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Galois Representations

Let E/Q be an elliptic curve. For n ≥ 2, consider the n-torsion subgroup

E[n] = {P ∈ E(Q) : nP = O} ∼= Z/nZ⊕ Z/nZ.

Taking an inverse limit, we obtain the adelic Tate module of E ,

T (E) = lim←− E[n] ∼= Ẑ⊕ Ẑ

where Ẑ = lim←−Z/nZ denotes the ring of profinite integers.

Then Gal(Q/Q) acts on T (E), giving rise to the adelic Galois representation

ρE : Gal(Q/Q) −→ Aut(T (E)) ∼= GL2(Ẑ).

We write GE for the image of ρE , which is defined up to conjugacy in GL2(Ẑ).
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Serre’s Open Image Theorem

Upon composing with the relevant projection maps, we obtain

ρE,`∞ : Gal(Q/Q) −→ GL2(Ẑ) −→ GL2(Z`) `-adic

ρE,n : Gal(Q/Q) −→ GL2(Ẑ) −→ GL2(Z/nZ) mod n

Theorem. If E/Q is non-CM (i.e., End(EQ) = Z), then

[GL2(Ẑ) : GE ] <∞.

Consequently, ρE,`∞ is surjective for all su�iciently large prime numbers `.

Example 1. The elliptic curve E with LMFDB label 11.a1 is non-CM. The `-adic
Galois representation ρE,`∞ is nonsurjective for ` = 5 and surjective for all ` 6= 5.
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Serre Curves

Example 2. The elliptic curve E with LMFDB label 37.a1 is non-CM. For this
curve, the `-adic Galois representation is surjective for all prime numbers `.

Although the `-adic Galois representation ρE,`∞ may be surjective for all prime
numbers `, Serre noted that (over Q) by the Weil pairing and Kronecker-Weber
theorem, the adelic Galois representation ρE cannot be surjective. As such,

[GL2(Ẑ) : GE ] ≥ 2. (1)

An elliptic curve E/Q for which equality holds in (1) is a Serre curve.

In other words, Serre curves are elliptic curves where GE is “as large as possible”.
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Relative Serre Curves

Building on work of Duke, in his 2005 Ph.D. thesis, Jones proved the following.

Theorem. When ordered by naive height, 100% of E/Q are Serre curves.

Empirically, 48.223% of elliptic curves of conductor ≤ 500 000 are Serre curves.

In a joint work with Mayle (to appear in LuCaNT), we consider elliptic curves
whose adelic image GE is “as large as possible” given a prescribed obstruction.

Let G ⊆ GL2(Z/nZ) be a subgroup and write [·, ·] for the commutator of a group.

An elliptic curve E/Q is a G-Serre curve if GE(n) ⊆ G and [GE ,GE ] = [Ĝ, Ĝ].
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In particular, we study G-Serre curves for the proper subgroups G ⊆ GL2(Z/2Z).

These subgroups are of index 6, 3, and 2, and we denote them respectively by

2Cs := {( 1 0
0 1 )} , 2B := 〈( 1 1

0 1 )〉 , 2Cn := 〈( 0 1
1 1 )〉 .

Associated to these groups, we define the sets of subgroups of GL2(Z2),

S2Cs :={2.6.0.1, 8.12.0.2, 4.12.0.2, 8.12.0.1, 4.12.0.1, 8.12.0.3, 8.24.0.5, 8.24.0.7, 8.24.0.2,

8.24.0.1, 8.12.0.4, 8.24.0.6, 8.24.0.8, 8.24.0.3, 8.24.0.4},
S2B :={2.3.0.1, 8.6.0.2, 8.6.0.4, 8.6.0.1, 8.6.0.6, 8.6.0.3, 8.6.0.5},
S2Cn :={2.2.0.1, 4.4.0.2, 8.4.0.1}

where N.i.g.n denotes the subgroup of GL2(Ẑ) with the given
Rouse–Sutherland–Zureick-Brown label.

Rakvi (University of Pennsylvania) 5/16



Characterization of Relative Serre Curves

Theorem (M.-Rakvi 2022). For a subgroup G ∈ {2Cs,2B,2Cn} and
an elliptic curve E/Q, we have that E is a G-Serre curve if and only if
ρE,2∞(Gal(Q/Q)) ∈ SG and ρE,`∞ is surjective for all odd prime numbers `.

By work of Rouse–Sutherland–Zureick-Brown, our characterization can be used
to computationally determine G-Serre curves. By running our code on all curves
in Cremona’s database, we now know that among curves of conductor ≤ 500 000:

48.223%
Serre curves

→ 78.075%.
Serre curves

+ Max relative to
obstruction mod 2

Moreover, for all such curves we have a description of the adelic image GE .
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Summary of Proof

Let G ⊆ GL2(Z/2Z) and write Ĝ for the full preimage of G in GL2(Ẑ).

Let E/Q be such that GE(2) = G.

Recall that E is a G-Serre curve if and only if GE ⊆ Ĝ and [GE ,GE ] = [Ĝ, Ĝ].

Thus the problem of deciding whether E is a G-Serre curve is reduced to
determining whether the commutator condition [GE ,GE ] = [Ĝ, Ĝ] holds.

Jones showed that the commutator condition holds if and only if it holds modulo
216. We reduced the modulus m0 to 36 if G ∈ {2B,2Cn} and 72 if G = 2Cs.

In order for [GE ,GE ] = [Ĝ, Ĝ] (mod m0), it must be that

[GE ,GE ] = [Ĝ, Ĝ] (mod 9) and [GE ,GE ] = [Ĝ, Ĝ] (mod 2k). (2)
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The first condition GE(9) = GL2(Z/9Z). The second condition puts a constraint
on GE(2k). Considering the possible images of ρE,2k and possible 2k-9 interactions,
we note (perhaps surprisingly) that (2) is also a su�icient condition for
[GE ,GE ] = [Ĝ, Ĝ]. In this way, we prove the theorem.

Moreover, we know the adelic index of a G-Serre curve.

Proposition. If E is a G-Serre curve for a G ∈ {2Cs,2B,2Cn}, then

[GL2(Ẑ) : GE ] =

12 G ∈ {2B,2Cn}
48 G = 2Cs.

Knowing the adelic index allows us to give a description of GE .
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2Cn-Serre Curves

• Let E be a 2Cn-Serre curve. Recall that S2Cn = {2.2.0.1, 4.4.0.2, 8.4.0.1}. In
particular, GE(2) = 2Cn.

• Thus, Gal(Q(E[2])/Q) is cyclic of order 3. The conductor of Q(E[2]) is given
by
√

∆Q(E[2]). Further, it can be shown that
√

∆Q(E[2]) is odd.

• If GE(2∞) 6= 2.2.0.1, then the adelic index of 12 is explained by
[GL2(Z2) : GE(2∞)] = 4 and the cubic entanglement arising from the
containment Q(E[2]) ⊆ Q(ζ√∆Q(E[2])

).

• If GE(2∞) = 2.2.0.1, then there is an additional quadratic entanglement
arising from inclusions Q( 4

√
∆E) ⊆ Q(E[4]) and Q( 4

√
∆E) ⊆ Q(E[

∣∣√∆E

∣∣]).
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An Example

• Consider the elliptic curve E with LMFDB label 392.a1 given by

y2 = x3 − 7x + 7.

We compute that GE(2∞) = 2.2.0.1 and that ρE,`∞ is surjective for all primes
` > 2. Thus, by our main theorem, E is a 2Cn-Serre curve.

• The conductor of Q(E[2]) is 7, so there is a cubic entanglement between
Q(E[2]) and Q(E[7]).

• Further, since 4
√

∆E = 2
√

7 ∈ Q(E[4]), we know
√
−7 ∈ Q(E[4]) ∩Q(E[7]).

Thus there is a quadratic entanglement between Q(E[4]) and Q(E[7]).

• Using Sutherland’s galrep code, we compute that

GE(4) = 〈( 2 3
3 3 ), ( 1 3

1 0 ), ( 2 1
3 1 )〉 ⊆ GL2(Z/4Z).
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[GL2(Ẑ) : GE ] = 2
2-adic index

· 3
2-7 entanglement

· 2
4-7 entanglement

= 12.

Q(E[28])

Q(E[4]) Q(E[7])

Q(E[2])

3 Q(
√
−7)

2

Q
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An Example

Using Magma and our above work, we compute that

GE(28) =

〈(
26 23
1 19

)
,

(
19 27
21 12

)
,

(
8 5
27 21

)〉
.

Further, the adelic image GE ⊆ GL2(Ẑ) is ĜE(28).

Our result agrees up to conjugacy with the output of Zywina’s recent code.
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Application

Knowing GE for the entire family of G-Serre curves is valuable in applications.

1. Koblitz conjecture (and Zywina’s refinement)

2. Lang-Tro�er conjecture

3. Titchmarsh divisor problem for elliptic curves

4. Cyclicity conjecture

In particular, we give an application to the cyclicity conjecture.

�estion. Given an elliptic curve E/Q, what is the density CE of primes p
for which E(Fp) is cyclic?
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Theorem (Serre). Assume GRH. If E/Q is an elliptic curve, then

CE =
∞∑
n=1

µ(n)

#GE(n)
.

The entanglement correction factor CE associated with E is defined by

CE = CE

∏
`

(
1− 1

#GE(`)

)
.

In his thesis, Brau showed how to compute CE given GE (under mild assumptions).

Example. Consider the elliptic curve E given by 392.a1 from before. We have

CE ≈ 1.000496 · 0.651002 = 0.651324.
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Table of Relative Serre Curves

G GE(2∞) LMFDB Weierstrass equation mE CE

2B 2.3.0.1 69.a1 y2 + xy + y = x3 − 16x − 25 276 1

2B 8.6.0.2 1152.d1 y2 = x3 − 216x − 864 24 1

2B 8.6.0.4 102.a1 y2 + xy = x3 + x2 − 2x 136 78337
78336

2B 8.6.0.1 46.a2 y2 + xy = x3 − x2 − 10x − 12 184 267169
267168

2B 8.6.0.6 46.a1 y2 + xy = x3 − x2 − 170x − 812 184 1

2B 8.6.0.3 490.f1 y2 + xy = x3 − 1191x + 15721 56 1

2B 8.6.0.5 102.a2 y2 + xy = x3 + x2 + 8x + 10 136 1

2Cn 2.2.0.1 392.a1 y2 = x3 − 7x + 7 28 2017
2016

2Cn 4.4.0.2 392.c1 y2 = x3 − x2 − 16x + 29 28 2017
2016

2Cn 8.4.0.1 3136.b1 y2 = x3 − 1372x − 19208 56 2017
2016
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Thank you!
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