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Galois Representations

Let £/Q be an elliptic curve. For n > 2, consider the n-torsion subgroup

E[n]={P€ E(Q) :nP =0} =Z/nZ & L] nZ.
Taking an inverse limit, we obtain the adelic Tate module of E,
T(E) = lim E[n] 2 Z & Z
where Z = m 7/ nZ denotes the ring of profinite integers.
Then Gal(Q/Q) acts on T(E), giving rise to the adelic Galois representation
pe: Gal(Q/Q) — Aut(T(E)) = GL,(Z).

We write Gg for the image of pg, which is defined up to conjugacy in GLz(z).
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Serre’s Open Image Theorem

Upon composing with the relevant projection maps, we obtain

pese s Gal(Q/Q) — GL,(Z) — GLy(Zy) (-adic
pen: Gal(Q/Q) — GLy(Z) — GL,(Z/nZ) mod n

Theorem. If E/Q is non-CM (i.e., End(Eg) = Z), then
[GL,(Z) : Gf] < .

Consequently, pg s is surjective for all sufficiently large prime numbers /.

Example 1. The elliptic curve E with LMFDB label 11. a1 is non-CM. The ¢-adic

Galois representation pg ¢ is nonsurjective for £ = 5 and surjective for all ¢ # 5.
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Serre Curves

Example 2. The elliptic curve E with LMFDB label 37 . a1 is non-CM. For this

curve, the (-adic Galois representation is surjective for all prime numbers /.

Although the (-adic Galois representation pg ¢~ may be surjective for all prime
numbers ¢, Serre noted that (over Q) by the Weil pairing and Kronecker-Weber

theorem, the adelic Galois representation pr cannot be surjective. As such,

[GLy(Z) : G| > 2. (1)

[ An elliptic curve E/Q for which equality holds in (1) is a Serre curve. ]

In other words, Serre curves are elliptic curves where Gg is “as large as possible”.
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Relative Serre Curves

Building on work of Duke, in his 2005 Ph.D. thesis, Jones proved the following.

[ Theorem. When ordered by naive height, 100% of E/Q are Serre curves. ]

Empirically, 48.223% of elliptic curves of conductor < 500 000 are Serre curves.

In a joint work with Mayle (to appear in LuCaNT), we consider elliptic curves
whose adelic image Gg is “as large as possible” given a prescribed obstruction.

Let G C GL,(Z/nZ) be a subgroup and write [-, -] for the commutator of a group.

An elliptic curve E/Q is a G-Serre curve if Ge(n) C G and [Gg, G¢] = [G, GJ. ]
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In particular, we study G-Serre curves for the proper subgroups G C GL,(Z/27).

These subgroups are of index 6, 3, and 2, and we denote them respectively by

2cs ={(o9)}, 2B=((51)), 2cn:=((11))-
Associated to these groups, we define the sets of subgroups of GL,(Z,),

Sacs ={2.6.0.1,8.12.0.2,4.12.0.2, 8.12.0.1,4.12.0.1, 8.12.0.3, 8.24.0.5, 8.24.0.7, 8.24.0.2,
8.24.0.1,8.12.0.4, 8.24.0.6, 8.24.0.8, 8.24.0.3, 8.24.0.4 },
Sap ={2.3.0.1,8.6.0.2,8.6.0.4,8.6.0.1, 8.6.0.6, 8.6.0.3, 8.6.0.5 },
Socn ={2.2.0.1,4.4.0.2,8.4.0.1}

where N.i.g.n denotes the subgroup of GLz(z) with the given
Rouse-Sutherland-Zureick-Brown label.
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Characterization of Relative Serre Curves

Theorem (M.-Rakvi 2022). For a subgroup G € {2Cs, 2B, 2Cn} and

an elliptic curve E/Q, we have that E is a G-Serre curve if and only if

pe2(Gal(Q/Q)) € Sg and pr s~ is surjective for all odd prime numbers /.

By work of Rouse-Sutherland—Zureick-Brown, our characterization can be used
to computationally determine G-Serre curves. By running our code on all curves
in Cremona’s database, we now know that among curves of conductor < 500 000:

48.223% — 78.075%.

Serre curves Serre curves
+ Max relative to
obstruction mod 2

Moreover, for all such curves we have a description of the adelic image Gg.
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Summary of Proof

Let G C GL,(Z/27) and write G for the full preimage of G in GL,(Z).
Let £/Q be such that G¢(2) = G.
Recall that E is a G-Serre curve if and only if G¢ C G and [Gg, G¢] = [G, C].

Thus the problem of deciding whether E is a G-Serre curve is reduced to

determining whether the commutator condition [Gg, G¢] = [G, G| holds.

Jones showed that the commutator condition holds if and only if it holds modulo
216. We reduced the modulus my to 36 if G € {2B, 2Cn} and 72 if G = 2Cs.

In order for [Gg, Ge] = [G, G] (mod my), it must be that
[Ge, Ge] = [G,G] (mod 9) and [Gg, Ge] = [G,G] (mod 2¥).  (2)
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The first condition G¢(9) = GL,(Z/9Z). The second condition puts a constraint
on Gg(2*). Considering the possible images of pg o« and possible 2¥-9 interactions,
we note (perhaps surprisingly) that (2) is also a sufficient condition for

[Ge, Ge] = [G, G]. In this way, we prove the theorem.

Moreover, we know the adelic index of a G-Serre curve.

7~

Proposition. If E is a G-Serre curve for a G € {2Cs, 2B, 2Cn}, then

12 G e {2B,2Cn}
48 G = 2Cs.

[GL,(Z): G| =

Knowing the adelic index allows us to give a description of G.
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2Cn-Serre Curves

« Let E be a 2Cn-Serre curve. Recall that Sz, = {2.2.0.1,4.4.0.2,8.4.0.1}. In
particular, G¢(2) = 2Cn.

« Thus, Gal(Q(E[2])/Q) is cyclic of order 3. The conductor of Q(E[2]) is given
by \/m Further, it can be shown that \/m is odd.

o If Gg(2°°) # 2.2.0.1, then the adelic index of 12 is explained by
[GLy(Z,): Ge(2°°)] = 4 and the cubic entanglement arising from the

containment Q(E[2]) C Q(g\/m).

E[2

o If Gg(2°°) = 2.2.0.1, then there is an additional quadratic entanglement

arising from inclusions Q(v/Af) C Q(E[4]) and Q(v/Ag) € Q(E[|VAE]]).
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An Example

« Consider the elliptic curve E with LMFDB label 392 . a1 given by
y'=x—7x+7.
We compute that Gg(2°°) = 2.2.0.1 and that pg s~ is surjective for all primes
¢ > 2. Thus, by our main theorem, E is a 2Cn-Serre curve.
« The conductor of Q(E[2]) is 7, so there is a cubic entanglement between
Q(E[2]) and Q(E[7]).

« Further, since /Ar = 2v/7 € Q(E[4]), we know /=7 € Q(E[4]) N Q(E[7)).
Thus there is a quadratic entanglement between Q(E[4]) and Q(E[7]).

« Using Sutherland’s galrep code, we compute that

Ge(4) = ((33),(55): (31)) € GLo(Z/4Z).
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[GLZ( ): Ge] = : 3 . 2 =12.

2- adlc index 2-7 entanglement 4-7 entanglement

Q(E[28))

7N

Q(E[4]) Q(E[7])




An Example

Using Magma and our above work, we compute that

Go(28) = 26 23\ (19 27 8 5
BT 19) 7 21 12) 0 \27 21) )

~ —

Further, the adelic image Gg C GL,(Z) is G¢(28).

Our result agrees up to conjugacy with the output of Zywina’s recent code.
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Application

Knowing G for the entire family of G-Serre curves is valuable in applications.

1. Koblitz conjecture (and Zywina’s refinement)
2. Lang-Trotter conjecture
3. Titchmarsh divisor problem for elliptic curves

4. Cyclicity conjecture

In particular, we give an application to the cyclicity conjecture.

Question. Given an elliptic curve E/Q, what is the density C¢ of primes p
for which E(F,) is cyclic?
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Theorem (Serre). Assume GRH. If £/Q is an elliptic curve, then

— wn)
Ce= 2. Zem)

The entanglement correction factor € associated with E is defined by

=all(5am)

In his thesis, Brau showed how to compute €¢ given Gg (under mild assumptions).

Example. Consider the elliptic curve E given by 392 . a1 from before. We have

Cr =~ 1.000496 - 0.651002 = 0.651324.
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Table of Relative Serre Curves

G Ge(2%°) LMFDB  Weierstrass equation mg Cp
2B 2.3.0.1 ev.a1 Y 4+ xy+y=x3—16x—25 276 1

2B 8.6.0.2 1152.d1  y? = x3 —216x — 864 24 1

2B 8.6.0.4 102a1 Y24 xy = x>+ x* — 2x 136 BT
2B 8.6.0.1 46.a2 yi+xy =x3—x2 —10x — 12 184 218
2B 8.6.0.6 46.a1 yi+xy=x>—x2—170x —812 184 1

2B 8.6.0.3 490.f1 y? 4+ xy = x> — 1191x + 15721 56 1

2B 8.6.0.5 10242 y2+xy = x>+ x2+8x+ 10 136 1

2 3 2017
2cn  2.2.0.1  392a1 yvi=x3—Tx+7 8 27
2cn 4.4.0.2 392.c1 y2=x3—x? —16x 429 8 X0
2cn  8.4.0.1 3136b1  y? = x> — 1372x — 19208 56 X7

2016
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Thank you!
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