Computing Maass forms

Andrew Booker University of Bristol

> LuCaNT July 11th 2023

Andrew Booker Computing Maass forms

Image: A math and A

-≣->

- Comprehensive over a wide range of conductor, weight, and character
- Links to elliptic curves and Artin representations
- L-functions
- Everything is rigorous to the extent that our mathematical knowledge allows; in particular, real numbers are treated with rigorous error bounds and interval arithmetic

Maass forms

$$\mathbb{H} = \{x + iy : y > 0\}, \ ds^2 = \frac{dx^2 + dy^2}{y^2}, \ \Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$$
$$\Gamma(N) = \{\gamma \in \mathsf{SL}(2, \mathbb{Z}) : \gamma \equiv I \pmod{N}\}$$
$$\Gamma \supset \Gamma(N) \text{ congruence subgroup of } \mathsf{SL}(2, \mathbb{Z}), \ X_{\Gamma} = \Gamma \setminus \mathbb{H}$$

A Maass form is a square-integrable eigenfunction of Δ invariant under Γ , i.e. $f \in L^2(X_{\Gamma})$ with $\Delta = \lambda f$.

Spectral decomposition of Δ :

$$L^2(X_{\Gamma}) = (ext{continuous spectrum}) \oplus \bigoplus_{j=0} \mathbb{C} f_j$$

 ∞

Fourier expansion: If $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \in \Gamma$ then for j > 0, f_j takes the form

$$f_j(x+iy) = \sum_{n=1}^{\infty} a_j(n) \sqrt{y} K_{ir_j}(2\pi ny/h) \begin{cases} \cos(2\pi nx/h) \\ \sin(2\pi nx/h) \end{cases}$$

where $r_j = \sqrt{\lambda_j - \frac{1}{4}}$ and $K_{ir}(y) = \int_0^\infty e^{-y \cosh t} \cos(rt) dt$.

Maass forms

(c) Level 2, $\lambda = 79.867724...$

(b) Level 1, $\lambda = 190.131547...$

(d) Level 3, $\lambda = 182.713668...$

イロト イヨト イヨト イヨト

Theorem (B., 2003)

Let ρ : Gal $(K/\mathbb{Q}) \to$ GL $_2(\mathbb{C})$ be an even, irreducible Artin representation of conductor N and L-function $L(s, \rho) = \sum_{n=1}^{\infty} a_{\rho}(n)n^{-s}$. If $L(s, \rho)$ is entire then there is a Maass form f_j for $\Gamma = \Gamma_1(N) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \Gamma(N) \rangle$ with Laplace eigenvalue $\lambda_i = \frac{1}{4}$ and

Fourier coefficients $a_j(n) = a_\rho(n)$.

▲御★ ▲ 理★ ▲ 理★

• Computing real quadratic class groups

Bian, B., Docherty, Jacobson, Seymour-Howell

Determined the class group structure and regulator of all real quadratic fields of discriminant $\leq 10^{11}$ (soon to be $10^{12})$

- Computing real quadratic class groups
- Classifying Artin representations

B., Lee, Strömbergsson (2020)

Determined the complete list of even, nondihedral, 2-dimensional Artin representations of conductor ≤ 2862

TABLE 1. Even, nondihedral Artin representations of conductor ≤ 2862 up to twist. For each twist equivalence class we indicate the minimal Artin conductor and link to the LMFDB page of a representation in the class. It is twist minimal in all cases except those marked with *.

-															
Tetra	hedral														
163	277	349	397	547	549	607	679	703	709	711	763	853	937	949	995
1009	1073	1143	1147	1197	1267	1267	1333	1343	1368	1399	1413	1699	1773	1777	1789
1879	1899	1899	1935	1951	1953	1957	1984	2051	2077	2097	2131	2135	2169	2169	2223
2311	2353	2439	2456	2587	2639	2689	2709	2743	2763	2797	2803	2817			
Octa	hedral														
785	1345	1940	2159^{*}	2279	2313	2364	2424	2440	2713	2777	2777	2777	2857		
$\begin{array}{c} \textbf{Icosahedral} \\ 1951^* 1951^* \end{array}$		2141^{*}	2141^{*}	2804^{*}	2804^{*}										
												- P - P			_

- Computing real quadratic class groups
- Classifying Artin representations
- Verifying the Selberg eigenvalue conjecture

Theorem (B., Lee, Strömbergsson, 2020)

The Selberg eigenvalue conjecture is true for $\Gamma_1(N)$ for $N \le 880$, and for $\Gamma(N)$ for $N \le 226$.

- Computing real quadratic class groups
- Classifying Artin representations
- Verifying the Selberg eigenvalue conjecture
- Studying the distribution of low-lying eigenvalues

Kravchuk, Mazac, Pal (2021)

Determined the bass note dual of finite-volume hyperbolic surfaces


```
Pierre Cartier (1975-78), odd spectrum
Hartmut Haas (1977), odd and even (with an interesting mistake)
Dennis Hejhal (1979)
Hejhal, Berg (1982)
Golovchanskii, Smotrov (1982)
Stark (1984)
Winkler (1988) – Hecke groups \Gamma_q for q = 3, 4, 5, 6, 7, 8 (\Gamma_3 = SL(2, \mathbb{Z}))
```

All of the above: $r \lesssim 25$

```
Hejhal (1991) – all r < 50; examples up to r \lesssim 500
Csordás, Graham, Szépfalusy (1991): All odd 0 < r \lesssim 200
Steil (1994): all r < 350 and 500 < r < 510; examples up to r \approx 4000
Hejhal (1999) – examples up to r \approx 11000
Then (2012) – all r < 1400; examples up to r \approx 40000
```

・ロト ・回ト ・ヨト ・ヨト

Basic algorithm

For simplicity, consider the case of an even Maass form f for SL(2, \mathbb{Z}). Fix an error tolerance ε and height cutoff Y. Fix $M = M(\varepsilon, Y)$ so that

$$f(x+iy) = \sum_{1 \le m \le M} a_m \sqrt{y} \mathcal{K}_{ir}(2\pi |m|y) \cos(2\pi m x) + \Big[|\text{error}| < \varepsilon \Big], \quad \forall y \ge Y.$$

Now use $f(z_j) = f(z_j^*)$ for appropriate $z_j = x_j + iy_j \notin \mathcal{F}$ with $y_j \ge Y$.

Hejhal's algorithm (1999)

Take
$$z_j = x_j + iY = \frac{j - \frac{1}{2}}{2Q} + iY$$
 $(j = 1, 2, ..., Q)$, with e.g. $Y = 0.86 < \frac{1}{2}\sqrt{3}$ and $Q > M(\varepsilon, Y)$.

Now:

$$f(z_j) = \sum_{1 \le m \le M} a_m \sqrt{Y} K_{ir}(2\pi |m|Y) \cos(2\pi m x_j) + \left[|\text{error}| < \varepsilon \right]$$
$$\implies a_n \sqrt{Y} K_{ir}(2\pi |n|Y) = \frac{2}{Q} \sum_{j=1}^{Q} f(z_j) \cos(2\pi n x_j) + \left[|\text{error}| \le 2\varepsilon \right]$$

for n = 0, 1, ..., M.

<ロ> <同> <同> < 同> < 同>

æ

Hejhal's algorithm (1999)

$$\begin{aligned} a_n \sqrt{Y} \mathcal{K}_{ir}(2\pi |n|Y) &= \frac{2}{Q} \sum_{j=1}^Q f(z_j) \cos(2\pi n x_j) + \left[\left| \text{error} \right| < 2\varepsilon \right] \\ &= \frac{2}{Q} \sum_{j=1}^Q f(z_j^*) \cos(2\pi n x_j) + \left[\left| \text{error} \right| < 2\varepsilon \right]. \end{aligned}$$

Thus:

$$a_n \sqrt{Y} \mathcal{K}_{ir}(2\pi |n|Y) = \sum_{1 \le m \le M} a_m V_{nm} + \left[\left| \text{error} \right| < 4\varepsilon \right],$$

where $V_{nm} = \frac{2}{Q} \sum_{j=1}^{Q} \sqrt{y_j^*} \mathcal{K}_{ir}(2\pi m y_j^*) \cos(2\pi m x_j^*) \cos(2\pi n x_j).$

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem (B., Strömbergsson, Venkatesh, 2005)

Suppose that $\tilde{\lambda}$ and \tilde{a}_n for $n \leq M$ are numbers approximating to B bits the Laplacian and Hecke eigenvalues λ and a_n of a Maass form for SL(2, \mathbb{Z}), *i.e.*

$$\left| \widetilde{\lambda} - \lambda
ight| < 2^{-B} \quad \textit{and} \quad \left| \widetilde{a}_n - a_n
ight| < 2^{-B} \quad orall n \leq M.$$

For any $\varepsilon > 0$ and M, B sufficiently large (depending in a precise way on λ and ε), there is an algorithm that verifies in polynomial time in λ , M and B that

$$\left|\tilde{\lambda}-\lambda\right|<2^{-(1-\varepsilon)B} \quad \text{and} \quad \left|\tilde{a}_n-a_n\right|<2^{-(1-\varepsilon)B} \quad \forall n\leq (1-\varepsilon)M.$$

Theorem (B., Strömbergsson, Venkatesh, 2005)

The first ten cuspidal eigenvalues $(\lambda_j = \frac{1}{4} + r_j^2)$ on SL(2, \mathbb{Z})\ \mathbb{H} are as follows, correct to 100 decimal places:

 $r_1 = 9.53369526135355755434423523592877032382125639510725198237579046413534899129834778176925550997543536\ldots$

- $r_2 = 12.17300832467967784952795117639554812398247167309994790041359894085944536082660887402607610119914083\ldots$
- $r_3 = 13.77975135189073894424367328151771259715513256879348706925238822161445033353997009415783160955742757\ldots$
- $r_4 = 14.35850951825981277986694256903716549561438589919676624781520226663201120679288581901319549358192409\ldots$
- $r_{5} = 16.13807317152103058019829428598600394563144288541378695827382712175947030542755279355556642723837034\ldots$
- $r_{\rm fb} = 16.64425920189981994352627455936865570143168145997231928907651455001829017618970424409102246827670179\ldots$
- $r_7 = 17.73856338105737789321732636154654617200548005325129188079624689810214157759980377279197640233860653\ldots$
- $r_8 = 18.18091783453070386031830826819331393824992456541781787106792508774526862910670490089247820557750868 \ldots$
- $r_{g} \,=\, 19.42348147082825519163378035720852444158552560076333197577947593786262611347059612969474807916047941 \ldots$
- $r_{10} = 19.48471385474101336412852642787287621877406238534520661308580751557226039659320657991642152653178001\ldots$

イロト イヨト イヨト イヨト

Certification: sketch of proof

Putative eigenfunction:

$$f(x+iy) := \sum_{m=1}^{M} \tilde{a}_m \sqrt{y} K_{i\tilde{r}}(2\pi m y) \cos(2\pi m x).$$

Note $\Delta f \equiv \tilde{\lambda} f$, with $\tilde{\lambda} = \frac{1}{4} + \tilde{r}^2$. Set $\tilde{f} = \Gamma$ -invariant extension of $f_{|\mathcal{F}|}$

and $\tilde{f}_S = \tilde{f}$ smoothed in Γ -invariant way.

The (standard) quasimode idea: there exists λ in continuous or discrete spectrum such that

$$\left|\tilde{\lambda} - \lambda\right| \leq \frac{\left\|(\Delta - \lambda)\tilde{f}_{\mathcal{S}}\right\|_{L^{2}}}{\left\|\tilde{f}_{\mathcal{S}}\right\|_{L^{2}}}$$

Note: In the odd case there is no continuous spectrum.

Lemma

Suppose \tilde{f}_{S} is obtained from \tilde{f} by convolving with a point-pair invariant k with compact support of size δ , and let $B(\delta)$ be the δ -neighborhood of $\{z \in \mathbb{H} : |z| = 1, |\Re z| \leq \frac{1}{2}\}$. Then

$$\begin{split} \left\| (\Delta - \lambda) \widetilde{f}_{\mathcal{S}} \right\|_{L^{2}} &\leq \sqrt{\operatorname{Area}(B(\delta) \cap \mathcal{F})} \int_{\mathbb{H}} \left| (\Delta - \lambda) k(z, i) \right| d\mu(z) \\ &\cdot \sup_{z \in B(\delta)} \left| \widetilde{f}(z) - f(z) \right|. \end{split}$$

The proof (but not the computer implementation) is harder for even forms, because \tilde{f} has a continuous spectrum component.

We use the magic Lindenstrauss-Venkatesh operator:

$$\diamond = 2\cos\left((\log p)\sqrt{\Delta - \frac{1}{4}}\right) - T_{p},$$

which annihilates the continuous spectrum.

Applying it to \widetilde{f}_{S} , the argument goes through as before, at the price of a factor $\frac{1}{p^{ir}+p^{-ir}-a_p}$.

Recent developments

- Strömberg (2005) extended Hejhal's algorithm to groups with many cusps, including $\Gamma_0(N)$. His algorithm underlies all of the Maass form data currently in the LMFDB.
- Then (2012) showed how to linearize the search for *r*, greatly improving the efficiency of Hejhal's algorithm.
- Child (2022) extended the BSV certification method to groups with multiple cusps.
- Berghaus, Monien, Radchenko (2022) made many practical improvements to Hejhal's algorithm.
- Seymour-Howell (2023) has shown that Hejhal's algorithm converges on the first few eigenfunctions of level 1.

イロト イヨト イヨト イヨト

Fix *N* and let $\{f_j\}$ be a Hecke eigenbasis of $L^2_{cusp}(\Gamma_0(N) \setminus \mathbb{H})$ with Laplace eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$ and Hecke eigenvalues $a_j(n)$.

For a suitably nice test function H, the Selberg trace formula allows us to compute

$$t(n,H) := \sum_{j=1}^{\infty} a_j(n) H(\lambda_j)$$

for fixed $n \neq 0$ with (n, N) = 1.

向下 イヨト イヨト

Seymour-Howell's algorithm

By the Hecke relations, for any sequence of real numbers $\{c(m)\}_{m=1}^{M}$ such that $(m, N) > 1 \implies c(m) = 0$, we have

$$\left(\sum_{m=1}^{M} c(m)a_{j}(m)\right)^{2} = \sum_{m_{1}=1}^{M} \sum_{m_{2}=1}^{M} c(m_{1})c(m_{2}) \sum_{d \mid (m_{1},m_{2})} a_{j}\left(\frac{m_{1}m_{2}}{d^{2}}\right).$$

We define

$$Q(c, H) := \sum_{j=1}^{\infty} \left(\sum_{m=1}^{M} c(m) a_j(m) \right)^2 H(\lambda_j)$$

= $\sum_{m_1=1}^{M} \sum_{m_2=1}^{M} c(m_1) c(m_2) \sum_{d \mid (m_1, m_2)} a_j \left(\frac{m_1 m_2}{d^2} \right) H(\lambda_j)$
= $\sum_{m_1=1}^{M} \sum_{m_2=1}^{M} c(m_1) c(m_2) \sum_{d \mid (m_1, m_2)} t \left(\frac{m_1 m_2}{d^2}, H \right).$

We choose the test function H to be non-negative, and define $\widetilde{H}(\lambda) = H(\lambda)(\lambda - \widetilde{\lambda})^2$, where $\widetilde{\lambda}$ is a putative approximate Laplace eigenvalue.

Defining $\varepsilon = \varepsilon(c) := \sqrt{Q(c, \tilde{H})/Q(c, H)}$, we see that for any choice of the coefficients c, ε^2 is a weighted average of $(\lambda_j - \tilde{\lambda})^2$. Hence, there must exist a λ_j in the interval $[\tilde{\lambda} - \varepsilon, \tilde{\lambda} + \varepsilon]$.

For a given $\tilde{\lambda}$ we can find a choice of c that minimizes the Rayleigh quotient ε^2 .

A related idea helps to choose $\tilde{\lambda}$: define $\hat{H}(\lambda) = \lambda H(\lambda)$, and let Q and \hat{Q} denote the respective matrices of the quadratic forms Q(c, H) and $Q(c, \hat{H})$. Then we choose $\tilde{\lambda}$ to be the solutions to the generalized symmetric eigenvalue problem $\hat{Q}x = \lambda Qx$.

Idea: given an approximate Laplace eigenvalue $\tilde{\lambda}$ that has been certified to low precision (10 decimal places, say), we can carry out Hejhal's algorithm in interval arithmetic to provably refine the precision of $\tilde{\lambda}$ and compute the associated Hecke eigenvalues.

The main theoretical input that's needed is bounds for $K_{ir}(x)$ and $\frac{\partial}{\partial r}K_{ir}(x)$.

Lowry-Duda has carried this out in wide generality and used it to refine output from Seymour-Howell's algorithm.

- Kuznetsov trace formula (Golovchanskii and Smotrov, 1982)
- Power series (Voight and Willis, 2014)
- Finite element method (Levitin and Strohmaier, 2021)

向下 イヨト イヨト

L-functions

We have good algorithms for rigorously computing motivic *L*-functions in the LMFDB, including *L*-functions of classical modular forms, thanks to work of Platt and Costa.

Maass forms yield the first large class of *L*-functions to which those algorithms don't apply (and could not be easily extended without serious deficiencies in performance).

Fortunately, we have a different suite of algorithms for this specific family. One of the main ideas is to multiply the complete L-function by

$$_{2}F_{1}\left(\frac{s+\epsilon+ir}{2},\frac{s+\epsilon-ir}{2};\frac{1}{2}+\epsilon;-\tan^{2}\theta\right)$$

for a suitable $\theta \in [0, \pi/2)$, rather than the exponential factor $e^{-i\theta s}$ that we use for motivic *L*-functions.

This has the right shape to compensate for the amplitude variations of the Γ -factors that occur for Maass forms.

Theorem (B., Then, 2018)

For f a Maass cusp form for $SL(2,\mathbb{Z})$ with spectral parameter $r \in [0, 178]$, all non-trivial zeros of L(s, f) with imaginary part bounded by 30000 are simple and lie on the critical line.

< A > < B > <

- Rigorous computations for level 1 going back to 2005
- Work in progress of Lowry-Duda and Seymour-Howell gives the first major progress beyond level 1 ($\Gamma_0(N)$ for all squarefree $N \le 105$)
- So far *L*-functions have been computed for level 1 only, but the algorithms have been worked out more generally

- Theoretical: explicit trace formulas
- Algorithmic: extend Seymour-Howell's algorithm to non-squarefree level and character
- Computational: large scale runs to get to higher level
- Applications: 1951 and all that
- Do everything again for weight 1