Serre Curves Relative to Obstructions Modulo 2

LuCaNT Conference
July 11, 2023
Jacob Mayle and Rakvi
University of Pennsylvania
Dept. of Mathematics

Galois Representations

Let E / \mathbb{Q} be an elliptic curve. For $n \geq 2$, consider the n-torsion subgroup

$$
E[n]=\{P \in E(\overline{\mathbb{Q}}): n P=\mathcal{O}\} \cong \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}
$$

Taking an inverse limit, we obtain the adelic Tate module of E,

$$
T(E)=\lim E[n] \cong \widehat{\mathbb{Z}} \oplus \widehat{\mathbb{Z}}
$$

where $\widehat{\mathbb{Z}}=\lim \mathbb{Z} / n \mathbb{Z}$ denotes the ring of profinite integers.
Then $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $T(E)$, giving rise to the adelic Galois representation

$$
\rho_{E}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{Aut}(T(E)) \cong \mathrm{GL}_{2}(\widehat{\mathbb{Z}})
$$

We write G_{E} for the image of ρ_{E}, which is defined up to conjugacy in $G L_{2}(\widehat{\mathbb{Z}})$.

Serre's Open Image Theorem

Upon composing with the relevant projection maps, we obtain

$$
\begin{aligned}
\rho_{E, \ell \infty}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) & \ell \text {-adic } \\
\rho_{E, n}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z}) & \bmod n
\end{aligned}
$$

Theorem. If E / \mathbb{Q} is non-CM (i.e., $\operatorname{End}\left(E_{\overline{\mathbb{Q}}}\right)=\mathbb{Z}$), then

$$
\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): G_{E}\right]<\infty .
$$

Consequently, $\rho_{E, \ell \infty}$ is surjective for all sufficiently large prime numbers ℓ.

Example 1. The elliptic curve E with LMFDB label 11. a 1 is non-CM. The ℓ-adic Galois representation $\rho_{E, \ell \infty}$ is nonsurjective for $\ell=5$ and surjective for all $\ell \neq 5$.

Serre Curves

Example 2. The elliptic curve E with LMFDB label 37 . a1 is non-CM. For this curve, the ℓ-adic Galois representation is surjective for all prime numbers ℓ.

Although the ℓ-adic Galois representation $\rho_{E, \ell \infty}$ may be surjective for all prime numbers ℓ, Serre noted that (over \mathbb{Q}) by the Weil pairing and Kronecker-Weber theorem, the adelic Galois representation ρ_{E} cannot be surjective. As such,

$$
\begin{equation*}
\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): G_{E}\right] \geq 2 \tag{1}
\end{equation*}
$$

An elliptic curve E / \mathbb{Q} for which equality holds in (1) is a Serre curve.

In other words, Serre curves are elliptic curves where G_{E} is "as large as possible".

Relative Serre Curves

Building on work of Duke, in his 2005 Ph.D. thesis, Jones proved the following.
Theorem. When ordered by naive height, 100% of E / \mathbb{Q} are Serre curves.

Empirically, 48.223% of elliptic curves of conductor ≤ 500000 are Serre curves.
In a joint work with Mayle (to appear in LuCaNT), we consider elliptic curves whose adelic image G_{E} is "as large as possible" given a prescribed obstruction. Let $G \subseteq \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$ be a subgroup and write $[\cdot, \cdot]$ for the commutator of a group.

An elliptic curve E / \mathbb{Q} is a G-Serre curve if $G_{E}(n) \subseteq G$ and $\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}]$.

In particular, we study G-Serre curves for the proper subgroups $G \subseteq G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$.
These subgroups are of index 6,3 , and 2 , and we denote them respectively by

$$
2 \mathrm{Cs}:=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}, \quad 2 \mathrm{~B}:=\left\langle\left(\begin{array}{ll}
1 & 1
\end{array}\right)\right\rangle, \quad 2 \mathrm{Cn}:=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\rangle .
$$

Associated to these groups, we define the sets of subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$,

$$
\begin{aligned}
& \mathcal{S}_{2 \mathrm{Cs}}:=\{2.6 .0 .1, \text {. 8.12.0.2, 4.12.0.2, 8.12.0.1, 4.12.0.1, 8.12.0.3, 8.24.0.5, 8.24.0.7, 8.24.0.2, }, \\
& \text { 8.24.0.1, 8.12.0.4, 8.24.0.6, 8.24.0.8, 8.24.0.3, 8.24.0.4\}, } \\
& \mathcal{S}_{2 \mathrm{~B}}:=\{2.3 .0 .1, \text { 8.6.0.2, 8.6.0.4, 8.6.0.1, 8.6.0.6, 8.6.0.3, 8.6.0.5\}, } \\
& \mathcal{S}_{2 \mathrm{Cn}}:=\{2.2 .0 .1,4.4 .0 .2,8.4 .0 .1\}
\end{aligned}
$$

where $\mathrm{N} . \mathrm{i} . \mathrm{g} . \mathrm{n}$ denotes the subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ with the given Rouse-Sutherland-Zureick-Brown label.

Characterization of Relative Serre Curves

Theorem (M.-Rakvi 2022). For a subgroup $G \in\{2 \mathrm{Cs}, 2 \mathrm{~B}, 2 \mathrm{Cn}\}$ and an elliptic curve E / \mathbb{Q}, we have that E is a G-Serre curve if and only if $\rho_{E, 2^{\infty}}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})) \in \mathcal{S}_{G}$ and $\rho_{E, \ell^{\infty}}$ is surjective for all odd prime numbers ℓ.

By work of Rouse-Sutherland-Zureick-Brown, our characterization can be used to computationally determine G-Serre curves. By running our code on all curves in Cremona's database, we now know that among curves of conductor ≤ 500000 :

$$
\begin{aligned}
& 48.223 \% \\
& \text { Serre curves }
\end{aligned} \rightarrow \quad \begin{gathered}
78.075 \% \\
\begin{array}{c}
\text { Serre curves } \\
\text { Max relative to } \\
\text { obstruction mod } 2
\end{array}
\end{gathered}
$$

Moreover, for all such curves we have a description of the adelic image G_{E}.

Summary of Proof

Let $G \subseteq \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ and write \widehat{G} for the full preimage of G in $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$.
Let E / \mathbb{Q} be such that $G_{E}(2)=G$.
Recall that E is a G-Serre curve if and only if $G_{E} \subseteq \widehat{G}$ and $\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}]$.
Thus the problem of deciding whether E is a G-Serre curve is reduced to determining whether the commutator condition $\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}]$ holds.

Jones showed that the commutator condition holds if and only if it holds modulo 216. We reduced the modulus m_{0} to 36 if $G \in\{2 \mathrm{~B}, 2 \mathrm{Cn}\}$ and 72 if $G=2 \mathrm{Cs}$. In order for $\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}]\left(\bmod m_{0}\right)$, it must be that

$$
\begin{equation*}
\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}] \quad(\bmod 9) \quad \text { and } \quad\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}] \quad\left(\bmod 2^{k}\right) . \tag{2}
\end{equation*}
$$

The first condition $G_{E}(9)=G L_{2}(\mathbb{Z} / 9 \mathbb{Z})$. The second condition puts a constraint on $G_{E}\left(2^{k}\right)$. Considering the possible images of $\rho_{E, 2^{k}}$ and possible $2^{k}-9$ interactions, we note (perhaps surprisingly) that (2) is also a sufficient condition for $\left[G_{E}, G_{E}\right]=[\widehat{G}, \widehat{G}]$. In this way, we prove the theorem.

Moreover, we know the adelic index of a G-Serre curve.

Proposition. If E is a G-Serre curve for a $G \in\{2 \mathrm{Cs}, 2 \mathrm{~B}, 2 \mathrm{Cn}\}$, then

$$
\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): G_{E}\right]= \begin{cases}12 & G \in\{2 \mathrm{~B}, 2 \mathrm{Cn}\} \\ 48 & G=2 \mathrm{Cs}\end{cases}
$$

Knowing the adelic index allows us to give a description of G_{E}.

2Cn-Serre Curves

- Let E be a 2 Cn -Serre curve. Recall that $\mathcal{S}_{2 \mathrm{Cn}}=\{2.2 .0 .1,4.4 .0 .2$, 8.4.0.1\}. In particular, $G_{E}(2)=2 \mathrm{Cn}$.
- Thus, $\operatorname{Gal}(\mathbb{Q}(E[2]) / \mathbb{Q})$ is cyclic of order 3 . The conductor of $\mathbb{Q}(E[2])$ is given by $\sqrt{\Delta_{\mathbb{Q}(E[2])}}$. Further, it can be shown that $\sqrt{\Delta_{\mathbb{Q}(E[2])}}$ is odd.
- If $G_{E}\left(2^{\infty}\right) \neq$ 2.2.0.1, then the adelic index of 12 is explained by $\left[G L_{2}\left(\mathbb{Z}_{2}\right): G_{E}\left(2^{\infty}\right)\right]=4$ and the cubic entanglement arising from the containment $\mathbb{Q}(E[2]) \subseteq \mathbb{Q}\left(\zeta_{\sqrt{\Delta_{\mathbb{Q}(E[2])}}}\right)$.
- If $G_{E}\left(2^{\infty}\right)=$ 2.2.0.1, then there is an additional quadratic entanglement arising from inclusions $\mathbb{Q}\left(\sqrt[4]{\Delta_{E}}\right) \subseteq \mathbb{Q}(E[4])$ and $\mathbb{Q}\left(\sqrt[4]{\Delta_{E}}\right) \subseteq \mathbb{Q}\left(E\left[\left|\sqrt{\Delta_{E}}\right|\right]\right)$.

An Example

- Consider the elliptic curve E with LMFDB label 392 . a1 given by

$$
y^{2}=x^{3}-7 x+7
$$

We compute that $G_{E}\left(2^{\infty}\right)=2.2 .0 .1$ and that $\rho_{E, \ell^{\infty}}$ is surjective for all primes $\ell>2$. Thus, by our main theorem, E is a 2 Cn -Serre curve.

- The conductor of $\mathbb{Q}(E[2])$ is 7 , so there is a cubic entanglement between $\mathbb{Q}(E[2])$ and $\mathbb{Q}(E[7])$.
- Further, since $\sqrt[4]{\Delta_{E}}=2 \sqrt{7} \in \mathbb{Q}(E[4])$, we know $\sqrt{-7} \in \mathbb{Q}(E[4]) \cap \mathbb{Q}(E[7])$. Thus there is a quadratic entanglement between $\mathbb{Q}(E[4])$ and $\mathbb{Q}(E[7])$.
- Using Sutherland's galrep code, we compute that

$$
G_{E}(4)=\left\langle\left(\begin{array}{cc}
2 & 3 \\
3 & 3
\end{array}\right),\left(\begin{array}{cc}
1 & 3 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
2 & 1 \\
3 & 1
\end{array}\right)\right\rangle \subseteq \mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z}) .
$$

An Example

Using Magma and our above work, we compute that

$$
G_{E}(28)=\left\langle\left(\begin{array}{cc}
26 & 23 \\
1 & 19
\end{array}\right),\left(\begin{array}{cc}
19 & 27 \\
21 & 12
\end{array}\right),\left(\begin{array}{cc}
8 & 5 \\
27 & 21
\end{array}\right)\right\rangle .
$$

Further, the adelic image $G_{E} \subseteq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ is $\widehat{G_{E}(28)}$.
Our result agrees up to conjugacy with the output of Zywina's recent code.

Application

Knowing G_{E} for the entire family of G-Serre curves is valuable in applications.

1. Koblitz conjecture (and Zywina's refinement)
2. Lang-Trotter conjecture
3. Titchmarsh divisor problem for elliptic curves
4. Cyclicity conjecture

In particular, we give an application to the cyclicity conjecture.
Question. Given an elliptic curve E / \mathbb{Q}, what is the density C_{E} of primes p for which $E\left(\mathbb{F}_{p}\right)$ is cyclic?

Theorem (Serre). Assume GRH. If E / \mathbb{Q} is an elliptic curve, then

$$
C_{E}=\sum_{n=1}^{\infty} \frac{\mu(n)}{\# G_{E}(n)}
$$

The entanglement correction factor \mathfrak{C}_{E} associated with E is defined by

$$
C_{E}=\mathfrak{C}_{E} \prod_{\ell}\left(1-\frac{1}{\# G_{E}(\ell)}\right)
$$

In his thesis, Brau showed how to compute \mathfrak{C}_{E} given G_{E} (under mild assumptions).
Example. Consider the elliptic curve E given by 392 . a 1 from before. We have

$$
C_{E} \approx 1.000496 \cdot 0.651002=0.651324
$$

Table of Relative Serre Curves

G	$G_{E}\left(2^{\infty}\right)$	LMFDB	Weierstrass equation	m_{E}	\mathfrak{C}_{E}
2B	2.3 .0 .1	$69 . \mathrm{a} 1$	$y^{2}+x y+y=x^{3}-16 x-25$	276	1
2B	8.6 .0 .2	$1152 . \mathrm{d} 1$	$y^{2}=x^{3}-216 x-864$	24	1
2B	8.6 .0 .4	$102 . \mathrm{a} 1$	$y^{2}+x y=x^{3}+x^{2}-2 x$	136	$\frac{78337}{78336}$
2B	8.6 .0 .1	$46 . \mathrm{a} 2$	$y^{2}+x y=x^{3}-x^{2}-10 x-12$	184	$\frac{267169}{267168}$
2B	8.6 .0 .6	$46 . \mathrm{a} 1$	$y^{2}+x y=x^{3}-x^{2}-170 x-812$	184	1
2B	8.6 .0 .3	$490 . \mathrm{f} 1$	$y^{2}+x y=x^{3}-1191 x+15721$	56	1
2B	8.6 .0 .5	$102 . \mathrm{a} 2$	$y^{2}+x y=x^{3}+x^{2}+8 x+10$	136	1
2Cn	2.2 .0 .1	$392 . \mathrm{a} 1$	$y^{2}=x^{3}-7 x+7$	28	$\frac{2017}{2016}$
2Cn	4.4 .0 .2	$392 . \mathrm{c} 1$	$y^{2}=x^{3}-x^{2}-16 x+29$	28	$\frac{2017}{2016}$
2Cn	8.4 .0 .1	$3136 . \mathrm{b} 1$	$y^{2}=x^{3}-1372 x-19208$	56	$\frac{2017}{2016}$

Thank you!

