Computing nonsurjective primes associated to Galois representations of genus 2 curves

Barinder Singh Banwait, Armand Brumer, **Hyun Jong Kim**, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

7/11/2023

Let

- C/\mathbb{Q} be a smooth, projective, geometrically integral curve of genus g,
- *A* = Jac(*C*).
- For each prime ℓ , there is the *mod-* ℓ *Galois representation*

 $\rho_{\mathcal{A},\ell}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{Aut}(\mathcal{A}[\ell]) \cong \mathsf{GSp}_{2g}(\mathbb{F}_{\ell})$

Question

For what ℓ is $\rho_{A,\ell}$ surjective?

Serre's Open Image Theorem addresses this question almost entirely

Theorem (Serre, 2000)

If A is typical, i.e. $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \mathbb{Z}$, and if dim A is 2, 6, or odd, then $\rho_{A,\ell}$ is surjective for all but finitely many ℓ .

Problem

Given a typical genus 2 curve C/\mathbb{Q} , can we compute the finitely many nonsurjective primes ℓ ?

- The analogous problem for elliptic curves with an algorithm implemented in Sage.
- Sutherland (2015) devised an algorithm to compute Im $\rho_{E,\ell}$.

- "Part 1 algorithm (Dieulefait, 2002 + small improvements)":
 - Given C/\mathbb{Q} , generate a finite list PossiblyNonsurjectivePrimes(C) that provably contains all nonsurjective primes ℓ
- "Part 2 algorithm":
 - Given C/Q and B > 0, obtain a sublist LikelyNonsurjectivePrimes(C; B).
 - If *B* is big enough, then this sublist consists precisely of the nonsurjective primes.

Running our code on 8450.a.8450.1 from LMFDB:

$$y^{2} + (x + 1)y = x^{5} + x^{4} - 9x^{3} - 5x^{2} + 21x$$

Part 1 gives us

as the only possibly non-surjective primes.

Running Part 2 by sampling Frob_p for all p < 1,000

Conclusions	Frobenius witnesses for each maximal subgroup
Not surjective at 2 Surjective at 3	[3, 7, 7, 0, 3] [11, 11, 29, 11, 11, 11]
Surjective at 5	[7, 3, 11, 3, 3, 3, 3, 11, 3]
Surjective at 7	[29, 29, 3, 11]
Not surjective at 13	[0, 0, 3]

The two parts share overarching ideas

- Use Mitchell's 1914 classification of maximal (proper) subgroups of $\mathsf{PSp}_4(\mathbb{F}_\ell)$
- Sample characteristic polynomials P_p(t) of Frobenius elements Frob_p ∈ Gal(Q/Q) acting on A[ℓ].

Remark

- We classify maximal subgroups of GSp₄(𝔽_ℓ) with surjective similitude character.
- ρ_{A,ℓ} is surjective ⇔ Im ρ_{A,ℓ} is not contained in one of these maximal subgroups.
- $P_p(t)$ can be computed by counting $C(\mathbb{F}_p)$ and $C(\mathbb{F}_{p^2})$.

Write (V, ω) for the 4-dimensional symplectic bilinear form space.

- Reducible maximal subgroups
 - $\bullet\,$ Stabilizer of a 1-dimensional isotropic subspace for $\omega\,$
 - $\bullet\,$ Stabilizer of a 2-dimensional isotropic subspace for $\omega\,$
- Irreducible subgroups; normalizer of stabilizer subgroup of V₁ and V₂ where V = V₁ ⊕ V₂, dim V_i = 2, and V₁ and V₂ are jointly defined over 𝔽_ℓ and either
 - V_i are both nondegenerate for ω or
 - V_i are both isotropic for ω
- Stabilizer of a twisted cubic
- Exceptional maximal subgroups

Write ω for the symplectic bilinear form.

- Reducible maximal subgroups
 - $\bullet\,$ Stabilizer of a 1-dimensional isotropic subspace for $\omega\,$
 - $\bullet\,$ Stabilizer of a 2-dimensional isotropic subspace for $\omega\,$
- Irreducible subgroups; normalizer of stabilizer subgroup of V_1 and V_2 where $V = V_1 \oplus V_2$, dim $V_i = 2$, and V_1 and V_2 are jointed defined over \mathbb{F}_{ℓ} and either
 - V_i are both nondegenerate for ω or
 - V_i are both isotropic for ω
- Stabilizer of a twisted cubic (unless $\ell \leq 7$ or ℓ is not semistable)
- Exceptional maximal subgroups (unless $\ell \leq 7$ or ℓ is not semistable)

Suppose that ℓ is nonsurjective good prime by virtue of:

• $\rho_{A,\ell}^{\text{semisimplification}} \cong_{\overline{\mathbb{F}}_{\ell}} \pi_1 \oplus \pi_2$ where

• dim
$$(\pi_i) = 2$$
, det $(\pi_i) = \operatorname{cyc}_{\ell}$.

By Khare-Wintenberger's theorem (2006, 2009), previously Serre's conjecture, there exist modular forms f_i such that $\pi_i \cong \rho_{f_i,\ell}$.

• In fact, $f_i \in S_2^{\text{new}}(\Gamma_0(N_i))$.

• Thus, for any good prime $p \neq \ell N$,

$$egin{aligned} P_p(t) &\equiv (t^2 - a_p(f_1)t + p)(t^2 - a_p(t_2)t + p) \pmod{\ell}, \ &\ell \mid \mathrm{Res}(P_p(t), t^2 - a_p(f_i)t + p) \end{aligned}$$

Part 2 removes surjective primes by sampling Frob_p

- $\rho_{A,\ell}$ is not surjective $\Leftrightarrow \operatorname{Im} \rho_{A,\ell}$ is contained in some maximal subgroup.
- There are criteria for P_p(t) to satisfy for Im ρ_{A,ℓ} to be contained in the various types/conjugacy classes of maximal subgroups of GSp₄(𝔽_ℓ).
- Given C and B > 0, and for each ℓ, we sample P_p(t) for p < B and remove ℓ if all of these criteria are violated for some (combination of) P_p(t).

Remark

 $\rho_{A,2}$ is surjective if and only if the Galois group of the splitting field of the discriminant of C is Sym(6).

Proposition

Let $\ell > 7$ be a prime and let $G \subseteq GSp_4(\mathbb{F}_{\ell})$. Then, $G = GSp_4(\mathbb{F}_{\ell})$ if and only if there exist $X, Y \in G$ such that

- charpoly(X) is irreducible
- trace(Y) ≠ 0 and charpoly(Y) has a linear factor with multiplicity one.

Part 2 gives exactly the nonsurjective ℓ if enough Frobenii are considered

Theorem

Given a typical genus 2 curve C/\mathbb{Q} , if B is sufficiently large, then LikelyNonsurjectivePrimes(C, B) consists exactly of the nonsurjective primes of A.

Question

What is "sufficiently large" here?

Theorem

Let q be the largest non-surjective prime for C. Assuming GRH, any B such that

$$B \geq \left(4 \left[(2q^{11}-1) \log \mathsf{rad}(2q \mathcal{N}_{\mathcal{A}}) + 22q^{11} \log(2q)
ight] + 5q^{11} + 5
ight)^2$$

is "sufficiently large".

Theorem

Assuming that $\rho_{A,\ell}$ is surjective, there is an effective bound B_0 such that, for any $B > B_0$, if we sample $P_p(t)$ for n primes $p \in [B, 2B]$ uniformly and independently at random, then the Part 2 algorithm fails to remove ℓ with a probability $< 3 \cdot \left(\frac{9}{10}\right)^n$.

- All of conductor bounded by 2^{20} .
- The curves are being prepared for addition into the LMFDB.
- Let B = 1,000 in the part 2 algorithm.
- Took about 35 hours on MIT's Lovelace computer.

How many curves were nonmaximal at each prime?

How many curves were nonmaximal at each prime?

Find our computational results on the LMFDB!

- We had also run our code all 63,107 typical genus 2 curves in the LMFDB
- https://www.lmfdb.org/
- https://www.lmfdb.org/Genus2Curve/Q/439587/d/439587/1

- Can we compute Im $\rho_{A,\ell}$ when ℓ is not surjective?
- $\dim(A) > 2?$
- Other number fields?
- Bounds on the index of Galois image?

On behalf of my collaborators, I would like to thank

- Noam Elkies for providing interesting examples of genus 2 curves in the literature
- Davide Lombardo for helpful discussions about computing geometric endomorphism rings
- Drew Sutherland for providing us with a dataset of Hecke characteristic polynomials and with the dataset of the 1,743,737 typical genus 2 curves
- The Workshop on Arithmetic Geometry, Number Theory, and Computation at ICERM in 2020 via Simons Foundation Grant 546235
- Collaborate@ICERM in 2022 via NSF Grant No. DMS-1929284
- (Isabel Vogt, partially): NSF grants DMS-1902743 and DMS-2200655
- The LuCaNT Organizers

- Dieulefait, Luis V. Explicit determination of the images of the Galois representations attached to abelian surfaces with End(A) = Z, Experimental Mathematics, 11(4):503-512, 2002.
- Mitchell, Howard H. The subgroups of the quaternary abelian linear group, *Transactions of the American Mathematical Society*, 15(4):379-396, 1914.
- Serre, Jean-Pierre. Oeuvres. Springer-Verlag, 4:1-55, 2000.
- Sutherland, Andrew V. Computing Images of Galois Representations Attached to Elliptic Curves, *Forum of Mathematics, Sigma*, 4, 2016.