C2 6 12 16

3 Q(ζ16,
4
√
2) C 2

2 ⋊ C4 2 5 6

4 ?
C 2
2 ⋊ C8, D4 ⋊ C8,

C 2
2 .C4 ≀ C2

1 4 2

5 ? (many) 1 3 1
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embedding. This gives a finite number of possibilities for Lp(A/Q, s) mod 2n.

n Q(A[2n]) Gal(Q(A[2n])/Q) #L3(A/Q, s) #L5(A/Q, s) #L7(A/Q, s)

0 Q C1 63 129 207

1 Q C1 17 35 53

2 Q(ζ8) C2 × C2 6 12 16

3 Q(ζ16,
4
√
2) C 2

2 ⋊ C4 2 5 6

4 ?
C 2
2 ⋊ C8, D4 ⋊ C8,

C 2
2 .C4 ≀ C2

1 4 2

5 ? (many) 1 3 1
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Results

Theorem

There are exactly 3 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces with full rational 2-torsion. These are given by E1 × E1,
E1 × E2 and E2 × E2, where E1, E2 are the elliptic curves E1 : y

2 = x3 − x and
E2 : y

2 = x3 − 4x.

Doing a similar (albeit longer) computation also gives the following result:

Theorem

There are exactly 19 isogeny classes of abelian surfaces A/Q with good reduction away
from 2 which contain surfaces such that either A[2](Q) ∼= (Z/2Z)4 or A[2](Q) ∼= (Z/2Z)3.
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Serre’s Open Image Theorem

Let E/Q be an elliptic curve. For a prime `, we denote by

E[`] : the group of `-torsion points of E, T`(E) : the `-adic Tate module of E,

ρE,` : Gal(Q/Q)→ Aut(E[`]) ' GL2(Z/`Z) : mod-` Galois representation of E,

ρE,` : Gal(Q/Q)→ Aut(T`(E)) ' GL2(Z`) : `-adic Galois representation of E.

Serre’s Open Image Theorem (1972)
Let E/Q be a non-CM elliptic curve. Then, there is a constant c(E) such that

` > c(E) =⇒ ρE,` is surjective1

Serre’s Uniformity Question
c(E) ≤ 37 holds for all non-CM elliptic curves E/Q.

Goal: Give an explicit bound on c(E).

1For ` ≥ 5, ρE,` is surjective if and only if ρE,` is surjective.
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Examples

LMFDB label conductor nonsurjective (`-adic) primes c(E)

11.a1 11 {5} 5
37.a1 37 ∅ 1

1225.b1 52 · 72 {37} 37
11094.g1 2 · 3 · 432 {2, 13} 13

462400.ir1 26 · 52 · 172 {17} 17
705600.bej1 26 · 32 · 52 · 72 {37} 37

299996953.a1 299996953 ∅ 1

Table 1: LMFDB data for nonsurjective primes
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Past results

• Uniform Result

Theorem
Let E/Q be a non-CM elliptic curve. If ` > 37, then either

1 ρ̄E,` is surjective or

2 the image of ρ̄E,` is the normalizer of a non-split Cartan C+ns(`).

• Individual Results
•Unconditionally (Kraus 1995, Cojocaru 2005)

c(E) ≤ 4
√
6

3 NE

∏
p|NE

(
1 + 1

p

)1/2
.

• Under GRH (Serre 1981)
c(E)� (log radNE)(log log rad 2NE)3, where the implicit constant is effective.
• Under GRH (Larson-Vaintrob 2004)
c(E)� logNE , where the implicit constant is absolute but not effective.
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Main Theorem

Theorem (Mayle-Wang, 2023)
Assume GRH for Dedekind zeta functions. If E/Q is a non-CM elliptic
curve, then

c(E) ≤ 964 log rad(2NE) + 5760,

where radn :=
∏

p|n p denotes the radical of an integer n.

• Example

LMFDB label conductor nonsurjective primes up to 10915
76204800.ut1 28 · 35 · 52 · 72 ∅

Conclusion: ρE,` is surjective for each prime `.
• Proof Strategy
`: any nonsurjective prime. There exist p and C ′(E) such that

`||ap(E)| ≤ 2
√
p≤2

√
C ′(E).
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Thank you very much for your
attention!
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