Serre Curves Relative to Obstructions Modulo 2

LuCaNT Conference July 11, 2023

Jacob Mayle and Rakvi

University of Pennsylvania Dept. of Mathematics Let E/\mathbb{Q} be an elliptic curve. For $n \ge 2$, consider the *n*-torsion subgroup

$$E[n] = \{P \in E(\overline{\mathbb{Q}}) : nP = \mathcal{O}\} \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}.$$

Taking an inverse limit, we obtain the adelic Tate module of *E*,

$$T(E) = \varprojlim E[n] \cong \widehat{\mathbb{Z}} \oplus \widehat{\mathbb{Z}}$$

where $\widehat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z}$ denotes the ring of profinite integers. Then $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on T(E), giving rise to the adelic Galois representation $\rho_E \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{Aut}(T(E)) \cong \operatorname{GL}_2(\widehat{\mathbb{Z}}).$

We write G_E for the image of ρ_E , which is defined up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$.

Serre's Open Image Theorem

Upon composing with the relevant projection maps, we obtain

$$\begin{array}{ll} \rho_{E,\ell^{\infty}} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_{2}(\widehat{\mathbb{Z}}) \longrightarrow \operatorname{GL}_{2}(\mathbb{Z}_{\ell}) & \ell\text{-adic} \\ \rho_{E,n} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_{2}(\widehat{\mathbb{Z}}) \longrightarrow \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z}) & \text{mod } n \end{array}$$

Theorem. If E/\mathbb{Q} is non-CM (i.e., $End(E_{\overline{\mathbb{Q}}}) = \mathbb{Z}$), then $[GL_2(\widehat{\mathbb{Z}}) : G_E] < \infty.$

Consequently, $\rho_{E,\ell^{\infty}}$ is surjective for all sufficiently large prime numbers ℓ .

Example 1. The elliptic curve *E* with LMFDB label 11. a1 is non-CM. The ℓ -adic Galois representation $\rho_{E,\ell^{\infty}}$ is nonsurjective for $\ell = 5$ and surjective for all $\ell \neq 5$.

Example 2. The elliptic curve *E* with LMFDB label 37.a1 is non-CM. For this curve, the ℓ -adic Galois representation is surjective for all prime numbers ℓ .

Although the ℓ -adic Galois representation $\rho_{E,\ell^{\infty}}$ may be surjective for all prime numbers ℓ , Serre noted that (over \mathbb{Q}) by the Weil pairing and Kronecker-Weber theorem, the adelic Galois representation ρ_E cannot be surjective. As such,

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}):G_E] \ge 2. \tag{1}$$

An elliptic curve E/\mathbb{Q} for which equality holds in (1) is a *Serre curve*.

In other words, Serre curves are elliptic curves where G_E is "as large as possible".

Building on work of Duke, in his 2005 Ph.D. thesis, Jones proved the following.

Theorem. When ordered by naive height, 100% of E/\mathbb{Q} are Serre curves.

Empirically, 48.223% of elliptic curves of conductor \leq 500 000 are Serre curves.

In a joint work with Mayle (to appear in LuCaNT), we consider elliptic curves whose adelic image G_E is "as large as possible" given a prescribed obstruction.

Let $G \subseteq GL_2(\mathbb{Z}/n\mathbb{Z})$ be a subgroup and write $[\cdot, \cdot]$ for the commutator of a group.

An elliptic curve E/\mathbb{Q} is a *G*-Serre curve if $G_E(n) \subseteq G$ and $[G_E, G_E] = [\widehat{G}, \widehat{G}]$.

In particular, we study *G*-Serre curves for the proper subgroups $G \subseteq GL_2(\mathbb{Z}/2\mathbb{Z})$.

These subgroups are of index 6, 3, and 2, and we denote them respectively by

$$2\mathrm{Cs}\coloneqq \left\{ \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}
ight)
ight\}, \quad 2\mathrm{B}\coloneqq \left\langle \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}
ight)
ight
angle, \quad 2\mathrm{Cn}\coloneqq \left\langle \left(\begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix}
ight)
ight
angle.$$

Associated to these groups, we define the sets of subgroups of $GL_2(\mathbb{Z}_2)$,

$$\begin{split} \mathcal{S}_{\rm 2Cs} &:= \{ 2.6.0.1, 8.12.0.2, 4.12.0.2, 8.12.0.1, 4.12.0.1, 8.12.0.3, 8.24.0.5, 8.24.0.7, 8.24.0.2, \\ &\quad 8.24.0.1, 8.12.0.4, 8.24.0.6, 8.24.0.8, 8.24.0.3, 8.24.0.4 \}, \\ \mathcal{S}_{\rm 2B} &:= \{ 2.3.0.1, 8.6.0.2, 8.6.0.4, 8.6.0.1, 8.6.0.6, 8.6.0.3, 8.6.0.5 \}, \\ \mathcal{S}_{\rm 2Cn} &:= \{ 2.2.0.1, 4.4.0.2, 8.4.0.1 \} \end{split}$$

where N.i.g.n denotes the subgroup of $GL_2(\widehat{\mathbb{Z}})$ with the given Rouse–Sutherland–Zureick-Brown label.

Theorem (M.-Rakvi 2022). For a subgroup $G \in \{2Cs, 2B, 2Cn\}$ and an elliptic curve E/\mathbb{Q} , we have that E is a G-Serre curve if and only if $\rho_{E,2^{\infty}}(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) \in S_G$ and $\rho_{E,\ell^{\infty}}$ is surjective for all odd prime numbers ℓ .

By work of Rouse–Sutherland–Zureick-Brown, our characterization can be used to computationally determine *G*-Serre curves. By running our code on all curves in Cremona's database, we now know that among curves of conductor \leq 500 000:

$$\begin{array}{c} 48.223\% \\ \text{Serre curves} \\ + \text{Max relative t} \\ \text{obstruction mod} \end{array}$$

Moreover, for all such curves we have a description of the adelic image G_E .

Let $G \subseteq GL_2(\mathbb{Z}/2\mathbb{Z})$ and write \widehat{G} for the full preimage of G in $GL_2(\widehat{\mathbb{Z}})$. Let E/\mathbb{Q} be such that $G_E(2) = G$.

Recall that *E* is a *G*-Serre curve if and only if $G_E \subseteq \widehat{G}$ and $[G_E, G_E] = [\widehat{G}, \widehat{G}]$.

Thus the problem of deciding whether *E* is a *G*-Serre curve is reduced to determining whether the commutator condition $[G_E, G_E] = [\widehat{G}, \widehat{G}]$ holds.

Jones showed that the commutator condition holds if and only if it holds modulo 216. We reduced the modulus m_0 to 36 if $G \in \{2B, 2Cn\}$ and 72 if G = 2Cs.

In order for $[G_E, G_E] = [\widehat{G}, \widehat{G}] \pmod{m_0}$, it must be that $[G_E, G_E] = [\widehat{G}, \widehat{G}] \pmod{9}$ and $[G_E, G_E] = [\widehat{G}, \widehat{G}] \pmod{2^k}$. (2) The first condition $G_E(9) = \operatorname{GL}_2(\mathbb{Z}/9\mathbb{Z})$. The second condition puts a constraint on $G_E(2^k)$. Considering the possible images of $\rho_{E,2^k}$ and possible 2^k -9 interactions, we note (perhaps surprisingly) that (2) is also a sufficient condition for $[G_E, G_E] = [\widehat{G}, \widehat{G}]$. In this way, we prove the theorem.

Moreover, we know the adelic index of a *G*-Serre curve.

Proposition. If *E* is a *G*-Serre curve for a $G \in \{2Cs, 2B, 2Cn\}$, then $[GL_2(\widehat{\mathbb{Z}}): G_E] = \begin{cases} 12 & G \in \{2B, 2Cn\} \\ 48 & G = 2Cs. \end{cases}$

Knowing the adelic index allows us to give a description of G_E .

2Cn-Serre Curves

- Let *E* be a 2Cn-Serre curve. Recall that $S_{2Cn} = \{2.2.0.1, 4.4.0.2, 8.4.0.1\}$. In particular, $G_E(2) = 2Cn$.
- Thus, $Gal(\mathbb{Q}(E[2])/\mathbb{Q})$ is cyclic of order 3. The conductor of $\mathbb{Q}(E[2])$ is given by $\sqrt{\Delta_{\mathbb{Q}(E[2])}}$. Further, it can be shown that $\sqrt{\Delta_{\mathbb{Q}(E[2])}}$ is odd.
- If G_E(2[∞]) ≠ 2.2.0.1, then the adelic index of 12 is explained by [GL₂(ℤ₂): G_E(2[∞])] = 4 and the cubic entanglement arising from the containment ℚ(E[2]) ⊆ ℚ(ζ_{√ΔQ(E[2])}).
- If $G_E(2^{\infty}) = 2.2.0.1$, then there is an additional quadratic entanglement arising from inclusions $\mathbb{Q}(\sqrt[4]{\Delta_E}) \subseteq \mathbb{Q}(E[4])$ and $\mathbb{Q}(\sqrt[4]{\Delta_E}) \subseteq \mathbb{Q}(E[|\sqrt{\Delta_E}|])$.

An Example

• Consider the elliptic curve *E* with LMFDB label 392.a1 given by

$$y^2 = x^3 - 7x + 7.$$

We compute that $G_E(2^{\infty}) = 2.2.0.1$ and that $\rho_{E,\ell^{\infty}}$ is surjective for all primes $\ell > 2$. Thus, by our main theorem, *E* is a 2Cn-Serre curve.

- The conductor of $\mathbb{Q}(E[2])$ is 7, so there is a cubic entanglement between $\mathbb{Q}(E[2])$ and $\mathbb{Q}(E[7])$.
- Further, since $\sqrt[4]{\Delta_E} = 2\sqrt{7} \in \mathbb{Q}(E[4])$, we know $\sqrt{-7} \in \mathbb{Q}(E[4]) \cap \mathbb{Q}(E[7])$. Thus there is a quadratic entanglement between $\mathbb{Q}(E[4])$ and $\mathbb{Q}(E[7])$.
- Using Sutherland's galrep code, we compute that

$$G_{E}(4) = \langle \begin{pmatrix} 2 & 3 \\ 3 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \rangle \subseteq \mathsf{GL}_{2}(\mathbb{Z}/4\mathbb{Z}).$$

An Example

Using Magma and our above work, we compute that

$$G_E(28) = \left\langle \begin{pmatrix} 26 & 23 \\ 1 & 19 \end{pmatrix}, \begin{pmatrix} 19 & 27 \\ 21 & 12 \end{pmatrix}, \begin{pmatrix} 8 & 5 \\ 27 & 21 \end{pmatrix}
ight
angle.$$

Further, the adelic image $G_E \subseteq GL_2(\widehat{\mathbb{Z}})$ is $\widehat{G_E(28)}$.

Our result agrees up to conjugacy with the output of Zywina's recent code.

Knowing G_E for the entire family of G-Serre curves is valuable in applications.

- 1. Koblitz conjecture (and Zywina's refinement)
- 2. Lang-Trotter conjecture
- 3. Titchmarsh divisor problem for elliptic curves
- 4. Cyclicity conjecture

In particular, we give an application to the cyclicity conjecture.

Question. Given an elliptic curve E/\mathbb{Q} , what is the density C_E of primes p for which $E(\mathbb{F}_p)$ is cyclic?

Theorem (Serre). Assume GRH. If E/\mathbb{Q} is an elliptic curve, then

$$C_E = \sum_{n=1}^{\infty} \frac{\mu(n)}{\#G_E(n)}.$$

The entanglement correction factor \mathfrak{C}_E associated with E is defined by

$$C_E = \mathfrak{C}_E \prod_{\ell} \left(1 - rac{1}{\# G_E(\ell)}
ight).$$

In his thesis, Brau showed how to compute \mathfrak{C}_E given G_E (under mild assumptions). **Example.** Consider the elliptic curve E given by 392.a1 from before. We have $C_E \approx 1.000496 \cdot 0.651002 = 0.651324.$

Table of Relative Serre Curves

G	$G_E(2^\infty)$	LMFDB	Weierstrass equation	m _E	\mathfrak{C}_E
2B	2.3.0.1	69.a1	$y^2 + xy + y = x^3 - 16x - 25$	276	1
2B	8.6.0.2	1152.d1	$y^2 = x^3 - 216x - 864$	24	1
2B	8.6.0.4	102.a1	$y^2 + xy = x^3 + x^2 - 2x$	136	78337 78336
2B	8.6.0.1	46.a2	$y^2 + xy = x^3 - x^2 - 10x - 12$	184	<u>267169</u> 267168
2B	8.6.0.6	46.a1	$y^2 + xy = x^3 - x^2 - 170x - 812$	184	1
2B	8.6.0.3	490.f1	$y^2 + xy = x^3 - 1191x + 15721$	56	1
2B	8.6.0.5	102.a2	$y^2 + xy = x^3 + x^2 + 8x + 10$	136	1
2Cn	2.2.0.1	392.a1	$y^2 = x^3 - 7x + 7$	28	$\frac{2017}{2016}$
2Cn	4.4.0.2	392.c1	$y^2 = x^3 - x^2 - 16x + 29$	28	$\frac{2017}{2016}$
2Cn	8.4.0.1	3136.b1	$y^2 = x^3 - 1372x - 19208$	56	<u>2017</u> 2016

Thank you!