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Classical modular forms in the LMFDB are great!

Comprehensive over a wide range of conductor, weight, and
character

Links to elliptic curves and Artin representations

L-functions

Everything is rigorous to the extent that our mathematical
knowledge allows; in particular, real numbers are treated with
rigorous error bounds and interval arithmetic

Andrew Booker Computing Maass forms



Maass forms

H = {x + iy : y > 0}, ds2 = dx2 + dy2

y2
, ∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
Γ(N) = {γ ∈ SL(2,Z) : γ ≡ I (mod N)}

Γ ⊃ Γ(N) congruence subgroup of SL(2,Z), XΓ = Γ\H

A Maass form is a square-integrable eigenfunction of ∆ invariant
under Γ, i.e. f ∈ L2(XΓ) with ∆ = λf .

Spectral decomposition of ∆:

L2(XΓ) = (continuous spectrum)⊕
∞⊕
j=0

Cfj

Fourier expansion: If
(
1 h
0 1

)
∈ Γ then for j > 0, fj takes the form

fj(x + iy) =
∞∑
n=1

aj(n)
√
yKirj (2πny/h)

{
cos(2πnx/h)

sin(2πnx/h)

where rj =
√

λj − 1
4 and Kir (y) =

∫∞
0 e−y cosh t cos(rt) dt.
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Maass forms
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Maass forms
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Maass forms and Artin representations

Theorem (B., 2003)

Let ρ : Gal(K/Q) → GL2(C) be an even, irreducible Artin
representation of conductor N and L-function
L(s, ρ) =

∑∞
n=1 aρ(n)n

−s .

If L(s, ρ) is entire then there is a Maass form fj for
Γ = Γ1(N) = ⟨( 1 1

0 1 ), Γ(N)⟩ with Laplace eigenvalue λj =
1
4 and

Fourier coefficients aj(n) = aρ(n).
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Some applications of Maass form computations

Computing real quadratic class groups

Classifying Artin representations

Verifying the Selberg eigenvalue conjecture

Studying the distribution of low-lying eigenvalues

Bian, B., Docherty, Jacobson, Seymour-Howell

Determined the class group structure and regulator of all real
quadratic fields of discriminant ≤ 1011 (soon to be 1012)

Andrew Booker Computing Maass forms



Some applications of Maass form computations

Computing real quadratic class groups

Classifying Artin representations

Verifying the Selberg eigenvalue conjecture

Studying the distribution of low-lying eigenvalues

B., Lee, Strömbergsson (2020)

Determined the complete list of even, nondihedral, 2-dimensional
Artin representations of conductor ≤ 2862

Andrew Booker Computing Maass forms



Some applications of Maass form computations

Computing real quadratic class groups

Classifying Artin representations

Verifying the Selberg eigenvalue conjecture

Studying the distribution of low-lying eigenvalues

Theorem (B., Lee, Strömbergsson, 2020)

The Selberg eigenvalue conjecture is true for Γ1(N) for N ≤ 880,
and for Γ(N) for N ≤ 226.
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Some applications of Maass form computations

Computing real quadratic class groups

Classifying Artin representations

Verifying the Selberg eigenvalue conjecture

Studying the distribution of low-lying eigenvalues

Kravchuk, Mazac, Pal (2021)

Determined the bass note dual of finite-volume hyperbolic surfaces
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An incomplete history of Maass form computations

Pierre Cartier (1975-78), odd spectrum
Hartmut Haas (1977), odd and even (with an interesting mistake)
Dennis Hejhal (1979)
Hejhal, Berg (1982)
Golovchanskii, Smotrov (1982)
Stark (1984)
Winkler (1988) – Hecke groups Γq for q = 3, 4, 5, 6, 7, 8 (Γ3 = SL(2,Z))

All of the above: r ≲ 25

Hejhal (1991) – all r < 50; examples up to r ≲ 500
Csordás, Graham, Szépfalusy (1991): All odd 0 < r ≲ 200
Steil (1994): all r < 350 and 500 < r < 510; examples up to r ≈ 4000
Hejhal (1999) – examples up to r ≈ 11000

Then (2012) – all r < 1400; examples up to r ≈ 40000
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Basic algorithm

For simplicity, consider the case of an even Maass form f for SL(2,Z).
Fix an error tolerance ε and height cutoff Y . Fix M = M(ε,Y ) so that

f (x + iy) =
∑

1≤m≤M

am
√
yKir (2π|m|y) cos(2πmx) +

[∣∣error∣∣ < ε
]
, ∀y ≥ Y .

Now use f (zj) = f (z∗j ) for appropriate zj = xj + iyj /∈ F with yj ≥ Y .

0 1/2 1−1/2−1

z1

z1*
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Hejhal’s algorithm (1999)

Take zj = xj + iY =
j− 1

2

2Q + iY (j = 1, 2, . . . ,Q), with e.g.

Y = 0.86 < 1
2

√
3 and Q > M(ε,Y ).

0 1/2 1−1/2−1

z z1 Q

Now:

f (zj) =
∑

1≤m≤M

am
√
YKir (2π|m|Y ) cos(2πmxj) +

[∣∣error∣∣ < ε
]

=⇒ an
√
YKir (2π|n|Y ) =

2

Q

Q∑
j=1

f (zj) cos(2πnxj) +
[∣∣error∣∣ ≤ 2ε

]
for n = 0, 1, . . . ,M.
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Hejhal’s algorithm (1999)

an
√
YKir (2π|n|Y ) =

2

Q

Q∑
j=1

f (zj) cos(2πnxj) +
[∣∣error∣∣ < 2ε

]

=
2

Q

Q∑
j=1

f (z∗j ) cos(2πnxj) +
[∣∣error∣∣ < 2ε

]
.

Thus:

an
√
YKir (2π|n|Y ) =

∑
1≤m≤M

amVnm +
[∣∣error∣∣ < 4ε

]
,

where Vnm =
2

Q

Q∑
j=1

√
y∗
j Kir (2πmy∗

j ) cos(2πmx∗j ) cos(2πnxj).
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Certification

Theorem (B., Strömbergsson, Venkatesh, 2005)

Suppose that λ̃ and ãn for n ≤ M are numbers approximating to B
bits the Laplacian and Hecke eigenvalues λ and an of a Maass form
for SL(2,Z), i.e.∣∣λ̃− λ

∣∣ < 2−B and |ãn − an| < 2−B ∀n ≤ M.

For any ε > 0 and M,B sufficiently large (depending in a precise
way on λ and ε), there is an algorithm that verifies in polynomial
time in λ, M and B that∣∣λ̃− λ

∣∣ < 2−(1−ε)B and |ãn − an| < 2−(1−ε)B ∀n ≤ (1− ε)M.
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Certification

Theorem (B., Strömbergsson, Venkatesh, 2005)

The first ten cuspidal eigenvalues (λj =
1
4 + r2j ) on SL(2,Z)\H are

as follows, correct to 100 decimal places:

r1 = 9.53369526135355755434423523592877032382125639510725198237579046413534899129834778176925550997543536 . . .

r2 = 12.17300832467967784952795117639554812398247167309994790041359894085944536082660887402607610119914083 . . .

r3 = 13.77975135189073894424367328151771259715513256879348706925238822161445033353997009415783160955742757 . . .

r4 = 14.35850951825981277986694256903716549561438589919676624781520226663201120679288581901319549358192409 . . .

r5 = 16.13807317152103058019829428598600394563144288541378695827382712175947030542755279355556642723837034 . . .

r6 = 16.64425920189981994352627455936865570143168145997231928907651455001829017618970424409102246827670179 . . .

r7 = 17.73856338105737789321732636154654617200548005325129188079624689810214157759980377279197640233860653 . . .

r8 = 18.18091783453070386031830826819331393824992456541781787106792508774526862910670490089247820557750868 . . .

r9 = 19.42348147082825519163378035720852444158552560076333197577947593786262611347059612969474807916047941 . . .

r10 = 19.48471385474101336412852642787287621877406238534520661308580751557226039659320657991642152653178001 . . .
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Certification: sketch of proof

Putative eigenfunction:

f (x + iy) :=
M∑

m=1

ãm
√
yKi r̃ (2πmy) cos(2πmx).

Note ∆f ≡ λ̃f , with λ̃ = 1
4 + r̃2.

Set f̃ = Γ-invariant extension of f|F
and f̃S = f̃ smoothed in Γ-invariant way.

The (standard) quasimode idea: there exists λ in continuous or
discrete spectrum such that

∣∣λ̃− λ
∣∣ ≤ ∥∥(∆− λ)f̃S

∥∥
L2∥∥f̃S∥∥L2 .

Note: In the odd case there is no continuous spectrum.
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Certification: estimating the right-hand side

Lemma

Suppose f̃S is obtained from f̃ by convolving with a point-pair
invariant k with compact support of size δ, and let B(δ) be the
δ-neighborhood of {z ∈ H : |z | = 1, |ℜz | ≤ 1

2}. Then∥∥(∆− λ)f̃S
∥∥
L2

≤
√

Area(B(δ) ∩ F)

∫
H

∣∣(∆− λ)k(z , i)
∣∣ dµ(z)

· sup
z∈B(δ)

∣∣f̃ (z)− f (z)
∣∣.
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Certification: separating out the continuous spectrum

The proof (but not the computer implementation) is harder for
even forms, because f̃ has a continuous spectrum component.

We use the magic Lindenstrauss–Venkatesh operator:

⋄ = 2 cos
(
(log p)

√
∆− 1

4

)
− Tp,

which annihilates the continuous spectrum.

Applying it to f̃S , the argument goes through as before, at the
price of a factor 1

pir+p−ir−ap
.
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Recent developments

Strömberg (2005) extended Hejhal’s algorithm to groups with
many cusps, including Γ0(N). His algorithm underlies all of
the Maass form data currently in the LMFDB.

Then (2012) showed how to linearize the search for r , greatly
improving the efficiency of Hejhal’s algorithm.

Child (2022) extended the BSV certification method to groups
with multiple cusps.

Berghaus, Monien, Radchenko (2022) made many practical
improvements to Hejhal’s algorithm.

Seymour-Howell (2023) has shown that Hejhal’s algorithm
converges on the first few eigenfunctions of level 1.
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Seymour-Howell’s algorithm

Fix N and let {fj} be a Hecke eigenbasis of L2cusp(Γ0(N)\H) with
Laplace eigenvalues λ1 ≤ λ2 ≤ · · · and Hecke eigenvalues aj(n).

For a suitably nice test function H, the Selberg trace formula
allows us to compute

t(n,H) :=
∞∑
j=1

aj(n)H(λj)

for fixed n ̸= 0 with (n,N) = 1.
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Seymour-Howell’s algorithm

By the Hecke relations, for any sequence of real numbers
{c(m)}Mm=1 such that (m,N) > 1 =⇒ c(m) = 0, we have(

M∑
m=1

c(m)aj(m)

)2

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

aj

(m1m2

d2

)
.

We define

Q(c ,H) :=
∞∑
j=1

(
M∑

m=1

c(m)aj(m)

)2

H(λj)

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

aj

(m1m2

d2

)
H(λj)

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

t
(m1m2

d2
,H
)
.
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Seymour-Howell’s algorithm

We choose the test function H to be non-negative, and define
H̃(λ) = H(λ)

(
λ− λ̃

)2
, where λ̃ is a putative approximate Laplace

eigenvalue.

Defining ε = ε(c) :=
√

Q
(
c , H̃

)
/Q(c ,H), we see that for any

choice of the coefficients c , ε2 is a weighted average of
(
λj − λ̃

)2
.

Hence, there must exist a λj in the interval
[
λ̃− ε, λ̃+ ε

]
.

For a given λ̃ we can find a choice of c that minimizes the
Rayleigh quotient ε2.

A related idea helps to choose λ̃: define Ĥ(λ) = λH(λ), and let Q
and Q̂ denote the respective matrices of the quadratic forms
Q(c ,H) and Q

(
c , Ĥ

)
. Then we choose λ̃ to be the solutions to

the generalized symmetric eigenvalue problem Q̂x = λQx .
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Bootstrapping

Idea: given an approximate Laplace eigenvalue λ̃ that has been
certified to low precision (10 decimal places, say), we can carry out
Hejhal’s algorithm in interval arithmetic to provably refine the
precision of λ̃ and compute the associated Hecke eigenvalues.

The main theoretical input that’s needed is bounds for Kir (x) and
∂
∂rKir (x).

Lowry-Duda has carried this out in wide generality and used it to
refine output from Seymour-Howell’s algorithm.
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Other methods

Kuznetsov trace formula (Golovchanskii and Smotrov, 1982)

Power series (Voight and Willis, 2014)

Finite element method (Levitin and Strohmaier, 2021)
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L-functions

We have good algorithms for rigorously computing motivic
L-functions in the LMFDB, including L-functions of classical
modular forms, thanks to work of Platt and Costa.

Maass forms yield the first large class of L-functions to which those
algorithms don’t apply (and could not be easily extended without
serious deficiencies in performance).

Fortunately, we have a different suite of algorithms for this specific
family. One of the main ideas is to multiply the complete
L-function by

2F1
(s + ϵ+ ir

2
,
s + ϵ− ir

2
;
1

2
+ ϵ;− tan2 θ

)
for a suitable θ ∈ [0, π/2), rather than the exponential factor e−iθs

that we use for motivic L-functions.

This has the right shape to compensate for the amplitude
variations of the Γ-factors that occur for Maass forms.
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L-functions

Z

t 80 40  60 20 0

Theorem (B., Then, 2018)

For f a Maass cusp form for SL(2,Z) with spectral parameter
r ∈ [0, 178], all non-trivial zeros of L(s, f ) with imaginary part
bounded by 30000 are simple and lie on the critical line.
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Summary of current status

Rigorous computations for level 1 going back to 2005

Work in progress of Lowry-Duda and Seymour-Howell gives
the first major progress beyond level 1 (Γ0(N) for all
squarefree N ≤ 105)

So far L-functions have been computed for level 1 only, but
the algorithms have been worked out more generally
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Theoretical: explicit trace formulas

Algorithmic: extend Seymour-Howell’s algorithm to
non-squarefree level and character

Computational: large scale runs to get to higher level

Applications: 1951 and all that

Do everything again for weight 1
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